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Active nematic gels as active relaxing solids
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I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable
rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with
thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as
relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic
constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an
additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive
relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we
show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of
particles or a self-organization into subchannels flowing in opposite directions.
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I. INTRODUCTION

The mathematical modeling of biophysical and active
materials poses new theoretical challenges for their unique
features. Examples of active matter comprise bacterial swarms
[1], the cellular cytoskeleton [2,3], and in vitro cell extracts.
Nonbiological examples include vibrated granular material
[4]. These systems have attracted much interest in recent
years both from a purely theoretical perspective and for their
potential applications. They are characterized by a strong
deviation from thermal equilibrium due to the environmental
energy supply and the active dynamics of the system’s
microscopic subunits. The simplest, yet successful, theoretical
description of active matter is based on continuum models
for single-component suspensions of rodlike objects. These
models have been originally developed to describe (passive)
nematic liquid crystals, e.g., Ericksen-Leslie theory. The key
features of an active system, namely, its viscoelastic response
[3,5,6] and the active dynamics due to energy consumption of
the material subunits, are usually added in an ad hoc manner
to the passive physical model. Viscoelasticity is taken into
account by postulating a Maxwell relaxation time and activity
is usually introduced by assuming an active stress, proportional
to the nematic ordering tensor Q. In its simplest form, the active
stress is postulated to be of the form Tζ = −ζQ, where ζ is
a modeling coefficient that measures the strength of activity.
When ζ > 0 the material is extensile, while if ζ < 0 it has
a natural tendency to contract. This contribution to the stress
tensor has been deduced on microscopic grounds by Simha
and Ramaswamy [7], and it has been widely used since then
(see, for instance, Refs. [2–4,6,8]). The equations that emerge
are those proposed by Simha and Ramaswamy [7] for self-
propelling organisms, but similar models have been developed
in the context of the cytoskeleton of living cells, a network
of polar actin filaments, made active by molecular motors
that consume ATP [2,3]. A multicomponent theory based on
irreversible thermodynamics is derived in [2,9,10]. The theory
seems to be able to make a number of successful predictions,
e.g., the onset of spontaneous flow [11,12], motility, and
spontaneous division of active nematic droplets [13–15].

*stefano.turzi@polimi.it

However, I believe that the assumption of an active stress
does not correctly capture the true essential nature of an active
behavior. The responses of tissues to elastic forces are quite
different from the passive mechanical properties of composite
materials. For example, on short time scales the passive elastic
response of the matrix and the cellular cytoskeleton dominate
the mechanical response of the tissue; on longer time scales
many cell types (such as muscle cells, fibroblasts, endothelial
cells) can reorganize to reduce their internal stress and thus
reach a relaxed or natural state. Cross-links between polymer
filaments define a natural distance; in other words, they define
a natural metric in the material that I shall call shape tensor. A
strained viscoelastic material has a natural tendency to recover
this natural state and can reconfigure its internal structure to
perform this relaxation in an efficient manner (e.g. viscous
relaxation).

By contrast, activity is an external remodeling force that
competes with the passive remodeling and may drive the
microscopic reorganization away from the natural metric. The
remodeling forces model the interaction with the chemical
fuel, and tension is generated as a consequence of the crawling
motion of aligned filaments. Hence, I believe that activity
is best described by a term in the evolution equation of
the internal structure of the material, rather than directly in
the stress tensor. Indeed, chemical fuel is consumed, and hence
the power exerted by the active term should be nonzero, even in
the absence of any macroscopic flow. This argument contrasts
with the introduction of the active term Tζ in the Cauchy
stress tensor: if the macroscopic flow, v, is zero, the active
stress power, calculated as Tζ · ∇v, must also vanish.

It is worth noticing that, since the actual macroscopic
response of the material is related to the “distance” between its
present state and its relaxed state, activity has an indirect con-
tribution to the stress tensor as the effective material response
depends on it. I will make these statements mathematically
more precise in the next sections.

A similar situation occurs in the continuum theory for
growth and remodeling of solidlike biological tissues, e.g.,
muscles [16–22]. Some theories use a remodeling force and
an active strain (instead of an active stress) to model the
ability of the muscle to actively modify its natural metric.
The remodeling is then performed, via a remodeling force,
at the expense of a chemical fuel. Chemical energy must be
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supplied also in the absence of any macroscopic motion—for
example, during an isometric exercise—as it is needed for
the remodeling of the muscle internal structure. Hence, to
calculate the stress power, the active term has to be paired
with a kinematic quantity related to the material remodeling
rather than with the macroscopic velocity gradient ∇v.

