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Theory of corticothalamic brain activity in a spherical geometry:
Spectra, coherence, and correlation
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Corticothalamic neural field theory is applied to a spherical geometry to better model neural activity in the
human brain and is also compared with planar approximations. The frequency power spectrum, correlation, and
coherence functions are computed analytically and numerically. The effects of cortical boundary conditions and
resulting modal aspects of spherical corticothalamic dynamics are explored, showing that the results of spherical
and finite planar geometries converge to those for the infinite planar geometry in the limit of large brain size.
Estimates are made of the point at which modal series can be truncated and it is found that for physiologically
plausible parameters only the lowest few spatial eigenmodes are needed for an accurate representation of
macroscopic brain activity. A difference between the geometries is that there is a low-frequency 1/f spectrum
in the infinite planar geometry, whereas in the spherical geometry it is 1/f 2. Another difference is that the
alpha peak in the spherical geometry is sharper and stronger than in the planar geometry. Cortical modal effects
can lead to a double alpha peak structure in the power spectrum, although the main determinant of the alpha
peak is corticothalamic feedback. In the spherical geometry, the cross spectrum between two points is found to
only depend on their relative distance apart. At small spatial separations the low-frequency cross spectrum is
stronger than for an infinite planar geometry and the alpha peak is sharper and stronger due to the partitioning
of the energy into discrete modes. In the spherical geometry, the coherence function between points decays
monotonically as their separation increases at a fixed frequency, but persists further at resonant frequencies. The
correlation between two points is found to be positive, regardless of the time lag and spatial separation, but
decays monotonically as the separation increases at fixed time lag. At fixed distance the correlation has peaks at
multiples of the period of the dominant frequency of system activity.
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I. INTRODUCTION

Neural field theory (NFT) has been successfully used
to analyze numerous brain activity phenomena [1–14]. In
particular, a neural field corticothalamic model has been used
to investigate the spectrum of activity fluctuations [15,16], age-
related changes to the physiology of the brain [17], and evoked
response potentials (ERPs) [18]. In most of these papers, the
approximation of a planar geometry was used to reproduce
and unify many features of brain activity and the resulting
electroencephalogram [6,9,10,19–23], including the spectral
peaks seen in waking and sleeping states [6,9,10,16], ERPs
[18,24], measures of coherence, and spatiotemporal structure
[25–27]. Measures such as electroencephalograms (EEGs)
spectra, correlations, and coherence functions are widely used
diagnostics of structure in these signals [6,21,28,29] and are
often employed to probe cognitive events and information
processing experimentally [28–30]. Notably, the parameters
used in our neural field modeling have been found to be
consistent with independent physiological estimates [31].

Our previous work [6] examined modal effects on white-
noise-driven spectra in a planar system. This showed that the
infinite case is an excellent approximation at most frequencies
for systems of cortical circumference exceeding roughly 0.2 m,
which is well fulfilled for humans, with exceptions at very low
frequencies and near the alpha resonance. This work also found
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that the modal spectrum was dominated by the contributions
from the spatially uniform global mode.

Some prior work has employed spherical models to analyze
brain activity [28,32–41]. This is a better approximation to
real brain geometry than a planar geometry. Nunez et al.
[28,35,38–41] analyzed electroencephalographic (EEG) sig-
nals, correlation, and coherence functions on a spherical skull
but did not consider individual brain hemispheres or the
thalamus, which has been shown to be critical for a more
realistic and general brain model [11,14,19,42].

In this work we use a spherical geometry to analyze activity
via a corticothalamic model of one brain hemisphere, using
spherical harmonic analysis. Indeed, our recent work [43]
showed that the eigenmodes of a single brain hemisphere are
close analogs of spherical harmonics. Spherical harmonics are
well understood and have been applied to the approximation
of brain surfaces [33] and many other applications such as
spatial filtering, calculation of EEG coherence on the scalp
[34], and brain imaging [36,44–49]. We also compare and
contrast our work with our previous work in planar geometries
[6,10,43]. Key issues that we address are what the effects of
spherical geometry are on activity measures such as spectra,
correlations, and coherences.

The structure of this paper is as follows. After briefly
reviewing the neural field model of the corticothalamic system
in Sec. II, we write down its transfer function in a form suited to
application to a variety of geometries. In Sec. III we derive the
power spectra for spherical and planar geometries and compare
and discuss the results. In Sec. IV we derive the cross spectrum
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for spherical and planar geometries and discuss the results.
In Sec. V we derive coherence and correlation functions for
these cases and analyze the results. Finally, Sec. VI presents a
summary.

II. NEURAL FIELD THEORY OF THE
CORTICOTHALAMIC SYSTEM

In this section we start with a brief review of the neural
field corticothalamic model that we employ and then use it to
determine the transfer function for neural activity in spherical
and planar geometries [10,11,17,19,31,50,51]. This function
is used to calculate the power spectrum, cross spectrum,
coherence, and correlation functions in subsequent sections.

A. Corticothalamic model

The model used here has been widely employed in previous
work [10,11,19] and incorporates the

populations and connections shown in Fig. 1: excitatory
(e) and inhibitory (i) cortical neurons, thalamic relay neurons
(s), thalamic reticular neurons (r), and external inputs (n)
[10,12,18,19].

Mean firing rates Qa of neurons are nonlinearly related to
their mean soma potentials Va by Qa(r,t) = S[Va(r,t)], where
S is a sigmoid function that increases from 0 to Qmax as Va

increases from −∞ to ∞, with Va measured relative to resting.
We use

Qa(r,t) = S[Va(r,t)], (1)

S[Va(r,t)] = Qmax

1 + exp[−{Va(r,t) − θ}/σ ′]
, (2)

where t is the time, θ is the mean neural firing threshold,
σ ′π/

√
3 is the standard deviation of the threshold, and Qmax

is the maximum firing rate.
The potential Va results from inputs φb from other popula-

tions b, with

DαVa(r,t) =
∑

b

νabφb(r,t − τab), (3)

Dα = 1

αβ

d2

dt2
+

(
1

α
+ 1

β

)
d

dt
+ 1, (4)

with [9–11,16,20] νab = sabNab, where Nab is the mean
number of synapses to neurons of type a from type b and sab is
the time-integrated strength of the response in neurons of type
a to a unit signal from neurons of type b, implicitly weighted
by the neurotransmitter release probability [12,20,31,50,52].
The time delays τab arise from discrete anatomical separations
between populations, and the characteristic rise time and decay
time of the response at the cell body are parametrized by 1/β

and 1/α, which can be different for each of the connections
in the model [20] but are set equal here because they do
not affect the modal structure, which is our main focus. The
number of synapses within and between cortical populations is
assumed to be proportional to the numbers of source and target
neurons, consistent with physiology [53,54], which implies
νee = νie, νei = νii , and νes = νis [20,31,53]. Hence there are
eight independent connection strengths in Fig. 1.

