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Pressure and flow of exponentially self-correlated active particles
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Microscopic swimming particles, which dissipate energy to execute persistent directed motion, are a classic
example of a nonequilibrium system. We investigate the noninteracting Ornstein-Uhlenbeck Particle (OUP),
which is propelled through a viscous medium by a force which is correlated over a finite time. We obtain an exact
expression for the steady-state phase-space density of a single OUP confined by a quadratic potential, and use the
result to explore more complex geometries, both through analytical approximations and numerical simulations.
In a “Casimir”-style setup involving two narrowly spaced walls, we describe a particle-trapping phenomenon,
which leads to a repulsive effective interaction between the walls, while in a two-dimensional annulus geometry,
we observe net stresses which resemble the Laplace pressure.
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I. INTRODUCTION

Recent investigation of “swimming” particles has provided
many new insights into nonequilibrium phenomena. These
swimmers exhibit a persistent Brownian motion, which vio-
lates detailed balance and the fluctuation-dissipation theorem,
and results in a range of behaviors not observed in passive
systems [1–5].

An “Ornstein-Uhlenbeck Particle” (OUP) is a swimmer
driven by a combination of memoryless friction and an ex-
ponentially correlated propulsion force with finite correlation
time τ . This model has already received significant attention,
as it offers both a basic theoretical system for exploring
nonequilibrium phenomena, and an accurate description of
certain swimmer experiments [6]. The OUP is furthermore
closely related to two popular stochastic swimmer models (the
active Brownian particle and the run-and-tumble particle) and
complements them with different noise statistics.

Despite its relative simplicity, the OUP model is not
generally solvable, and so a number of approximate methods
have been developed to study their steady-state densities – for
example, the “unified colored noise approximation” [7,8] or
perturbative expansions close to equilibrium [9,10].

In this paper we start with a simple exactly solvable model
of an OUP confined in a one-dimensional harmonic potential
and discuss the crossover from an energy-equipartition–
dominated regime close to equilibrium, to a force-balance
dominated regime far from equilibrium. We use the results
to interpret simulation data on more subtle OUP interactions
with external potentials, including flows generated by asym-
metric potentials, attractive and repulsive Casimir forces, and
Laplace-like pressure on a curved surface.

Consider an OUP moving under an external force �f (�x)
arising from a potential U (�x), �f = −∇U . In one dimension
(easily generalized to higher dimensions), the microscopic
equation of motion for the OUP’s coordinate x(t) is the
Langevin equation in which the propulsion force η(t) plays the
role of a colored noise and has exponential correlations with a
finite relaxation time τ . To treat this problem, we imagine that
fluctuations of η(t) itself are governed by a hidden white noise
variable ξ (t), such that the system as a whole is described by

the coupled Langevin equations:

ζ ẋ = η + f (x), (1a)

τ η̇ = −η + ξ (t), (1b)

where 〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = 2T ζδ(t − t ′), with tem-
perature T (in energy units). The amplitude of the correlation
function is such that for a particle with no memory, τ = 0,
the fluctuation-dissipation theorem is satisfied and Eqs. (1)
describe the dynamics of a passive Brownian particle, with
equilibrium density determined by the Boltzmann distribution
∼e−U (x)/T . The second equation ensures the exponential
correlation of the propulsion force: 〈η(t)η(t ′)〉 = T ζ

τ
e−|t−t ′ |/τ .

The main importance of our work is that of a method:
instead of viewing the noise process η as a nuisance to be
integrated out as soon as possible, we retain this propulsion
force as a phase-space variable. This enables calculation of
phase-space currents and pressure formulas, on which all our
results hinge.

The introduction of the hidden variable ξ (t) allows us to
recast the Langevin dynamics (1) in the form of a Fokker-
Planck equation for the density ρ(x,η):

∂tρ = − 1

ζ
∂x{[η + f (x)]ρ} + 1

τ
∂η[ηρ] + ζT

τ 2
∂2
η [ρ]. (2)

The first two terms on the right-hand side represent the
advection in x and η, and the last term is diffusion in η.