An active stress of the form Tζ = −ζQ has also been
criticized by Brand et al. [23] on the ground of compatibility
with linear irreversible thermodynamics. Their argument is
related to the fact that reversible and dissipative forces behave
differently under time reversal: the dissipative forces have the
same signature as their conjugate fluxes under time reversal,
while reversible forces have the opposite signature. Time
reversal implies a change of sign of the velocity field v. In our
case, the active stress is coupled with the gradient of velocity
∇v and its contribution to the entropy production is −ζQ · ∇v.
If Tζ has to be irreversible, then the activity coefficient ζ must
also change sign under time reversal, which is a rather unusual
behavior for a scalar.

In the present paper we propose a simple and systematic
derivation of the continuum equations of viscoelastic active
nematic gels that is based on symmetry arguments, relaxation
dynamics, and compatibility with linear irreversible thermo-
dynamics. For simplicity, we discuss only a one-component
active gel considering therefore that the complex composition
of active materials such as the cytoskeleton can be described
by an effective single-component fluid. More complicated
theories that employ a multicomponent description of the
active fluid and use linear irreversible thermodynamics are
to be found in Refs. [9,10].

The theory is developed in Sec. II. Section III describes the
hydrodynamic approximation, and Sec. IV deals with some
simple applications of the theory.

II. SHAPE TENSOR AND RELAXATION DYNAMICS

Since continuum theories are essentially based on sym-
metry arguments and general physical principles, they are
generally applicable to a whole range of physical systems. On
the downside, they do not involve significant microscopic con-
siderations and the material parameters are purely phenomeno-
logical. In the present section we put forward a continuum
theory for nematic active gels. The viscoelastic passive re-
sponse is derived by relaxing the elastic response of a nematic
liquid-crystal elastomer. The shape tensor in this theory plays
the role of a metric tensor and describes, on a macroscopic
ground, the information about the equilibrium distances among
the centers of mass of the microscopic constituents.

A. Internal and external degrees of freedom

The first key idea is to study, separately, the degrees of
freedom associated with the elastic deformations and the
“microscopic” degrees of freedom related to the material
relaxation and reorganization. The first process is reversible
and conserves the energy, while the second process involves
material reorganization and is irreversible. I assume that activ-
ity directly interferes with the internal degrees of freedom and
competes with the natural tendency of the material to reach the
equilibrium state. To this end, we introduce the Kröner-Lee-

Rodriguez multiplicative decomposition for the deformation
gradient F = FeG [24–26]. For later convenience we also
define the inverse relaxing strain H = (GT G)−1, so that the ef-
fective left-Cauchy-Green deformation tensor can be written as

Be = FeFT
e = FG−1G−T FT = FHFT . (1)

The same decomposition has been recently applied to explain
the hints of viscoelasticity that remain at the hydrodynamic
level when a sound wave propagates inside a nematic crystal
[27–30].

The tensor G models the microscopic remodeling of the
material. In other words, it describes the inelastic dissipative
(irreversible) processes within the material. By contrast, Fe is
related to the elastic (reversible) response.

B. Shape tensor and free energy

Contrary to most hydrodynamic theories of active nematic
gels I do not use the ordering tensor Q to take into account
uniaxial nematic symmetry of the microscopic subunits. I
rather introduce a uniaxial, unit determinant, shape tensor,
common to the theory of nematic elastomers

�(�,n) = a(�)2(n ⊗ n) + a(�)−1(I − n ⊗ n), (2)

where a(�) is a (density-dependent) shape parameter and the
preferred direction n lives in the actual configuration of the
body since it is not materially linked to body deformations.
The shape tensor is spherical, prolate, or oblate, respectively,
for a(�) = 1, a(�) > 1, or a(�) < 1. The material parameter
a(�) gives the amount of spontaneous elongation along n
in a uniaxially ordered phase. It is a combined measure
of the degree of order and of the strength of the nematic-
elastic coupling. The tensor � represents a volume-preserving
uniaxial stretch along the current direction of the director n. In
particular, the unit determinant assumption implies that growth
is not taken into account in the model.

It must be noted that the same tensor is used to describe the
coupling between strain and orientation in nematic elastomers,
where � is usually interpreted as a effective step-length tensor
that reflects the current nematic ordering in the polymer
network [31]. In our model, � represents the spontaneous
metric tensor that is dictated by the coarse-grained anisotropy
of the subunits. The equilibrium configuration of the subunits
is usually anisotropic in the direction of n and the measure of
this anisotropy is yielded by the value of a(�).