ϕr

ϕn

ϕs ϕ

νse
νsr

νrs νre

νes νee

νis νie

νei

νsn

νii
ϕi

ϕe

Cortex

Thalamus

inhibitory
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reticular

relay

e

FIG. 1. Schematic diagram of corticothalamic neural field model
of the system. The neural populations shown are cortical excitatory
e, cortical inhibitory i, thalamic reticular r , and thalamic relay
s. Each parameter νab in Eq. (3) quantifies the connection to
population a from population b. Excitatory connections are shown
with pointed arrowheads and inhibitory connections are shown with
round arrowheads.

The field φa(r,t) of outgoing activity propagates at an
average speed va and approximately obeys a damped wave
equation with a source Qa [6,9–11,16,20,53], with

Da(r,t)φa(r,t) = Qa(r,t), (5)

Da(r,t) = 1

γ 2
a

∂2

∂t2
+ 2

γa

∂

∂t
+ 1 − r2

a∇2, (6)

where ra is the mean range of axons a and γa = va/ra is the
temporal damping rate [11,16]. To obtain spatially uniform
steady states of the model, we set all of the time and space
derivatives in (2)–(6) to zero. The steady-state value φ(0)

e of φe

then satisfies

φ(0)
e − (νee + νei)φ

(0)
e

= νesS
[
νesφ

(0)
e + νsrS

(
νreφ

(0)
e + (νrs/νes)

× {
S−1[φ(0)

e − (νee + νei)φ
(0)
e

]})
νsnφ

(0)
n

]
, (7)

where φ(0)
n is the mean stimulus [20,31]. Steady-state values

of the other φ(0)
a can then be found from the above equations.

It has been extensively demonstrated that most normal
brain activity can be approximated as being due to linear
perturbations about a fixed point [6,10,11,15,16,31,50,52,55].
Hence, in the present work, we consider only the first term in
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the Taylor expansion of Eq. (2), which yields

Qa(r,t) − Q(0)
a = ρa

[
Va(r,t) − V (0)

a

]
, (8)

where ρa is the derivative of the sigmoid function with respect
to its argument at the fixed point, where Va = V (0)

a . By taking
the Fourier transform of Eqs. (3)–(6) and (8), we can then
express the firing rate φe in terms of the external signal φn.
In particular, we find the transfer function T (k,ω), which is
the cortical excitatory response per unit external stimulus and
encapsulates the relative phase via its complex value [10,20];
it is the key to linear properties of the system and has the form

T (k,ω) = φe(k,ω)

φn(k,ω)
, (9)

= A(ω)

k2r2
e + q2r2

e

, (10)

A(ω) = L2Gesne
iωt0/2

(1 − L2Gsrs)(1 − GeiL)
, (11)

q2r2
e =

(
1 − iω

γe

)2

− 1

1 − GeiL

×
{
LGee +

[
L2Gese + L3Gerse

]
eiωt0

1 − L2Gsrs

}
, (12)

L(ω) =
(

1 − iω

α

)−1(
1 − iω

β

)−1

, (13)

where k is the wave vector, k = 2π/λ, λ is the wavelength, and
ω = 2πf is the angular frequency, where f is the frequency
in Hz. The gain Gab = ρaνab = ρabNabSab is the differential
response in neurons a per unit input from neurons b. The
quantities Gese = GesGse, Gesre = GesGsrGre, and Gsrs =
GsrGrs correspond to the overall gains for the excitatory
corticothalamic, inhibitory corticothalamic, and intrathalamic
loops, respectively.

B. Solution of the Helmholtz equation

In the absence of external inputs Eq. (5) gives

Da(r,t)φa(r,t) = 0. (14)

Analytically the solution of this equation can be approached
via the ansatz

φa(r,t) = R(r)�(t), (15)

where R and � depend only on r and t , respectively. After
substituting Eq. (15) into Eq. (14) and then dividing by
R(r)�(t), we obtain

1

γ 2
e �

d2�

dt2
+ 2

γe�

d�

dt
+ 1 = r2

e

∇2R

R
. (16)

We can separate the variables in Eq. (16) by introducing the
ansatz

φab = yη(r)e−iωηt (17)

for a spatial eigenmode yη(r) with eigenfrequency ωη, where
η labels the eigenmode. Substituting this into Eq. (16) gives

r2
e

∇2yη(r)

yη(r)
= Da(ω). (18)

This equation holds for all r and t . We observe that the left-hand
side does not depend on t and right-hand side does not depend
on r. So the only possible solution is if they are both equal
to a constant. We can set both sides of Eq. (18) equal to a
separation constant −k2

η , which yields

∇2yη(r) = −k2
ηyη(r), (19)

Da(ωη) = −k2
ηr

2
e . (20)

Equations (19) and (20) can be solved for the eigenmodes
and corresponding eigenvalues of Eq. (19) for specific ge-
ometries, and corresponding eigenfrequencies can be obtained
from Eq. (20) if required. Once we have the eigenvalue k2

η we
can write the general transfer function as

T (k2
η,ω) = A(ω)

k2
ηr

2
e + q2r2

e

, (21)

where A(ω) is defined in Eq. (11).
For an infinite planar brain geometry the eigenmodes

labeled k are Fourier modes, i.e.,

yη(r) = exp(ik · r), (22)

k2
ηr

2
e = k2r2

e . (23)

where k is the wave vector. For any continuous function f on
a two-dimensional (2D) plane, the Fourier transform is

f (r,ω) =
∫

d2k
(2π )2

f (k,ω)exp(ik · r), (24)

where

f (k,ω) =
∫

d2r f (r,ω)exp(−ik · r). (25)