II. EXACT STEADY STATE

Consider an OUP confined in a one-dimensional harmonic
potential U (x) = 1

2kx2. The solution of the steady-state
Fokker-Planck equation (2) reads [11]

ρ(x,η) ∝ exp

{
− k

2T

(
kτ

ζ
+ 1

)[
x2 + kτ

ζ

(η

k
− x

)2
]}

, (3)

where kτ
ζ

is the dimensionless relaxation (or correlation) time.
The steady-state current in phase space, according to Eq. (2),
has components jx = 1

ζ
(η − kx)ρ and jη = 1

τ
ηρ + ζT

τ 2 ∂η[ρ].
Current lines form closed loops on the (x,η) plane, as shown in
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Fig. 5 in Appendix A 2. While phase space loops in equilibrium
systems may be observed for the pairs of phase-coordinates
having opposite time-reversal signatures (such as position
and velocity for an underdamped harmonic oscillator), our
nonequilibrium system is different. The driving force η(t),
viewed as a phase-space variable, does not possess negative
(velocity-like) time-reversal signature; hence, the observed
loops signify that this system violates detailed balance.

Integrating Eq. (3) over all η gives a Gaussian spatial density

n(x) with RMS displacement 	OUP =
√

T
k

( kτ
ζ

+ 1)−1/2, as has
already been found by other means [7,8,11]. Thus, excursions
of an OUP into the confining potential are smaller than those

of its passive counterpart, 	OUP � 	passive =
√

T
k

. This is the
outcome of competition between two effects: more persistent
particles explore the potential more efficiently, but at fixed
temperature the increased persistence of η is associated with a
decreased amplitude.1

It is worth emphasizing the physical origin of this pen-
etration formula, which can be most easily apprehended by
examining two limits. When τk

ζ
� 1 (close to equilibrium),

the penetration is controlled by energy balance 1
2kx2 	 1

2T .
In the opposite limit τk

ζ

 1, it is controlled by force balance

η 	 kx, such that the particle stalls when the characteristic
propulsion force η = √

T ζ/τ balances the potential force.
An active system’s departure from equilibrium may also

be identified with its rate of dissipation. For a quadratically
confined OUP, it turns out that this dissipation is related to the
OUP’s average potential energy. To show this, we start with
the equation of motion (1a), multiply by a factor of ẋ, and
average over time. The term which arises from the potential is
a total time derivative and vanishes in the steady state. Hence
we are left with 〈ζ ẋ2〉 = 〈ηẋ〉, which has a straightforward
interpretation: the average power dissipated to friction equals
the average power provided by the propulsion force.

The task now is to calculate what this power is in terms
of the system parameters. Given the statistics of η, we may
explicitly compute (see Appendix B):

〈ζ ẋ2〉 = 1

τ

T

1 + kτ
ζ

. (4)

The quantity T/k

1+τk/ζ
is known to be equal to the mean-squared

displacement 	OUP, so that T
1+τk/ζ

may be thought of as an
effective temperature (for a thorough discussion, see Refs. [11]
and [6]). Equation (4) therefore shows that an amount of
energy equal to this effective temperature is dissipated on the
correlation time scale τ . Put another way, Eq. (4) becomes
〈ζ ẋ2〉 = 1

τ
〈kx2〉; the energy dissipated by the system in time

τ is equal to twice the average potential energy.
Note that these calculations can be generalized to the case of

a massive particle propelled by an Ornstein-Uhlenbeck force

1The “temperature” T which appears in these equations was
introduced in Eq. (1b) in order to construct the exponentially
correlated driving force; it may or may not have anything to do with
the ambient temperature. Nevertheless, for our purposes it is natural
to assume that T is fixed, and thus the amplitude and correlation of
η(t) are simultaneously controlled by τ
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FIG. 1. Net current J as a function of the correlation time (both
measured in convenient units) for an OUP in a periodic, asymmetrical
potential in one dimension. Solid lines with markers show simulation
results for several degrees of asymmetry; dashed lines show the
approximate prediction described in the text. For these data, the height
of the potential U0/T = 1, meaning the approximation described in
the text is not fully applicable; yet it still captures the general behavior.
Inset: Contours of phase-space density. The solid straight lines show
−f (x). Current lines are sketched and adorned with arrows.

(Appendix B); this yields further insights, quantifying, for
instance, the extent to which the Virial Theorem is violated.

III. PUMPING BY AN ASYMMETRIC POTENTIAL

We already noted the existence of currents in phase space.
Correlated dynamics may also produce currents in real space if
they experience a potential landscape which breaks left-right
symmetry, something which has been observed in theoretical,
experimental, and biological systems [12–17]. In principle,
these currents offer a way of extracting work from systems of
active swimmers.