For fast relaxation times, only the local form of the
elastic energy is important, so we do not need to specify
its exact expression globally. However, in this context it is
natural to assume the standard energy of polymer physics,
i.e., neo-Hookean elasticity. In particular, given the uniaxial
symmetry of the constituents, I posit that the elastic response
is governed by the nematic elastomer free energy [31], written
in terms of Fe. Hence, I posit the following free-energy density
per unit mass:

σ (�,Be,n,∇n) = σ0(�) + 1
2μ[tr(�−1Be − I)

− log det(�−1Be)] + σFr(�,n,∇n), (3)

where � is the density, �μ is the shear modulus, and I is
the identity tensor. I have also introduced the classical
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Oseen-Frank potential σFr(�,n,∇n) [32] that favors the align-
ment of the director field n. The isotropic term, σ0(�), takes
into account compressibility. It does not depend on Fe and is
thus not affected by stress relaxation. This is related to the fact
that stresses do not vanish in a purely isochoric deformation.
By contrast, viscoelastic materials relax the shear stress after
a sufficiently long time.

C. Dissipation

Let Pt be an arbitrary region that convects with the body.
We restrict attention to a purely mechanical theory based
on the requirement that the temporal increase in kinetic
and free energy of Pt be less than or equal to the power
expended on Pt by the external forces. The difference being
the power dissipated in irreversible processes. Specifically, for
any isothermal process, for any portion Pt of the body at all
times, we require

D := W (ext) − K̇ − Ḟ � 0, (4)

where W (ext) is the power expended by the external forces, K̇

is the rate of change of the kinetic energy, Ḟ is the rate of
change of the free energy, and the dissipation D is a positive
quantity that represents the energy loss due to an irreversible
process (entropy production). Here, an overdot indicates the
material time derivative. More precisely, I define

W (ext) :=
∫
Pt

b · v dv +
∫

∂Pt

t(ν) · v da +
∫
Pt

g · ṅ dv

+
∫

∂Pt

m(ν) · ṅ da +
∫
Pt

Ta · B∇
e dv, (5)

K + F :=
∫
Pt

(
1

2
�v2 + �σ (�,Be,n,∇n)

)
dv, (6)

D =
∫
Pt

ξ dv, ξ � 0, (7)

where v is the velocity field, and

B∇
e := (Be)

.

− (∇v) Be − Be(∇v)T = F
.

HFT (8)

is the codeformational derivative1 [33,34], a frame-indifferent
time derivative of Be relative to a convected coordinate system
that moves and deforms with the flowing body. The unit
vector ν is the external unit normal to the boundary ∂Pt ; b
is the external body force and t(ν) is the external traction on
the bounding surface ∂Pt . The vector fields g and m(ν) are the
external generalized forces conjugate to the microstructure:
n × g is usually interpreted as “external body moment” and
n × m(ν) is interpreted as “surface moment per unit area”
(the couple stress vector). This interpretation comes from the
identity ṅ = w × n, where w is the (local) angular velocity of
the director, so that, for instance, the external power density is
written as g · ṅ = w · (n × g).

The last term in Eq. (5) is particularly interesting and
new: Ta is a second-rank tensor that represents an external
remodeling force [35], i.e., an external generalized force that

1Also known as upper-convected time derivative, upper-convected
rate, or contravariant rate.

competes with the natural microscopic reorganization of the
body. It must be noted that Ta has the same dimensions of
a Cauchy stress tensor and is conjugate to the remodeling
velocity field B∇

e . By contrast, the classical active stress Tζ

is paired with the macroscopic velocity gradient ∇v. The
possibly unfamiliar time derivative B∇

e has the right properties
to represent the kinematics of reorganization: (1) it is frame
invariant, (2) it vanishes whenever the deformation is purely
elastic and there is no evolution of the natural configuration,2

and (3) as shown in the Appendix, it comes out naturally
when studying the passive remodeling [see Eq. (A8) of
the Appendix, where the material time derivative of F is
explicitly calculated]. The same derivative also appears in the
three-dimensional models for Maxwell viscoelastic fluids [33].
Finally, the remodeling power, Ta · B∇

e , depends only on the
point value of the internal velocity field B∇

e , and not on any of
its spatial gradients. Hence, as far as remodeling dynamics is
concerned, the present is therefore a theory of grade zero.