In a finite planar geometry, we approximate the cortex as a
rectangular sheet of size Lx × Ly and the modes have the form
of the first of Eq. (22) but with k = kmn = (kx, ky) satisfying

kx = 2πm

Lx

, (26)

ky = 2πn

Ly

, (27)

where m and n are arbitrary integers. The Fourier transform
on a 2D finite plane is the same as the infinite 2D plane, except
that the integrals over k are replaced by sums over the allowed
values, with ∫

d2k
(2π )2

→ 1

LxLy

∞∑
m=−∞

∞∑
n=−∞

. (28)

Thus we can write

f (r,ω) = 1

LxLy

∞∑
m=−∞

∞∑
n=−∞

f (kmn,ω)exp(ikmn · r), (29)

f (kmn,ω) =
∫

d2r f (r,ω)exp(−ikmn · r). (30)
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In the case of a spherical geometry, considering a sphere of
radius Rs , the eigenmodes are

y�m(θ,φ) = Y�m(θ,ϕ), (31)

where η has been replaced by � and m, and the eigenmodes
are the real spherical harmonics Y�m. This is an approximation
that has been extensively used to represent EEG activity on
the scalp [28,39,43,56,57], albeit most often treating the whole
brain, skull, and scalp as nested spheres; an exception was [43],
which analyzed the activity eigenmodes of a single hemisphere
of the brain. Now

k2
�mr2

e = r2
e

R2
s

�(� + 1). (32)

Equation (32) shows that the eigenvalues depend only on
the angular momentum mode number � = 0,1, . . . and are
independent of the azimuthal mode number m = −�, . . . ,�.

Any continuous bounded function f on a sphere can be
expanded in terms of real-valued spherical harmonics, with

f (θ,ϕ) =
∑
�m

f�mY�m(θ,ϕ), (33)

f�m =
∫∫

f (θ,ϕ)Y�m(θ,ϕ) sin θ dθ dϕ, (34)

with � being a non-negative integer and −� � m � �. In
Eq. (33) the sum extends over all such � and m, while the
integral in Eq. (34) extends over the whole sphere. Here

Y�m(θ,φ) =

⎧⎪⎨
⎪⎩

c�mP
|m|
� (cosθ )sin(|m|ϕ), −� � m � −1

2−1/2c�mP 0
� (cosθ ), m = 0

c�mP
|m|
� (cosθ )cos(|m|ϕ), 1 � m � �,

(35)
where

c�m =
[

2� + 1

2π

(� − |m|)!
(� + |m|)!

]1/2

and the P m
� are the associated Legendre polynomials of order

m [58].

III. POWER SPECTRUM

In this section we derive the form of the EEG spectrum from
the transfer function Eq. (10) for infinite planar, finite planar,
and spherical geometries. We then discuss the predictions of
the model and compare the three geometries with each other.

A. Infinite planar brain geometry

The EEG power spectrum P (ω) is the average over all
realizations, i.e., 〈φe(0,ω)φe(0,ω)〉. It can be calculated for the
infinite planar case by integration of |φe(k,ω)|2 over k. In turn,
we see from Eq. (10) that φe is equal to the multiplication of
the transfer function by the white-noise stimulus. This means
that, for continuum modes on the plane,

P (ω) = 1

4π2

∫ ∣∣T (k2
η,ω)

∣∣2|φn(k,ω)|2d2k. (36)

In the present work the input stimulus φn(k,ω) is taken to
be white noise [6,11,20,26,31,50,52] with uniform spectral
power density, so |φn(k,ω)|2 = φ2

n is constant for nonzero k

TABLE I. Nominal corticothalamic model parameter values from
previous work [16,19].

Symbol Quantity Value Unit

α synaptodendritic decay rate 83 s−1

β synaptodendritic rise rate 769 s−1

t0 corticothalamic loop delay 0.085 s
γe cortical damping rate 116 s−1

re excitatory axon range 0.086 m
Gee excitatory cortical gain 2.07
Gei inhibitory cortical gain −4.11
Gese excitatory cortical gain 5.98
Gesre excitatory inhibitory gain −1.67
Gsrs intrathalamic gain −0.66
k0 low-pass cutoff 10 m−1

Lx cortical sheet length 0.5 m
Ly cortical sheet width 0.5 m
Rs radius of sphere 0.1 m

and ω. In the linear approximation, the value of φn(k,ω) only
affects the normalization of the power spectrum. Equation (36)
yields

P (ω) = φ2
n

4π2

∫
|T (k,ω)|2d2k, (37)

=
∣∣A(ω)

∣∣2

4π2
φ2

n

∫
d2k∣∣k2r2

e + q2r2
e

∣∣2 , (38)

where A(ω) and q2(ω) are from Eqs. (11) and (12). Finally,
we get [6,19,31]

P (ω) = |A(ω)|2
4πr2

e

∣∣∣∣Argq2r2
e

Imq2r2
e

∣∣∣∣φ2
n. (39)

Table I summarizes typical values of the parameters of
our model, as inferred from physiology and fits to EEG
spectra [10]. We assume that only the corticocortical and
corticothalamic connectivities shown in Fig. 1 are relevant
and make the approximation that corticocortical connectivities
are proportional to the numbers of synapses involved, which
implies Vi = Ve and Qi = Qe [9,13] and lets us concentrate
on excitatory quantities. The smallness of ri , rr , and rs also
lets us ignore all derivative terms in Eq. (6) [10,11], except for
a = e. These approximations, and parameter values similar to
those in Table I, have previously been shown to be in excellent
agreement with spectra, impulse responses, and nonlinear
dynamics of EEGs [6,9,18].

Figure 2 shows an illustrative spectrum obtained from
Eq. (39) for the parameters in Table I and the infinite planar
geometry. As in prior work [6], alpha and beta peaks, which
are due to corticothalamic loop resonances, occur near 9.3 and
18.7 Hz, respectively [59]. The low-frequency spectrum with
P (f ) ∼ f −1 at 0.2–5 Hz reflects proximity to criticality, with
a plateau below 0.2 Hz and at high frequencies we observe a
fast falloff of the spectrum at f � 20 Hz, caused by the onset
of synaptodendritic low-pass filtering [9–11,59,60]. Note that
P (f ) = 2πP (ω) because ω = 2πf .