As a specific example, consider an OUP in a one-
dimensional potential U (x) which is piecewise quadratic,
asymmetric, and periodic. We define the potential landscape
U (x) = U0 x2/L2 for −L � x � 0 and U (x) = U0 x2/	2 for
0 � x � 	, with period L + 	. Numerical results for this
system are presented in Fig. 1; a subfigure illustrates the force
landscape, which is more relevant than the potential landscape
because, unlike the classical case of an energy barrier, OUPs
must overcome a force barrier [12,16]. Particles therefore move
to the right (or left) on the (x,η) plane only when η > −f (x)
(or η < −f (x)), since there is no diffusion along x, only drift.

These results can be understood quantitatively by consid-
ering the limit of small penetration into either side of the
potential, such that the current along x is small. In this case,
we can use the density given by Eq. (3). The total current in
the +x direction over the force barrier at x = 	 is obtained
by integrating the current jx over all η larger than the force
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barrier 2U0/	. A similar calculation yields the current in the
−x direction, and the sum of these two contributions is the
net current J . This prediction compares reasonably well with
simulations in Fig. 1. As stated, this procedure is justified
when the penetration depth is small compared to the sizes of
the force barriers, as in this case, the overall current is also
small. While we shall not attempt in this work to analyze the
applicability limits or estimate the possible corrections, we
nevertheless note that, judging by our limited numerics, this
approximation appears to hold qualitatively well beyond the
low-current regime.

IV. PRESSURE

Further consequences of the nonequilibrium character of
OUPs can be found in their production of mechanical stresses.
This idea was investigated already in Ref. [18], where it was
found that the pressure exerted by an ideal gas of active
Brownian particles depends on torques exerted on them by
the confining potential. We here consider pointlike particles,
so torque is not an issue.

Since every particle located at coordinate x exerts a force
f (x) on the source of the potential U (x), the total average
force is obtained by integration of n(x)f (x). We now show
how this quantity is connected to the statistics of η. We derive
equations for the first and second moments of η by multiplying
Eq. (2) by the appropriate power of η and integrating over all
η [14]. This gives (for arbitrary spatial dimension and with
summation over repeated indices):

fi(�x) = −〈ηi〉(�x), (5a)

fj (�x)n(�x) = ∂xi
σij (�x), (5b)

σij (�x) = τ

ζ
[(〈ηiηj 〉 − 〈ηi〉〈ηj 〉)n(�x)],

where Eq. (5a) encapsulates the steady-state balance of
propulsion an potential forces on a single OUP, and Eq. (5b)
encapsulates the net balance of stresses on the OUPs’ medium.

If the potential U (x) depends on one coordinate only,
representing a “wall” of the container, then the pressure on
this wall is obtained by line integration of f (x)n(x) in the
direction perpendicular to the wall, i.e., along x:

P = −
∫ top of wall

bottom of wall
f (x)n(x) dx, (6)

where “bottom of wall” and “top of wall” enclose a region
with nonzero f (x). In general, however, the right-hand side
of Eq. (5b) is not a potential vector field. This means the line
integral (6) depends on the integration path, and the concept
of pressure is ill-defined beyond simple planar or spherical
geometries. Yet it turns out that even in these situations there
are interesting physical effects.

We begin by considering one-dimensional geometry, for
which Eqs. (5b) and (6) imply the pressure on a wall P =
τ
ζ
{[〈δη2

x〉n(x)]bottom − [〈δη2
x〉n(x)]top}, where 〈δη2

x〉 ≡ 〈η2
x〉 −

〈ηx〉2. If the wall can be treated as infinitely high potential
barrier, the second term contributing to the pressure vanishes.
Moreover, if there is a region between two confining walls
where f = 0 (as in the Fig. 2 inset), the quantity [〈δη2

x〉n]bottom
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FIG. 2. Pressure as a function of the dimensionless correlation
time kτ

ζ
, for several bulk widths L. The prediction for L = 0 is shown

as a dashed line (obscured by data), and the prediction for L → ∞ is
a constant. The pressure exerted by an ideal gas of passive particles,
P passive is calculated by substituting the Boltzmann distribution into
Eq. (6).

can be evaluated anywhere in this “bulk.” Thus the pressure
exerted on the walls depends solely on bulk quantities, and
OUPs in one dimension obey an equation of state.

We might imagine that when the width of the bulk, L,
is much larger than the persistence length over which a free
OUP loses its η correlation,

√
τT /ζ , particles leaving one

wall forget its influence by the time they reach the other one.
More quantitatively, one can show that the variance of the
propulsion force far from any walls is T ζ/τ . Combining this
with the expression for the pressure, we obtain the familiar
ideal gas law P = n0T , where n0 is the density evaluated deep
in the bulk.