After some algebra, reported in the Appendix for ease of
reading, the dissipation is recast in the following form:

D =
∫
Pt

(b − �v̇ + div T) · v dv +
∫

∂Pt

(t(ν) − Tν) · v da

+
∫
Pt

(g − h) · ṅ dv +
∫

∂Pt

[
m(ν) −

(
�

∂σ

∂∇n

)
ν

]
· ṅ da

+
∫
Pt

(
Ta − �

∂σ

∂Be

)
· B∇

e dv, (9)

where the Cauchy stress tensor and the molecular field are
found to be (again for more details, see the Appendix)

T = −�2 ∂σ

∂�
I + 2�

∂σ

∂Be
Be − �(∇n)T

∂σ

∂∇n
, (10)

h := �
∂σ

∂n
− div

(
�

∂σ

∂∇n

)
. (11)

D. Governing equations

According to the model, the material response is elastic
with respect to the natural configuration. In other words,
energy dissipation is uniquely associated to the evolution of
the natural or stress-free configuration of the body, i.e., energy
is dissipated only when microscopic reorganization occurs.
As a consequence, only the term containing B∇

e in Eq. (9)
yields a positive contribution to the dissipation, while the
first four integrals must vanish. Given the arbitrariness of
Pt and of the test fields, it is natural to use a generalized
Rayleigh principle [36,37] and impose the vanishing of the
corresponding generalized forces. In our case, this yields the
usual balance of momentum equation

�v̇ = b + div T (12)

with boundary condition t(ν) = Tν. In particular, when the
energy density (3) is substituted into Eq. (10), the Cauchy

2It is clear from Eq. (8) that B∇
e = 0 if and only if

.

H = 0. The tensor
H = (GT G)−1 is related to material remodeling and no remodeling
occurs when the deformation is purely elastic.
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stress tensor reads

T = −p I + �μ(�−1Be − I) − �(∇n)T
∂σ

∂∇n
, (13)

where the pressurelike function p is

p = �2

[
∂σ0

∂�
− μ

3a′(�)

2a(�)

(
n ⊗ n − 1

3
I
)

· (�−1Be)

]
. (14)

It is worth noticing that T does not explicitly contain any
“active component.” Activity is taken into account implicitly
via the evolution equation for the natural configuration that
describes how Be evolves in time. I shall describe this equation
below.

To obtain an equation for the microstructure n, we impose
the vanishing of the third and fourth integrals in Eq. (9). Since
n · .

n = 0, it is sufficient to posit

n × (g − h) = 0, (15)

with boundary condition

n × m(ν) = n ×
(

�
∂σ

∂∇n

)
ν. (16)

These two last equations describe the evolution of the director
field and are usually interpreted as balance of torques.
Contrary to the first appearance, they do not describe a
dissipationless motion; energy dissipation is again contained
in their dependence on Be. It is possible to show that, under
the approximation of fast relaxation times, Eq. (15) reproduces
exactly the usual director dynamics of liquid crystals, where
the rotational Leslie coefficients α2 and α3 are identified in
terms of our model parameters [27,30].

Finally, a positive dissipation for any Pt at all times implies(
Ta − �

∂σ

∂Be

)
· B∇

e � 0, (17)

where in our specific case

∂σ

∂Be
= 1

2
μ

(
�−1 − B−1

e

)
. (18)

It is customary, when dealing with irreversible processes near
equilibrium, to interpret the dissipation (or rate of entropy
production) as the product of “fluxes” and “forces” and to
assume a linear coupling between them. Furthermore, Onsager
reciprocal relations impose additional symmetry constraints
on this linear dependence. Hence, I assume that the evolution
of the microscopic remodeling is governed by the following
“gradient-flow” equation for Be:

D
(
B∇

e

) + �
∂σ

∂Be
= Ta, (19)

where D is a fourth-rank tensor with the major symmetries.
It is positive definite so that the dissipation inequality (17) is
automatically satisfied. Moreover, I take it to be compatible
with the underlying uniaxial symmetry along n of the micro-
scopic constituents. The elements of the dissipation tensor D
contain the characteristic relaxation times, and it is possible
to show that there are only four relaxation times allowed by
symmetry for rodlike constituents. I refer the interested reader
to Ref. [30] for a more detailed discussion on these points.

E. Interpretation of the active stress

By contrast with standard theories, the present model does
not explicitly include an active term in the Cauchy stress tensor.
However, it is possible to recast our stress tensor, as given in
Eq. (10), in a different form so that an analog of the “active
stress” appears. To this end, I substitute Eq. (19) into Eq. (10)
and obtain

T = −�
∂σ

∂�
I + 2

[
Ta − D

(
B∇

e

)]
Be − �(∇n)T

∂σ

∂∇n
. (20)

The active contribution now comes from the term 2TaBe and it
is not exactly equivalent to Tζ because it contains the effective
strain tensor Be. However, the analogy becomes more concrete
if we make the approximation of small effective deformations,
studied in the next section.