The term q2 is very important because it is a key indicator
of the resonance of the system at a particular frequency.
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f (Hz)

10-2
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102

104
P

(f
)/

n2

FIG. 2. Frequency spectrum for waking stage (eyes closed) for
the parameters listed in Table I and an infinite planar geometry.

From Eq. (39) we see that if |Imq2r2
e | 
 |Arg(q2r2

e )|, then the
power spectrum must be large, which corresponds to a strong
resonance. Figure 3 shows the corresponding locus of q2(ω)r2

e

for ω > 0 obtained from Eq. (39) for parameters in Table I. As
in prior work [9–11], after starting near the origin at f = 0,
q2 increases in modulus, with |q2(ω)| ∝ ω approximately for
0.3 Hz � f � 4 Hz, where P (f ) ∝ f −1. The locus of q2

exhibits loops as ω increases away from zero, which cause
Imq2r2

e to oscillate due to corticothalamic feedback. Thus the
first, second, third, and fourth peaks that can be observed in
Fig. 3 correspond, respectively, to the f = 0, alpha, beta, and
gamma peaks in the power spectrum.

B. Two-dimensional finite brain geometry

In a finite system, the integral in Eq. (36) becomes a
summation over spatial modes

P (ω) =
∑

η

∣∣T (
k2
η,ω

)∣∣2|φn(k,ω)|2. (40)

For a 2D rectangular cortex of dimensions Lx × Ly with
periodic boundary conditions, the power spectrum P (ω)

-4 -2 0 2

Re q 2r
e
2

-5

-4

-3

-2

-1

0

1

2

Im
 q

2
r e2

2
1

3

4

5

FIG. 3. Locus of q2(ω)r2
e for ω > 0 and parameters in Table I,

where ω ranges from 0 (point 1) to 251 s−1 (point 5). The alpha, beta,
and gamma peaks are indicated by points 2, 3, and 4, respectively.

100 102

f (Hz)

10-2

100

102

104

P
(f

)/
n2

L
x
= 0.1 m

L
x
= 0.2 m

L
x
= 0.3 m

L
x
= 0.5 m

L
x
= 0.7 m

FIG. 4. Frequency spectra for the parameters listed in Table I
for infinite and finite 2D cases with Lx = Ly . The case of infinite
geometry is shown as a dashed line and the finite geometry as a solid
line. Here a finite geometry is shown with increasing Lx values from
0.1 m (top) to 0.7 m (bottom), as indicated in the legend.

is [6]

P (ω) = |A(ω)|2
r4
e

φ2
n

LxLy

∞∑
m,n=−∞

1∣∣( 2πm
Lx

)2 + (
2πn
Ly

)2 + q2
∣∣2 ,

(41)

= 1

r4
e

|A(ω)|2φ2
n

Ly

∞∑
n=−∞

Im
[
qn˜coth(q∗

nLx/2)
]

2|q2
n |Im(q2

n)
, (42)

q2
n = q2 + (2πn/Ly)2. (43)

Figure 4 shows spectra calculated for the parameters in
Table I, using Eq. (42) for a 2D cortex with Lx varied and
Lx = Ly and the low-frequency spectrum has P (f ) ∼ f −2.

At frequencies above ∼1 Hz with Lx = Ly the spectrum
rapidly approaches the infinite planar case as Lx = Ly in-
creases beyond ∼0.2 m, and at f � 30 Hz, we observe a fast
falloff of the spectra, as in the infinite case, which is also shown
for comparison. At frequencies greater than or approximately
equal to 9 Hz, as Lx decreases the alpha and beta peaks become
sharper and the number of peaks increases. This is due to the
increased influence of modal phenomena for small Lx . This
effect is evident from Eq. (42), since the resonances occur
when

q2r2
e ≈ −k2

mnr
2
e = −(2πre)2

(
m2

L2
x

+ n2

L2
y

)
(44)

for integers m and n. Clearly, these resonances occur on
the negative half of the real axis. Since q2 � 0 only in the
neighborhood of the origin, if Lx and Ly are small, then only
low modes can satisfy the above relation. Furthermore, these
resonances are spaced further apart for small Lx and Ly , so
they are more easily distinguished; in the limit Lx,Ly → 0
there is only one resonant mode. Conversely, if Lx and Ly

are large, then while there may be many resonant modes,
the resonances are close together and therefore modal effects
cannot be distinguished in the spectra. The main difference
between the 2D infinite and finite geometries is that at small
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FIG. 5. Frequency spectra for the parameters listed in Table I for
infinite (dashed line) and finite (solid line) planar geometry in a 2D
cortex. Increasing mmax values are as shown from 0 (bottom) to 4
(top), as indicated in the legend.

Lx , there is a large enhancement in the low-frequency part of
the spectrum, reflecting the strong role of the uniform (k = 0)
mode in this case because other modal resonances occur at
large negative q2 for small Lx .

To determine which modes contribute strongly with Lx =
Ly = 0.5 m, in Fig. 5 we truncate the power spectrum
summation from Eq. (42) to low-order modes with

(m2 + n2)1/2 � mmax. (45)

We observe that a good approximation is provided by mmax =
3 up to 30 Hz, which is confirmed by the results in Fig. 5, which
show rapid convergence as mmax increases beyond about 2. The
number of modes that contribute significantly is greater than
in one dimension because of the larger high-k weighting in
2D Fourier space. If they are weakly damped, resonant modes
satisfy Eq. (44). Furthermore, it can be observed in Fig. 5 that
the low-frequency enhancement has P (f ) ∼ f −2 at mmax = 0.
It can be seen from Eq. (42) that resonance occurs when the
locus of q2 in Fig. 3 passes near the negative real axis, since in
this regime Im(q2) � 0, but not too far apart, which we have
explained in Fig. 3.