Thus, in the limit L → ∞, memory-driven active particles
are no different from passive particles. The opposite limit,
L → 0, can be taken from the exact solution above. Figure 2
shows numerical results for intermediate cases.

V. REPULSIVE “DEPLETION” FORCES IN
A CASIMIR POTENTIAL

In this section, we consider a periodic “Casimir”-style
potential sketched in the lower inset of Fig. 3. The potential
consists of two narrowly spaced walls, with a channel between
them and a large (essentially infinite) bulk on either side.
The walls themselves are permeable to OUPs which acquire
sufficient propulsion to overcome the force barrier;2 and while

2While the use of permeable walls is perhaps not typical for a
Casimir experiment, and while they do change the physics of the
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FIG. 3. Plots of two sets of data. The pressure on the inner
and outer portions of the Casimir potential (circles, solid lines,
left ordinate axis) and the total probability of finding the OUP in
each region (triangles, dashed lines, right ordinate axis), both as a
function of the dimensionless correlation time kτ

ζ
. Here Pin > Pout and

Min > Mout; the height of the potentials is T/2 and their half-width
is

√
T/k. Upper inset: A representative probability distribution of η

between the walls, which is narrower than the distribution in the
large bulk [plarge

bulk (η) ∝ exp (− τ

2T ζ
η2)]. Lower inset: Sketch of the

piecewise-quadratic potential, whose the walls are penetrable for
OUPs with sufficiently high η.

we restrict ourselves here to one dimension, similar results are
obtained from analogous setups in higher dimensions.

We find numerically that the net pressure on the two
interior walls does not in general vanish for OUPs: the solid
lines in Fig. 3, referring to the left ordinate axis, show they
experience an effective repulsion. This is interesting because
narrowly separated walls typically attract, due to the depletion
of thermal or quantum fluctuations in the gap between them.
The OUP case is different as a result of two competing
effects.

To understand the first effect, consider an OUP between
the two inner walls. If the gap is small, the particle does not
have time to change its propulsion force η before coming in
contact with one of the walls. Particles with a large η can cross
the force barrier and escape, while particles with a small η

do not cross the force barrier and get trapped for at least a
time τ . As a consequence, the gap between the inner walls is
populated mostly by lackadaisical particles and the probability
distribution in the gap is strongly peaked around η = 0. This is
indeed observed: see the upper inset of Fig. 3, which compares
the distribution of η between the two interior walls with the
distribution in a large bulk. This is somewhat analogous to
the conventional Casimir effect, and it consequently lowers

situation slightly, the general thrust of the following discussion is not
affected by them.

the interior pressure Pin relative to the exterior pressure Pout

(since low-η particles don’t penetrate far into the wall region).
Yet in Fig. 3, we observe Pin > Pout—the walls repel each
other—so this effect cannot be dominant.

The second effect is that concomitant with the low mag-
nitude of η is a disproportionate accumulation of particles
in the region between the walls: once they reach this region,
it is difficult for them to leave, because the narrowly spaced
walls constantly sap the particles’ propulsion force. This is
illustrated by the dashed lines (referring to the right ordinate
axis in Fig. 3). The narrow gap between interior walls therefore
acts as a trap, concentrating the particle density and raising the
pressure to an extent that outweighs the diminished penetration
effect discussed in the previous paragraph. This effect has no
analogy in the regular Casimir scenario.

To explore the physics further, we consider a slightly
different periodic potential that is more amenable to explicit
calculations. Similar to the original Casimir potential depicted
in Fig. 3, this new potential features two narrowly spaced steep
walls flanked by a broad region where the potential force is rel-
atively small: therefore we may expect to see some of the same
physics at play. The new potential is piecewise-quadratic, with
one piece possessing smaller curvature than the other: U (x) =
U0( x

L
+ 1)2 for −2L � x � 0 and U (x) = U0( x

	
− 1)2 for

0 � x � 2	, with L 
 	 ensuring that the second region is
narrow compared to the first. The period of U (x) is then
2L + 2	 (see Fig. 6 in Appendix D for an illustration).

In the steady state, the flux out of the narrow interior
region is balanced by the flux into it, a fact which can be
expressed as Minkin→out = Moutkout→in (where the M are the
total probabilities in the inner and outer regions, and the k are
rate constants). For this potential, kin→out and kout→in differ,
because the height of the force barriers and the force gradient
are both direction-dependent. This is similar to the particle-
pumping potential in Fig. 1, and the difference between the
rate constants can be investigated using the same machinery:
choosing parameters such that the OUP penetration into any
wall is relatively shallow, we use the density equation (3) as an
approximation for each potential well. Combining these densi-
ties with the zero-flux condition, we show in Appendix D that
even for moderate values of τ , OUPs are highly confined to the
narrow region between the two walls, in agreement with Fig. 3.