III. SMALL EFFECTIVE DEFORMATIONS

There are essentially two time scales in the problem. One
characteristic time is dictated by the macroscopic deformation
and is thus related to ∇v in the following way:

τdef = 1/‖∇v‖. (21)

The second characteristic time is connected to material
remodeling and determines the time rate at which Be reaches
its equilibrium value. I posit τrel = 2‖D‖/�μ, where �μ is a
characteristic shear modulus.

We want to study the asymptotic approximation of the
theory in the limit τrel � τdef, that is,

τrel‖∇v‖ = ε � 1.

In this limit, reorganization is much faster than deformation
and the theory reduces to a purely hydrodynamic theory, i.e.,
viscoelasticity becomes a higher order phenomenon and, to
first order, viscosity coefficients are obtained as the product of
the shear modulus and the relaxation times. An analysis of this
approximation for the passive case is presented in Refs. [29,30]

For simplicity, I further assume that the active term only
introduces a small perturbation of the passive dynamics so
that the effective strain tensor Be is only a slight perturbation
of its (passive) equilibrium value

Be = � + B1, with ‖B1‖ = O(ε), (22)

To leading order, the substitution of (22) into Eq. (20) yields
the Cauchy stress tensor

T = −�2 ∂σ

∂�
I − 2D(�∇)� + 2Ta� − �(∇n)T

∂σ

∂∇n
. (23)

The codeformational derivative of the shape tensor reads

�∇ = �a′(�)

a(�)2
(tr D){I − [1 + 2a(�)3](n ⊗ n)}

+ [a(�)2 − a(�)−1](n̊ ⊗ n + n ⊗ n̊

− Dn ⊗ n − n ⊗ Dn) − 2a(�)−1 D, (24)

where n̊ = .
n − Wn, W = (∇v − ∇v T )/2 is the spin tensor

and D = (∇v + ∇v T )/2 is the stretching tensor.
The first two terms in Eq. (23) reproduce the passive

dynamics of nematic liquid crystals. Indeed, they reduce
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exactly to the Cauchy stress tensor as given in the classical
(compressible) Ericksen-Leslie theory [32]

TEL = −pI + α1(n · Dn)(n ⊗ n) + α2(n̊ ⊗ n) + α3(n ⊗ n̊)

+α4D + α5(Dn ⊗ n) + α6(n ⊗ Dn)

+α7[(tr D)(n ⊗ n) + (n · Dn)I] + α8(tr D)I, (25)

after the viscosity coefficients α1, . . . ,α8 have been suitably
identified. An explicit comparison is carried out in [30].

The third term, 2Ta�, corresponds to an active stress and as
such can be compared with the active stress Tζ ∝ Q, as given
in the usual theories [3,4,6–8,38]. With the simple choice

Ta = − 1
2�μζ I, (26)

where ζ is a dimensionless modeling parameter that controls
the activity of the body, 2Ta� shares the same uniaxial
symmetry of Tζ and takes the form of a dipole interaction.
Other choices are of course possible and the specific form
of Ta has to be inferred by the interaction of a number of
features, namely, the properties of the particular material under
study, the experimental results, and microscopic theoretical
investigations. Instead of an isotropic Ta, a second natural
possibility is to choose Ta ∝ �. However, in both cases the
resulting active stress, 2Ta�, possesses the same uniaxial
symmetry about the director n. Therefore, both choices should
lead to essentially the same qualitative results.

Finally, the last term in Eq. (23) is standard and it is a
consequence of the elastic distortions of the director field.

IV. SPONTANEOUS FLOW AND SELF-CHANNELING

A key prediction of continuum models of active liquid
crystals is the existence of spontaneously generated fluid flows
in one-dimensional channels [11,12,38,39]. It is then natural
to test the present model against such predictions. To this end,
I analyze the hydrodynamic equations in the simple geometry
of a two-dimensional channel of infinite length along the x

direction and with height L (see Fig. 1).
For simplicity, I also assume that there is only one relaxation

time, i.e., D = 1
2�μτI, and that τ is much smaller than

the characteristic times of the flow (I is the fourth-rank
identity tensor). Hence, it is possible to use the approximation
of small effective deformations, as developed in Sec. III,
where the Cauchy stress tensor is given as in Eq. (23). I
also assume incompressibility so that the pressure is now

z

x

L θ(z)

vx(z)

vx(0) = 0

vx(L) = 0

θ(0) = 0

θ(L) = 0

FIG. 1. Schematic representation of the channel geometry studied
in the text.