C. Spherical brain geometry

The spectral decomposition of the activity relative to
spherical coordinates is

φe(θ,ϕ,ω) =
∞∑

�=0

�∑
m=−�

T�m(ω)φn(�,m,ω)Y�m(θ,ϕ). (46)

For spherical geometry, the power spectrum is then

P (ω) =
∞∑

�=0

�∑
m=−�

|T�m(ω)|2|φn(�,m,ω)|2|Y�m(θ,ϕ)|2. (47)

From the definition of the transfer function in Eq. (21),

T�m = φe(�,m,ω)

φn(�,m,ω)
, (48)

= A(ω)

�(� + 1)r2
e /R2

s + q2r2
e

, (49)
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FIG. 6. Frequency spectra for the parameters listed in Table I for
spherical geometry at various Rs , as indicated in the legend (solid
lines), and for the infinite planar (dashed line) geometry.

which is independent of m. We can thus simplify the expansion
for P (ω) for white noise, which has |φn(�,m,ω)|2 = const, by
using the addition formula for spherical harmonics [61]. This
allows us to write

�∑
m=−�

Y�m(θ,ϕ)2 = 2� + 1

4π
. (50)

Equation (47) yields

P (ω)

= φ2
n|A(ω)|2
4πR2

s

∞∑
�=0

2� + 1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2 (51)

= φ2
nR

2
s

4πr4
e

|A(ω)|2
∞∑

�=0

2� + 1[
�(� + 1) + Req2R2

s

]2 + [
Imq2R2

s

]2 .

(52)

Figure 6 shows illustrative spectra obtained from Eq. (52)
for the parameters in Table I for spherical and infinite planar
geometries with Rs varied. As Rs → ∞, the spherical and
infinite planar cases converge, as one would expect on physical
grounds. This is because the sum in Eq. (52) approximates the
integral that appears in Eq. (38) for the power spectrum in
an infinite planar geometry, so that as Rs → ∞, the power
spectrum in the spherical geometry converges to the power
spectrum in the infinite planar geometry, as expected on
physical grounds. This is analogous to the convergence of the
planar geometry to the infinite planar geometry as Lx → ∞.
We use Rs ≈ 0.1 m for one cortical hemisphere, based on
the requirement that the total area of the two hemispheres
must match the observed 0.25 m2 of the typical whole adult
cortex [62]. This implies that the coefficient of �(� + 1)
on the right-hand side of Eq. (32) is (re/Rs)2 ≈ 0.74 since
re ≈ 0.086 m [16,19,43]. For Rs = 0.1 m, the low-frequency
enhancement has P (f ) ∼ f −2 at 0.4–4 Hz, as shown in Fig. 6,
because the uniform mode (� = m = 0) is dominant, just
like in the finite planar geometry, which as we have seen
also has a low-frequency enhancement of P (f ) ∼ f −2. As
in previous cases, we observe a plateau below 0.2 Hz and a
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FIG. 7. Frequency spectra for the parameters listed in Table I for
spherical geometry (solid lines), with Rs = 0.1 m, where the dashed
line corresponds to the Lmax ≈ ∞ case and the solid lines are for
increasing Lmax values from 0 (bottom) to 6 (top), as indicated in the
legend.

fast falloff of the spectra at f � 20 Hz due to synaptodendritic
low-pass filtering. The alpha and beta peaks are seen at ∼8.9
and ∼18.8 Hz, respectively. At ω � γe we have |qre| � ω/γe,
so modes that contribute significantly to P (ω) must satisfy
�(� + 1)r2

e /R2
s � |qre|2 � ω2/γ 2

e in Eq. (52). Hence, at ω �
γe, the significant � modes satisfy � � Lmax � ωRs/ve, giving
a total of ∼(ωRs/ve)2 significant modes. We find in particular
that only a modest number of modes with � � 2 should
contribute strongly for f � 30 Hz for the parameters in Table I.

From Eq. (52) we see that P (ω) is large if �(� + 1) +
Req2R2

s � 0 and Imq2R2
s � 0. When this happens, there are

strong modal resonances and the system’s behavior is very
different from the infinite planar case. Indeed, this is why at
low frequencies the power spectrum decreases as Rs increases,
since there is a decrease of energy in the � = 0 mode. This is
because the second denominator in Eq. (51) is of the form
�(� + 1)/R2

s , which clearly goes to zero as Rs → ∞.
The main difference between the spherical brain geometry

and infinite planar geometry is that the alpha resonance is
sharper and stronger in the spherical geometry due to the strong
role of the uniform (� = 0) mode when energy is partitioned
into discrete modes. To observe which modes contribute the
most on the spherical geometry in Fig. 7, we truncate the power
spectrum summation in Eq. (52) to low-order modes with � �
Lmax, with Lmax = 1 sufficing at f = 0, and Lmax = 5–6 at
f � 102 Hz. This can be seen in Fig. 7, with the first (spatially
uniform) mode dominating until the alpha peak. The power
spectrum asymptotes to zero for large ω, so that even though
the relative strength of the higher-order modes increases, their
absolute power is not great.

Weak substructure exists in the alpha peak in Fig. 7,
which arises from the effect of purely cortical eigenmodes
in frequency ranges where damping has been reduced by the
corticothalamic resonance. We have shown previously that the
major EEG peaks are due to resonances in a corticothalamic
feedback loop [6,59]. To see this substructure more clearly, we
expand Fig. 7 in the vicinity of the alpha peak, as shown in
Fig. 8(a). It can be seen that the main peak near 9 Hz is due
to � = 0 contributions, while the shoulder on the peak is due
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FIG. 8. Frequency spectra near the alpha peak and loci of q2r2
e .

(a) Spectrum for the parameters in Table I, where the solid line is the
sum of all the modes, the dotted line is the � = 0 contribution, and
the dashed line is the � = 1 contribution. (b) Locus of q2(ω)r2

e for the
case in (a) and ω > 0 (ω increases from zero at the point on the real
axis toward the lower left). The locations of the poles for � = 0,1 are
shown by the labeled dots. (c) Spectrum for the parameters in Table I
except for Ges = 4.5, Gse = 2.7, and Rs = 0.18, where the solid line
is the sum of all the modes, the dotted line is the � = 0 contribution,
and the dashed line is the � = 1 contribution. (d) Locus of q2(ω)r2

e for
the case in (c) and ω > 0. The locations of the poles for � = 0,1,2,3
are shown by the labeled dots.