We stress that the potential used for this calculation
is somewhat different from our original Casimir potential.
There, OUP accumulation between the walls was due to the
reinforcement of correlations in 〈η2〉 by the proximity of the
walls. In the case just considered the heights of the force
barriers are in addition direction-dependent. This scenario is
therefore a little closer to the one considered in Ref. [18],
where ABPs interacted with different potentials on either side
of a hard piston.

The nonmonotonicity of the OUP pressure exerted on the
Casimir potential, visible from the solid lines in Fig. 3, can be
explained by a competition between varying penetration into
the walls and enhanced accumulation between them. When
kτ
ζ

increases from 0, the pressure initially follows the average
penetration and decreases below the thermal value. However,
the force-controlled accumulation of particles with low η2

begins to dominate around kτ
ζ

� 1. Finally, when kτ
ζ

is large
enough that the penetration is smaller than the half-width of
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the interior wall, each region becomes increasingly isolated,
and we are back to (multiple copies of) the situation in Fig. 2.

VI. ACTIVE LAPLACE PRESSURE

Interior walls are not the only way to break spatial symmetry
and induce pressure gradients. Swimmers interact with curved
walls in a nontrivial manner, as has been observed in ABP
simulations [19–21] and experimental systems [22,23]. The
simplest setup involving both positive and negative curvature,
but avoiding ambiguities in the definition of pressure, is an
annular geometry.

Even in this highly symmetrised setting, explicit results
are forthcoming on neither the radial density profile nor the
pressure on the inner and outer walls.3 Thus, we examine
numerically the statistics of an OUP confined in the potential
U (r) = 1

2k(r − R)2, where R is a parameter which determines
both the curvature of the annulus and the position of the
(zero-width) bulk. We observe that OUPs tend to collect in the
“concave” outer wall region (see movie in the Supplemental
Material [24]). This is consistent with what has been found pre-
viously for simulations of ABPs confined by hard walls [19–
21] and is also intuitively reasonable: persistent particles in the
inner convex region may escape by changing their direction
just a little (or not at all), while those in the concave outer region
must make a more drastic change to their direction to escape.

The difference in density between the inner and outer
regions leads to a difference in pressure on the inner and
outer walls, with Pouter > Pinner. Numerical results for the
pressure difference �P as a function of R are plotted in Fig. 4.
As expected, when R → ∞ and the curvature asymmetry
between the walls vanishes, �P does too. Moreover, when R is
large enough to make the potential effectively infinite at r = 0,
we find �P ∝ 1/R. This is reminiscent of a Laplace pressure,
with effective surface tension depending on the dimensionless
correlation time kτ

ζ
.

VII. CONCLUDING REMARKS

In this paper we examined how nonequilibrium flows and
pressure imbalances develop in systems of noninteracting
particles driven by a stochastic correlated force, η(t). The
exact steady-state density ρ(x,η) for a single OUP confined
in a one-dimensional quadratic potential reveals two distinct
regimes. Low values of the dimensionless correlation time kτ

ζ

lead to an equilibrium-like regime of approximately passive
particles, while high values are associated with the balance
between η and the potential force.

We show how potential barriers and force barriers influence
the spatial distribution of OUP propulsion forces, and how
this phenomenon can be exploited to produce net currents
and unbalanced mechanical pressures. In one-dimensional
simulations, two narrowly separated walls (reminiscent of
a Casimir setup) experience an effective repulsion. This

3Previous approximate work on OUPs in a radially symmetric
geometry [8] did accurately describe some phenomena, for instance,
that the probability distribution peak is offset towards regions of low
curvature.

FIG. 4. The pressure difference (P OUP
out − P OUP

in )/(P flat
out

√
kτ

ζ
) for

an annular potential, as a function the wall position R and for several
values of the dimensionless correlation time kτ

ζ
. (We divide the

pressure difference by the pressure for a flat wall in order to fix
normalization as R changes, and we also divide by the free-particle

persistence length
√

kτ

ζ
for better comparison of curves.) The bulk is

of zero width and located at r = R; and the line 1/R is indicated by
dots. Inset: Schematic of the annular potential in 3D, with the foot of
the wall indicated.

arises because the potentials sap the particles’ propulsion
and act as traps. This phenomenon was further investigated
with an analytic approximation, which gives similar results.
Curved boundaries also induce pressure imbalances. For
propelled particles confined in an annular geometry, we find the
difference in pressures on the outer and inner confining walls
is proportional to the boundary curvature, as in Laplace’s law.
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APPENDIX A: EXACT SOLUTION FOR AN
ORNSTEIN-UHLENBECK PARTICLE IN

A 1D QUADRATIC POTENTIAL

In this section, we shall assume length is measured in units
of

√
T/k, force in units of

√
T k, and time in units of ζ/k. We

may then rewrite the OUP model [Eqs. (1) and (2)] in terms
of the dimensionless correlation time α ≡ τk/ζ .