a Lagrange multiplier. I consider a two-dimensional active
nematic suspension with uniform degree of orientation and
discuss the spatial dependence of the fields θ (z) (the angle
that the nematic units form with the x axis) and vx(z) (the x

component of the macroscopic velocity of the suspension).
Both fields depend only on z because of the translational
invariance along x. I assume no-slip boundary conditions at
both surfaces and θ (0) = θ (L) = 0. The equations of motion
in steady conditions are the Stokes equations ∂Txz/∂z = 0,
∂Tzz/∂z = 0 and the director equation n × h = 0, namely,
Eq. (15) with g = 0. The second of these equations determines
the pressure in the film, and I will not discuss this in more
detail. More interesting are the first and the third that read (see
Appendix B for an explicit derivation)

4
(
a3

0 − 1
)
θ ′{2τv′

x sin(2θ )
[(

a3
0 − 1

)
cos(2θ ) + a3

0 + 1
]

− 2a0ζ cos(2θ )
} − τv′′

x

[
4
(
a6

0 − 1
)

cos(2θ ) − 5a6
0

+ (
a3

0 − 1
)2

cos(4θ ) + 2a3
0 − 5

] = 0, (27a)(
a3

0 − 1
)
μτv′

x

[(
a3

0 + 1
)

cos(2θ ) − a3
0 + 1

] + 2a2
0k θ ′′ = 0,

(27b)

with boundary conditions θ (0) = θ (L) = 0 and vx(0) =
vx(L) = 0. The coefficient a0 is the shape parameter that
identifies the form of the shape tensor at the given density �0:
a0 = a(�0). The Oseen-Frank potential, σFr(�,n,∇n), is sim-
ply taken to be σFr = k|∇n|2 (one-constant approximation).

It is straightforward to check that θ (z) = 0 and vx(z) = 0
is always a solution of (27), for any value of the parameters.
However, above a critical threshold for the thickness L, a
bifurcation occurs and the trivial solution is no longer unique.
The critical condition is obtained by performing a linear
stability analysis. The linearized equations about the trivial
solution read

τv′′
x (z) − ζ a0

(
a3

0 − 1
)
θ ′(z) = 0, (28a)

a2
0kθ ′′(z) + μτ

(
a3

0 − 1
)
v′

x(z) = 0. (28b)

It is known [11,12,38] that both the polar and the apolar
systems exhibit a pitchfork bifurcation, i.e., a Freédericksz-like
transition, between a state where the director field is constant
and parallel to the walls throughout the channel to a nonuni-
formly oriented state in which the system spontaneously flows
in the x direction. The transition can be tuned by changing
either the film thickness or the activity parameter.

However, in our case, the linearized equations (28) admit
two independent modes of instability at the bifurcation and
hence (28) show a more complex behavior than a simple
pitchfork bifurcation. Namely, the critical condition reads

L

√(
a3

0 − 1
)2

a0

μζ

k
= 2πn, (29)

where n is an integer. For a given L, the lowest critical value
of the activity, ζc, is the one where bifurcation occurs and
corresponds to the fundamental mode n = 1. Likewise, for a
given activity coefficient ζ , it is possible to define a critical
length Lc corresponding to the solution of (29) with n = 1.
It is interesting to observe that Lc diverges to infinity, and no
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FIG. 2. Spontaneous flow. Vector plot of the solutions of
Eqs. (27), with a0 = 2.5, ζ = 0.5, and L = 1.1Lc, where Lc is given
as in Eq. (29) (n = 1). Blue arrows represent the velocity field vx(z),
while orange lines depict the director field.

bifurcation occurs, either for ζ → 0 (passive case) or a0 →
1 (isotropic case). When the condition (29) is satisfied, the
nontrivial solutions of Eqs. (28) are

θ (z) = C1 sin2

(
πnz

L

)
+ C2 sin

(
2πnz

L

)
, (30a)

vx(z) = a0
(
a3

0 − 1
)
ζL

4πnτ

[
4C2 sin2

(
πnz

L

)
−C1 sin

(
2πnz

L

)]
,

(30b)

with C1 and C2 arbitrary coefficients. Therefore, they span a
two-dimensional linear space for each value of n > 0.

This twofold instability is confirmed by a numerical
analysis. In the numerical code, L is used to set the length scale,
while τ sets the time scale. The nondimensional parameters a0

and ζ are fixed to be equal to 2.5 and 0.5, respectively. We then
perform the numerical integration of the nonlinear equations
(27), where the ratio k/μ is chosen such that the critical length
Lc can be suitably adjusted.