to � = 1 contributions that peak at around 10 Hz. Figure 8(b)
shows the corresponding locus of q2(ω)r2

e for ω > 0 and the
parameters in Table I. The poles of (51) for � = 0 and 1 are
indicated by the black dots on the Req2(ω)r2

e axis. It can be
seen that the � = 0 pole is much closer to the locus of q2(ω)r2

e

than the � = 1 pole, which is why the � = 1 contribution to the
alpha peak is relatively weak. To illustrate substructure in the
alpha peak more clearly, we modified three of the parameters in
Table I to Ges = 4.5, Gse = 2.7, and Rs = 0.18 m to increase
the radius of the loops in the q2r2

e plot and bring the � = 1
pole closer to the origin. The resulting power spectrum in
Fig. 8(c) shows that the � = 0 and 1 contributions peak at 9.7
and 10.2 Hz, respectively, and that the latter is strong enough to
produce a clear double peak in the power spectrum. Figure 8(d)
shows the corresponding locus of q2(ω)r2

e for ω > 0 for the
modified parameters of Fig. 8(c). It can be seen that this locus
approaches both the � = 0 and � = 1 poles closely. Hence we
conclude that for brains with strong corticothalamic feedback
and with large radii (such as in some very large mammals such
as elephants and whales), there would be more likely to be a
splitting of the alpha peak, but we have not explored whether
other combinations of parameters might also yield splitting for
smaller brain sizes.

IV. CROSS SPECTRUM

The cross power spectrum is a measure of the relationship
at a particular frequency of two time series at different spatial
points [34,63]. It is the expected value of the activity (i.e.,
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the average over all possible realizations of the system) at
a particular frequency and due to the generalized Wiener-
Khintchine theorem it can be written as the inverse Fourier
transform of the correlation function, with [16]

P (r,r′,ω) =
∫

eiωT C(r,r′,T )dT (53)

= 〈φe(r,ω)φ∗
e (r′,ω)〉. (54)

Here we consider only the infinite planar and spherical
geometries because in the previous section we found that the
modal effects in spherical geometry are similar to those in the
finite planar case.

A. Infinite planar brain geometry

In the 2D continuum limit in which spatial boundary
conditions on the cortex can be ignored, Eqs. (21) and (53)
imply that

P (R,ω) = |A(ω)|2φ2
n

4π2r4
e

∫
eik·RF (k)

|k2 + q2|2 d2k, (55)

where A(ω) is from Eq. (11) and in the case of EEG spectra, the
filter function F (k) approximates low-pass spatial filtering due
to volume conduction in the skull and scalp. The assumption
of random-phase white noise implies that the noise is delta
correlated in wave number.

Filtering of high spatial frequencies k can be significant,
as found by Srinivasan et al. [34]. The k dependence of their
low-to-moderate wave number results is reasonably well fitted
by a spatial filter of the form

F (k) = k2
0

k2 + k2
0

, (56)

where F (k) is the square of the ratio of scalp to cortical voltage
and k0 ≈ 10 m−1 for scalp recordings [9,16,27]. For simplicity,
we have ignored the factor F (k) in our power spectrum section
Eq. (39). Using this function we find

P (R,ω) = |A(ω)|2φ2
n

4π2r4
e

∫
eik.Rk2

0

|k2 + q2|2(k2 + k2
0

)d2k (57)

= |A(ω)|2φ2
nk

2
0

4πr4
e

∫ ∞

0

J0(kR)d(k2)

|k2 + q2|2(k2 + k2
0

) (58)

= |A(ω)|2φ2
n

2πr4
e Imq2

Im

[
K0(q∗R) − K0(k0R)

1 − q∗2/k2
0

]
, (59)

where J0 is a Bessel function and K0 is a Macdonald function
(a modified Bessel function of the second kind) [16].

The limit k0 → ∞ in Eq. (59) implies that

P (R,ω) = |A(ω)|2φ2
n

2πr4
e Imq2

Im[K0(q∗R)]. (60)

If we further take the limit R → 0, the small argument limit
of K0 [16] in Eq. (60) implies that

P (0,ω) = |A(ω)|2φ2
n

4πr2
e

∣∣∣∣Argq2r2
e

Imq2r2
e

∣∣∣∣, (61)

which reproduces Eq. (39) for the power spectrum. If the limit
R → 0 is taken first in Eq. (59) and we write q = |q| exp(iθ ),
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104
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FIG. 9. Plot of the cross spectrum [Eq. (59)] for the infinite planar
geometry and the parameters in Table I, for points at a distance
R = 0.017 m apart, and k0 = 10 m−1.

we obtain

P (0,ω) = |A(ω)|2φ2
n

2πr4
e Imq2

lim
R→0

Im

[
K0(q∗R) − K0(k0R)

1 − q∗2/k2
0

]
(62)

= |A(ω)|2φ2
n

2πr4
e Imq2

1∣∣1 − q∗2/k2
0

∣∣2

× Im
[(

1 − q2/k2
0

){i Argq − ln(|q|/k0)}] (63)

= |A(ω)|2φ2
n

4πr2
e Im

(
q2r2

e

) 1∣∣1 − q∗2/k2
0

∣∣2

× {
Arg

(
q2r2

e

)
[1 − Re

(
q2/k2

0

)]
+ Im

(
q2/k2

0

)
ln(|q|/k0)

}
, (64)

which generalizes Eq. (39) to k0 �= ∞.
Figure 9 shows an illustrative cross spectrum obtained

from Eq. (59) for parameters in Table I with the value of
R = 0.017 m and the infinite planar geometry. The alpha and
beta peaks are seen near 9.1 and 18.4 Hz, respectively. These
locations are very similar to the locations of the alpha and
beta peaks for the power spectrum (i.e., when R = 0) that
we discussed in Sec. III. This is due to the extra structure
in the cross spectrum that results from the multiplicative
factor involving Macdonald functions. The low-frequency
cross spectrum P (f ) ∼ f −1 at 0.5–5 Hz. We observe a plateau
below 0.5 Hz. At high frequencies we observe a fast falloff
of spectra at f � 19 Hz. As for the power spectrum, only a
modest number of modes contribute strongly to observed cross
spectra for typical EEG frequencies of f � 30 Hz.