1. Derivation of steady-state density from Langevin equation

Here we obtain Eq. (3) directly from the (nondimensional)
stochastic equations. Combining Eqs. (1) into a single vector
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equation for �x ≡ (x η)T:

�̇x = A�x + �ξ (t), (A1)

where A = (−1 1
0 −1/α) and 〈�ξ (t)�ξ (t ′)〉 = (0 0

0 1/α2)δ(t − t ′). Equa-
tion (A1) can be “solved” as an integral over the stochastic
force

�x(t) =
∫ t

−∞
exp[A(t − s)]�ξ (s) ds, (A2)

and the covariance matrix C(t,t ′) ≡ 〈�x(t)�x(t ′)〉

C(t,t ′) =
∫ t

−∞
exp[A(t − s)]〈�ξ (t)�ξ (t ′)〉 exp[AT(t ′ − s)] ds,

(A3)

which can be computed given the self-correlation of �ξ .
Since Eq. (A1) is a linear equation driven by a Gaussian
process, its steady-state density must be a bivariate Gaussian
of the form ρ(x,η) ∝ exp [−�xC−1 �xT]. Performing the matrix
exponentiation, multiplication and inversion, gives

ρ(x,η) =
√

α(α + 1)

2π
exp

[
−1

2
(α + 1)2x2

− 1

2
α(α + 1)η2 + α(α + 1)xη

]
, (A4)

which is the same as Eq. (3) after rearranging.

2. Density and currents in phase space

From Eqs. (2) and (3) we find that steady-state currents
exist in the full phase space but cancel out when considering
the x coordinate alone (see Fig. 5).

The spatial density n(x) can be found from Eq. (3) by
integrating over η:

n(x) =
√

α + 1

2π
exp

[
−1

2
(α + 1)x2

]
. (A5)

This exact solution, which agrees with approximations from
Refs. [8,9], has exponential form and hence can be mapped to
a Boltzmann distribution by invoking an effective temperature
Teff ≡ T

α+1 (in dimensionful units).
It is clear from the solution in Eq. (3) (or Eq. (A4)) that

the level curves of the density in Fig. 5 are concentric ellipses.
Their eccentricity is

e =
√

2
√

1 + 4α2

1 + 2α + √
1 + 4α2

. (A6)

This tends to unity in both α → 0 and α → ∞ limits, with a
minimum of e ≈ 0.91 at α = 1/2.

3. Nonstationary mean-squared displacement

From the overdamped Langevin equation, we can compute
mean-squared displacement of an OUP. Using units of

√
T/k

for x, ζ/k for time t , and with α = kτ/ζ being the dimension-
less correlation time, we have

〈[x(t) − x(0)]2〉 = 1 − e−(α+1)t

α + 1
+ 1 − e(α−1)t

α − 1
e−2αt , (A7)

FIG. 5. (a): Density distribution in (x,η) phase space. Elliptical
level lines illustrate the exact solution (3). (b): Currents in (x,η) phase
space. Arrows represent velocity, while the contours are magnitude
of current.

with limits

〈[x(t) − x(0)]2〉 	
⎧⎨
⎩

αt2 for t → 0

1
α+1 for t → ∞

. (A8)

The long time asymptotic corresponds to the confinement
length, which is implicit in the density distributions (3) or
(A5). The short time asymptotic, which is not diffusive but
ballistic, reflects the fact that these particles are driven by the
active propulsion force.