Figure 2 shows a numerical solution of Eqs. (27) for
L = 1.1Lc. The first mode to be excited above the bifurcation
is the “spontaneous flow” mode, corresponding to C1 = 0
and C2 �= 0 in Eqs. (30). A right or left steady flow of
active particles is spontaneously generated due to activity.
Upon further increasing L/Lc, also the self-channeling mode,
corresponding to C1 �= 0 and C2 = 0, appears. Figure 3 shows
a numerical solution of Eqs. (27) with L = 1.4 Lc. Here, the
active particles self-organize into subchannels and show no net
flow of particles.

While a Freédericksz-like transition from a planar motion-
less state to a flowing state has been predicted for increasing
thickness, in an active nematic gel the transition to a self-
channeling state seems to be new. A similar effect has been
described in [38], but in the case of a two-dimensional square
domain with periodic boundary conditions. The authors of
Ref. [38] do not observe any banding in the simple one-
dimensional geometry considered here. By contrast, active
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1.0
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FIG. 3. Self-channeling. Vector plot of the solutions of Eqs. (27),
with a0 = 2.5, ζ = 0.5, and L = 1.4Lc, where Lc is given as in
Eq. (29) (n = 1). Blue arrows represent the velocity field vx(z), while
orange lines depict the director field.

polar gels seem to show a richer behavior where self-
channeling appears [11,12].

V. CONCLUSION

Active nematic gels are nonconventional materials that mimic
the behavior of living matter. They represent an excellent
playground for a deeper understanding of the mechanical
response of biological tissues such as the cellular cytoskeleton,
a network of cross-linked filaments subjected to the action of
molecular motors.

The simplest theory of active nematic gels takes inspiration
from liquid-crystal theory, which is then typically supple-
mented by adding an active stress and a viscoelastic relaxation
time to the passive theory. However, this model does not
explicitly take into account the fact that molecular motors
act at the microscopic level by modifying the way in which
the material reorganizes its internal structure.

To this end, I have put forth a thermodynamically con-
sistent theory of active nematic gels that naturally embeds
viscoelasticity and introduces activity as a remodeling force
so that no active stress has to be added to the model. The
active remodeling force competes with the natural relaxation
process of the passive systems and drives the system out of
equilibrium.

Finally, in order to explore the early consequences of the
theory, I have studied the dynamical properties of thin films of
active nematic fluids. Above a critical thickness of the film a
rich variety of complex behaviors is observed. Namely, at the
same critical length, I find both a spontaneous flow of active
particles and a self-channelling effect, where the particles
organize themselves into sub-channels and flow in opposite
directions.
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APPENDIX A: DERIVATION OF THE CAUCHY STRESS
TENSOR AND THE MOLECULAR FIELD

We need two simple lemmas, which I state without proofs.
Lemma 1. Let f be a function depending only on Fe (or

Be). Then,

(1) ∂f

∂F FT = ∂f

∂Fe
FT

e = 2 ∂f

∂Be
Be.

(2) F−T ∂f

∂H F−1 = ∂f

∂Be
.

Lemma 2. Let f = f (�) be a function of � only. Then,
∂f

∂F FT = −�
∂f (�)
∂�

I.
We can now calculate the material derivative of F :

Ḟ =
∫
Pt

[
�

∂σ

∂F
·

.

F+�
∂σ

∂H
·

.

H+�
∂σ

∂n
· .

n+�
∂σ

∂∇n
· (∇n)˙

]
dv,

(A1)

which is then simplified with the use of Lemma 1 and the
identities

.

F = (∇v)F, (A2)

D

Dt
(∇n) = ∇ .

n − (∇n)(∇v), (A3)

F
.

HFT = (Be)
.

− (∇v) Be − Be(∇v)T =: B∇
e , (A4)

so that the rate of change of the free energy reads

Ḟ =
∫
Pt

(
�

∂σ

∂F
FT − �(∇n)T

∂σ

∂∇n

)
· ∇v dv

+
∫
Pt

(
�

∂σ

∂n
+ �

∂σ

∂∇n
· ∇ .

n
)

dv +
∫
Pt

�
∂σ

∂Be
· B∇

e dv.