B. Spherical brain geometry

The cross spectrum between points with coordinates (θ,ϕ)
and (θ ′,ϕ′) and at frequency ω is

P (θ,ϕ,θ ′,ϕ′,ω) = 〈φe(θ,ϕ,ω),φ∗
e (θ ′,ϕ′,ω)〉, (65)

where the angular brackets indicate an average over all
realizations. According to the white-noise assumption,

〈φn(�,m,ω),φ∗
n(�′,m′,ω)〉 = δ��′δmm′φ2

n. (66)
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We can therefore use Eq. (65) to obtain

P (θ,ϕ,θ ′,ϕ′,ω)

= |A(ω)|2φ2
n

R2
s

∞∑
�=0

�∑
m=−�

1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2

× Y�m(θ,ϕ)Y�m(θ ′,ϕ′). (67)

Using the addition theorem of spherical harmonics in Eq. (67),
we then find

P (θ,ϕ,θ ′,ϕ′,ω)

= |A(ω)|2φ2
n

4πR2
s

∞∑
�=0

2� + 1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2 P�(cosγ ),

(68)

where γ is the central angle between the points (θ,ϕ) and
(θ ′,ϕ′)′, i.e., cos(γ ) = cos(θ ) cos(θ ′) + sin(θ ) sin(θ ′) cos(ϕ −
ϕ′). This means that the cross power spectrum is only a function
of the central angle between the two points, which is what one
would expect given that the system is invariant under a rotation
of the sphere. We can therefore reorient our coordinate axes
so that one point has spherical coordinates (0,0) and the other
point has spherical coordinates (θ,0), i.e., the central angle
between the points is θ .

To calculate scalp EEG spectra, rather than intracranial ones
at the cortical surface, one must consider the possibility of fil-
tering due to shielding that results from volume conduction by
the cerebrospinal fluid, skull, and the scalp itself [9,28,34,35].
Incorporation of a filter function F (�) in Eq. (68) yields

P (θ,ω) = |A(ω)|2
4πR2

s

∞∑
�=0

2� + 1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2

× P�(cosθ )F (�). (69)

A suitable approximate form when �0 ∼ k0 and Rs ∼ 1 is

F (�) = �2
0

�2 + �2
0

, (70)

with F (�) → 1 as �0 → ∞. At θ = 0 we find

P (0,ω) = |A(ω)|2
4πR2

s

∞∑
�=0

2� + 1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2 , (71)

where A(ω) is given in Eq. (11), which reproduces our previous
power spectrum in Eq. (52).

Figure 10 explores the dependence of the spherical cross
spectrum on the central angle θ . From Fig. 10 we observe that
at low frequency, the cross spectrum is almost invariant with
respect to θ . This illustrates the dominance of the spatially
uniform spherical mode (i.e., � = 0) at a spherical radius of
Rs = 0.1 m. For a larger value of Rs , this mode would be less
dominant and the cross spectrum would vary more with θ .
As frequency increases, the relative differences between the
cross spectra at different values of θ increases. At small θ the
low-frequency cross spectrum is stronger than for a infinite
planar geometry and the alpha peak is sharper and stronger
due to the partitioning of the energy into discrete modes.
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FIG. 10. Cross spectra in a spherical geometry with Rs = 0.1 m
for various θ for the parameters listed in Table I, as indicated in the
legend. The dashed line is for the same parameters in an infinite planar
geometry.

V. COHERENCE AND CORRELATION FUNCTIONS

The correlation function C(r,r′,T ) can be defined by

C(r,r′,T ) = 〈φe(r,t)φe(r′,t − T )〉, (72)

where angular brackets denote an average over t (a statistically
steady state is assumed). The correlation function is a measure
of the agreement between signals coming from different areas
of the brain. Correlations in EEG signals lead to a deeper
understanding of the functional organization of the brain
[64]. Due to the Wiener-Khintchine theorem, the correlation
function is equal to the inverse Fourier transform of the cross
spectrum [16]. The normalized correlation function ρ(r,r′,T )
can be defined as

ρ(r,r′,T ) = C(r,r′,T )

[C(r,r,0)C(r′,r′,0)]1/2
, (73)

which satisfies |ρ| � 1. The coherence function is obtained by
normalizing the correlation function, i.e.,

γ (r,r′,ω) = P (r,r′,ω)

[P (r,r,ω)P (r′,r′,ω)]1/2
, (74)

which satisfies |γ | � 1.

A. Infinite planar brain geometry

From Eq. (74) the normalized coherence function for
infinite planar geometry is given by [6]

γ (R,ω) = 2 ImK0(q∗R)

Argq2r2
e

(75)

for k0 = ∞ and R = |R| = |r − r′|. The correlation function
is obtained by inverse Fourier transformation of the cross
spectrum in Eq. (59),

C(R,T ) = 1

4π2r2
e

∫
e−iωT |A(ω)|2

Imq2r2
e

× Im

[
K0(q∗R) − K0(k0R)

1 − q∗2/k2
0

]
dω. (76)
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FIG. 11. Plot of the normalized coherence function γ (R,ω) vs R

and f = ω/2π , of a 2D infinite planar geometry for the parameters
in Table I.

The normalized correlation function is

ρ(R,T ) = g(R,T )

g(0,0)
, (77)

where

g(R,T ) = 1

4π2r2
e

∫
e−iωT |A(ω)|2

Imq2r2
e

× Im

[
K0(q∗R) − K0(k0R)

1 − q∗2/k2
0

]
dω. (78)

In the limit k0 → ∞ we find

g(R,T ) = 1

4π2r2
e

∫
e−iωT |A(ω)|2

Imq2r2
e

Im[K0(q∗R)]dω, (79)

g(0,0) = 1

2πr2
e

∫
|A(ω)|2 Argq2r2

e

Imq2r2
e

dω. (80)

Figure 11 shows the 2D infinite planar geometry coherence
functions obtained from Eq. (75) for the parameters in Table I
[10,16]. We have removed spatial filtering by setting k0 = ∞
because this only makes a slight difference to the results. The
main features shown in Fig. 11 are that γ falls off with distance,
with a faster decrease at higher frequencies. This is because
the only term that depends on R in (75) is Im[K0(q∗R)], but
|Im(q∗)| is greater for higher frequencies and here the rate
of decrease of |Im[K0(q∗R)]| with R in Eq. (75) is more
rapid. Coherence tends to fall slightly faster with R than in
one dimension [16], owing to the greater predominance of
high-k modes, as reflected in the asymptotic properties of the
Macdonald function in Eq. (75) [16]. Indeed, the Macdonald
function K0(q∗R) → 0 as |q| → ∞. The coherence persists
to large R at the spectral resonances, particularly the alpha and
beta peaks near 9.3 and 18.5 Hz, respectively. These results
are in accord with Eq. (75) and with prior results [16,28],

FIG. 12. Plot of the normalized correlation ρ(R,T ) vs R and T

of the infinite planar geometry, for the parameters in Table I with
Rs = 0.1 m.

where we showed that long-range coherence can only exist
when q2 is near the negative real axis (as seen for our spectral
peaks in Fig. 3), where waves are weakly damped and can
thus propagate over long distances. The figure demonstrates
that when instability is approached, the coherence function
tends to become spatially uniform at the instability frequency,
potentially a useful diagnostic for detecting the approach to
generalized seizure onset [6,21,28,29].