The relaxation time is controlled by the longer of the two
time scales in Eq. (A7), namely, 1/(α + 1) and 1/2α.
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APPENDIX B: CALCULATION OF THE DISSIPATION
FROM A QUADRATICALLY CONFINED OUP

For a nonoverdamped OUP of mass m in a harmonic poten-
tial, the equation of motion (i.e., the balance of forces) reads

mẍ + ζ ẋ + kx = η, (B1)

with 〈η〉 = 0 and 〈η(t)η(t ′)〉 = 2ζT exp [−|t−t ′|
τ

] as before.
To obtain the balance of powers, multiply both sides by ẋ to
arrive at

d

dt

[
kx2

2
+ mẋ2

2

]
+ ζ ẋ2 = ηẋ. (B2)

Averaging, we note that the first term vanishes in the steady
state, so

〈ζ ẋ2〉 = 〈ηẋ〉, (B3)

which simply means that the average power of dissipation by
friction (the left-hand side) is equal to the average power input
provided by the propulsion force (the right-hand side). We shall
explicitly compute this power; but first we compute the mean-
squared displacement for the massive OUP. Fourier transform-
ing the equation of motion and performing a contour integral,

〈x2(t)〉 ≡
∫ +∞

−∞
(x2)ω

dω

2π
= T

k

1 + τζ

m

1 + τζ

m
+ τ 2k

m

. (B4)

From this formula we recognize two familiar limits. For a
system driven by white noise (τ → 0), 〈x2〉 = T/k as required
by equipartition. For the no-inertia case (m → 0) considered
in the main text we recover the previous finding 〈x2〉 = T

k
1

1+ kτ
ζ

.

The dissipation can be computed by considering either the
right- or left-hand side of Eq. (B3):

〈ζ ẋ2〉 ≡
∫ +∞

−∞
−ζω2(x2)ω

dω

2π
= 1

τ

T

1 + kτ
ζ

+ m
τζ

. (B5)

Once again, two limits can be readily identified. When
τ → 0, 〈ζ ẋ2〉 = ζT /m, or 〈 1

2mẋ2〉 = 1
2T , as expected from

classical equipartition. For the no-inertia case, m → 0, we
arrive at Eq. (4).

Combining Eq. (B5) with Eq. (B4), we find a modified form
of the Virial Theorem:(

1 + τζ

m

)〈
mẋ2

2

〉
=

〈
kx2

2

〉
. (B6)

Deviations from the classical result are clearly parameterized
by the nonequilibrium correlation time τ . Taking the no-inertia
limit of Eq. (B6) we find once more that the average potential
energy is dissipated in time τ/2.

APPENDIX C: CALCULATIONS FOR OUP PUMPING
IN AN ASYMMETRICAL POTENTIAL

We use Eq. (3) as an approximation for the density.
In original units, we denote the unnormalized density in a
quadratic potential with spring constant κ as

pκ (x,η) ≡ exp

{
− κ

2T

(
κτ

ζ
+ 1

)[
x2 + κτ

ζ

(η

κ
− x

)2
]}

.

(C1)

Let the two different spring constants in the problem be

k = 2U0

	2
and K = 2U0

L2
, (C2)

with L � 	. Then we approximate

ρ(x,η) ≈
{
ApK (x,η) for −L < x < 0

a pk(x,η) for 0 < x < 	
. (C3)

The ratio of the prefactors A and a we fix by the condition that
the spatial distribution n(x) is continuous at the junction of the
two potentials (at x = 0):

A

∫ +∞

−∞
pK (x = 0,η) dη = a

∫ +∞

−∞
pk(x = 0,η) dη, (C4)

yielding

A√
Kτ
ζ

+ 1
= a√

kτ
ζ

+ 1
. (C5)

As a second condition, we assume (arbitrarily) that the density
is normalised in every period of the potential,∫ +∞

−∞

[
A

∫ 0

−L

pK (x,η) dx + a

∫ 	

0
pk(x,η) dx

]
dη = 1.

(C6)

Thus we obtain simple (but cumbersome) expressions for
amplitudes A and a. We may then compute the current
according to

J = a

∫ ∞

k	

pk(x = 	,η)
η − k	

ζ
dη

+A

∫ −KL

−∞
pK (x = L,η)

η + KL

ζ
dη, (C7)

where the first integral represents current to the right over the
steep force barrier, and the second integral, which is negative,
represents current to the left over the shallow force barrier. In
the end, dropping for clarity the normalization factor, one gets

J ∝
exp

[ − U0
T

(
kτ
ζ

+ 1
)]

√
kτ
ζ

+ 1
−

exp
[ − U0

T

(
Kτ
ζ

+ 1
)]

√
Kτ
ζ

+ 1
. (C8)

Remembering definitions of spring constants k and K , and
letting 	 = λ(L + 	) and L = (1 − λ)(L + 	), we finally
arrive at

J ∝ exp
[ − U0

T

(
α
λ2 + 1

)]
√

α
λ2 + 1

−
exp

[ − U0
T

(
α

(1−λ)2 + 1
)]

√
α

(1−λ)2 + 1
(C9)

with dimensionless parameters in the problem being U0/T

and α = 2U0τ/(L + 	)2ζ . This current is plotted against α in
Fig. 1, for various values of λ (assuming U0/T = 1.0 as an
example).