(A5)

Further simplifications are obtained by employing the diver-
gence theorem in the first two integrals∫

Pt

X · ∇v dv = ∫
∂Pt

Xν · v da − ∫
Pt

div(X) · v dv, (A6)∫
Pt

X · ∇ .
n dv = ∫

∂Pt
Xν · .

n da − ∫
Pt

div(X) · .
n dv, (A7)

where X is a generic second-rank tensor. In so doing, we
recognize the generalized forces paired to the fields v and

.
n

and obtain

Ḟ =
∫

∂Pt

(
�

∂σ

∂F
FT − �(∇n)T

∂σ

∂∇n

)
ν · v da

−
∫
Pt

div

(
�

∂σ

∂F
FT − �(∇n)T

∂σ

∂∇n

)
· v dv

+
∫

∂Pt

(
�

∂σ

∂∇n

)
ν · .

n da

+
∫
Pt

[
�

∂σ

∂n
− div

(
�

∂σ

∂∇n

)]
· .

n dv

+
∫
Pt

�
∂σ

∂Be
· B∇

e dv. (A8)

It is then natural to define the Cauchy stress tensor
(conjugate to v) and the molecular field (conjugate to

.
n)

T := �
∂σ

∂F
FT − �(∇n)T

∂σ

∂∇n
, (A9)

h := �
∂σ

∂n
− div

(
�

∂σ

∂∇n

)
. (A10)

A further application of Lemmas 1 and 2 allow us to rewrite
the stress tensor (A9) as in Eq. (10).

APPENDIX B: DERIVATION OF EQ. (27)

Let us denote with {ex,ey,ez} the Cartesian unit vectors
along the coordinate axes. We posit a stationary velocity
field of the form v = vx(z)ex . Hence, the gradient of velocity
is ∇v = v′

x(z)ex ⊗ ez, and the material time derivative of v
vanishes. The director field is described by the angle θ (z) such
that n = cos θ (z) ex + sin θ (z) ez. It is also useful to introduce
the orthogonal unit vector n⊥ = − sin θ (z) ex + cos θ (z) ez.
With the simplifying assumptions

Ta = − 1
2�μζ I, D = 1

2�μτI, (B1)

the stress tensor, as given in Eq. (23), reads

T = −pI − �μ(τ�∇� + ζ�) − �k(∇n)T (∇n), (B2)

where ∇n = θ ′(z) n⊥ ⊗ ez, so that

(∇n)T (∇n) = θ ′(z)2ez ⊗ ez. (B3)

To calculate the codeformational derivative of the shape tensor,
we observe that ∂�

∂t
= 0 and (∇�)v = 0 so that we obtain

�∇ = ∂�

∂t
+ (∇�)v − (∇v)� − �(∇vT )

= −
(

a2
0 − 1

a0

)
v′

x(z) sin θ (z)(ex ⊗ n + n ⊗ ex)

− 1

a0
v′

x(z)(ex ⊗ ez + ez ⊗ ex), (B4)

where we have assumed incompressibility with constant
density �0 and a(�0) = a0, so that the pressure p is a Lagrange
multiplier. This derivative is then inserted into Eq. (B2)
to obtain, with lengthy but straightforward calculations, the
Cauchy stress tensor.

Since all the terms depend only on the variable z, the Stokes
equations reduce to

∂Txz

∂z
= 0,

∂Tzz

∂z
= 0. (B5)

The latter yields an equation for the pressure, while the former
is

d

dz

{
− �μ

8a2
0

[
4a0

(
a3

0 − 1
)
ζ sin[2θ (z)]

+ τv′
x(z)

{
4
(
a6

0 − 1
)

cos[2θ (z)] − 5a6
0

+ (
a3

0 − 1
)2

cos[4θ (z)] + 2a3
0 − 5

}]} = 0, (B6)

and corresponds to Eq. (27a).
The evolution equation of the director furnishes Eq. (27b).

In order to show this, let us calculate the molecular field h, as

052603-7



STEFANO S. TURZI PHYSICAL REVIEW E 96, 052603 (2017)

given in Eq. (11). To this end, we observe that

∂σ

∂n
= 2

(
a2

0 − a−1
0

) ∂σ

∂�
n, (B7)

∂

∂�
tr(�−1Be) = −�−1Be�

−1, (B8)

∂σ

∂n
= −μ

(
1 − a−3

0

)
�−1Ben, (B9)

div
∂σ

∂∇n
= k div ∇n = k(θ ′′ n⊥ − θ ′2n). (B10)

In agreement with Eq. (B2), the term �−1Be is

�−1Be = I − τ�∇� − ζ�, (B11)

and the director equation, n × h = 0, then reads

n × [
μτ

(
a2

0 − a−1
0

)
�∇n − kθ ′′n⊥] = 0. (B12)

After a further simplification, this coincides with
Eq. (27b).
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