APPENDIX D: APPROXIMATION FOR THE
CASIMIR POTENTIAL

In the main text, we described how the exact result for
the OUP density in a quadratic potential may be used to gain
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some insight into the observed accumulation between narrowly
spaced walls. We consider the potential

U (x) =
{

1
2K(x + L)2 for − 2L � x � 0
1
2k(x − 	)2 for 0 � x � 2	,

(D1)

with K and k defined as in Eq. (C2), and U0 the height of
the energy barrier. The upper panel of Fig. 6 compares this
potential with the original Casimir potential considered in the
main text.

Using the notation of Eq. (C1), the density in either well is
approximated as

ρ(x,η) 	
{
A · pK (x + L,η) for − 2L � x � 0
a · pk(x − 	,η) for 0 � x � 2	,

(D2)

where A and a are factors to be determined. In the steady
state, the net current over the force barrier at x = 0 must be
zero. Similar to Eq. (C7), this gives one condition between
amplitudes A and a:

0 = A

∫ ∞

KL

pK (L,η)
η − KL

ζ
dη

+ a

∫ −k	

−∞
pk(	,η)

η + k	

ζ
dη. (D3)

The second condition which fixes amplitudes A and a is the
normalization:

1 = A

∫ 0

−2L

∫ ∞

−∞
pK (x + L,η) dη dx

+ a

∫ 2	

0

∫ ∞

−∞
pk(x − 	,η) dη dx. (D4)

FIG. 6. (a) Schematic of the original Casimir potential from the
main text (solid blue line), and the approximation to it considered
here (green, dashed). (b) The mass M in the narrow region of the
Casimir potential, as a function of the stiffness ratio k/K , for several
values of the potential height U0/T .

FIG. 7. The net repulsive pressure P on the interior walls of the
Casimir potential, as a function of the potential-stiffness ratio k/K ,
for several values of the potential height U0/T .

The total probability, M , to find the OUP in the narrow well
can then be calculated:

M = a

∫ ∞

−∞

∫ 2	

0
pk(x − 	,η) dx dη (D5)

= 1

1 + ( Kτ
ζ

+1
kτ
ζ

+1

) exp
[

U0
T

Kτ
ζ

]
exp

[
U0
T

kτ
ζ

] erf
[√

U0
T

(
Kτ
ζ

+1
)]

erf
[√

U0
T

(
kτ
ζ

+1
)]

. (D6)

This is plotted in Fig. 6.

FIG. 8. A sample trajectory trace in the annular geometry. Shaded
according to time, with later times shaded darker. The solid black
circle marks r = R.
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The total force on the wall is equal and opposite to the
pressure. This is calculated as

− P = A

∫ 0

−L

K(x + L)
∫ ∞

−∞
pK (x + L,η) dη dx

+ a

∫ 	

0
k(x − 	)

∫ ∞

−∞
pk(x − 	,η) dη dx. (D7)

The result is a little longer than Eq. (D6), so we merely plot it
in Fig. 7. Note that in this model, the net force exerted by OUPs
on the walls always pushes them apart, as in the simulations
of the Casimir potential in Fig. 3.

APPENDIX E: POSITION TRAJECTORY FOR
THE ANNULAR GEOMETRY

Figure 8 shows a segment of an OUP trajectory trace in
an annular potential with zero bulk. The trace is color-coded
according to time, with later times shaded darker. See also the
movie in the Supplemental Material [24].

APPENDIX F: SIMULATION NOTES

Numerical simulation of Eqs. (1) was implemented using an
Euler-Maruyama scheme. The equations of motion were cast
into dimensionless form using the prescription in Appendix A.
(When there are multiple spring constants in the problem, we
choose the largest, which gives the smallest unit of time.)
We typically used the time step �t = 0.01; although when
the dimensionless correlation time α is small (α � 0.1), it is
prudent to employ a smaller increment in order to forestall
issues with the convolution in constructing η(t). Each data
point shown here was generated from 50 runs of 100 000 or
so time steps, which ensured that the steady state was reached
and the initial condition had negligible influence on the final
results. For simulations with relatively high force barriers,
longer simulation times were occasionally needed to achieve
steady state.

To avoid crowding in the plots of simulation results,
we have omitted error bars. Deviation in the outcome of
repeated runs was small, seldom more than the size of the plot
markers.
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