Figure 12 shows the 2D infinite planar geometry correlation
functions obtained by inverse Fourier transforming Eq. (77)
and using the parameters in Table I. These parameters
correspond to an eyes-closed state. The figure demonstrates
peaks at times that are approximately 2π/ξ , where ξ is the
dominant frequency. Furthermore, the correlation function
goes to zero as |T | and |R| go to ∞.

B. Spherical brain geometry

The coherence function for the spherical geometry, in the
limit l0 → ∞, is given by

γ (θ,ω) = g′(θ,ω)

g′(0,ω)
, (81)

where

g′(θ,ω) = |A(ω)|2
4πR2

s

∞∑
�=0

2� + 1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2 P�(cosθ ),

(82)

g′(0,ω) = |A(ω)|2
4πR2

s

∞∑
�=0

2� + 1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2 . (83)

Due to the Wiener-Khintchine theorem, the correlation func-
tion C(θ,T ) = 〈φe(θ,t + T )φe(θ,t)〉 can be obtained by in-
verse Fourier transforming the cross spectrum P (θ,ω) and is
given by

C(θ,T ) = 1

2π

∫
P (θ,ω)e−iωT dω (84)

= 1

8π2R2
s

∫
|A(ω)|2e−iωT

∞∑
�=0

2� + 1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2 P�(cosθ )dω. (85)
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The normalized correlation function is

ρ(θ,T ) = g′′(θ,T )

g′′(0,0)
, (86)

where

g′′(θ,T ) = 1

8π2R2
s

∫
|A(ω)|2e−iωT

∞∑
�=0

2� + 1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2 P�(cosθ )dω, (87)

g′′(0,0) = 1

8π2R2
s

∫
|A(ω)|2

∞∑
�=0

2� + 1∣∣�(� + 1)r2
e

/
R2

s + q2r2
e

∣∣2 dω. (88)

Figure 13 shows the 2D spherical coherence function
obtained from Eq. (81) for the parameters in Table I. At fixed
frequency, the coherence function decays monotonically as θ

increases, as in the planar geometry; the decrease is faster at
higher frequencies. However, the decay in the coherence as
the frequency increases, for fixed θ , is not monotonic, as in the
planar geometry; the coherence persists to large θ at spectral
resonances, particularly the alpha and beta peaks near 8.9 and
18.2 Hz, respectively, and near f = 0.

Figure 14 shows the normalized correlation function for the
spherical geometry. The qualitative features are similar to those
of the 2D planar geometry, with the correlation decreasing with
both θ and T and there being a peak at a time lag approximately
equal to 1/fα , where fα is the frequency of the alpha peak. A
difference is that the correlation decreases more quickly as the
distance increases in the spherical geometry compared to the
planar geometry, where the distance in the spherical geometry
is given by R = Rsθ . Note that there is an even stronger peak
at zero time lag, which reflects the fact that much of the activity
is in the lowest mode, which is globally spatially uniform.

VI. SUMMARY AND DISCUSSION

In this work we have studied the spectral properties of
an established corticothalamic neural field model in planar
and spherical geometries to explore the effects of geometry
on measures of brain activity. In the spherical case we
decomposed the noise, activity, coherence, and correlations
using spherical harmonics, motivated by a recent study that

FIG. 13. Plot of the normalized coherence function γ (θ,ω) vs θ

and f = ω/2π for a spherical geometry, the parameters in Table I,
and Rs = 0.1 m.

demonstrated that these closely approximate the eigenmodes
of a folded cortical hemisphere [43]. This study yields
equations for the modal dynamics, spectra, correlations, and
coherence response functions. These equations incorporate
both modal and corticothalamic resonances and explain how
these phenomena depend on geometry and affect experimental
observations. The following are our main results.

(i) Using the generalized NFT transfer function for the
corticothalamic system, we have calculated the power spec-
trum for infinite planar, finite planar, and spherical geometries
in Eqs. (39), (42), and (52). In the finite cases our results
showed discrete modal effects on white-noise-driven spectra.
We observed at the low-frequency part of the spectrum the
uniform mode produces a spectral peak with f −2 behavior for
spherical and finite geometries but f −1 in the infinite planar
geometries.

(ii) We found that modal effects are strong near the
corticothalamic resonances and can combine to produce
substructure near the alpha peak if corticothalamic feedback is
strong [6]. The modal effects also lead to a large enhancement
in the low-frequency part of the spectrum.

(iii) We varied the radius Rs of the spherical brain and
the linear size Lx of the finite planar case. We found that as
Rs → ∞ and Lx → ∞ the spherical, finite, and infinite planar
geometries approach one another, as expected on physical
grounds.

(iv) We truncated the mode numbers in the expansion at
mmax in the planar geometry. We found that the visible modal
structure can be obtained with mmax = 3 up to 30 Hz. The

FIG. 14. Plot of the normalized correlation ρ(θ,T ) vs θ and
T of the spherical geometry, for the parameters in Table I with
Rs = 0.1 m.
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low-frequency enhancement for the m = 0 mode (i.e., the
spatially uniform mode) has P (f ) ∼ f −2. We also truncated
the mode numbers in the expansion at Lmax in the spherical
geometry. We found that the number of modes required for
an accurate representation of the power spectrum increases as
the frequency increases. At f = 0 Hz, Lmax ≈ 1 is required,
whereas Lmax ≈ 5–6 is required at f ≈ 100 Hz.

(v) The cross spectrum has been calculated for the infinite
planar and spherical geometries in Eqs. (59) and (69). There
is no great qualitative change in either the power spectrum
or the cross spectrum between geometries, except that the
low-frequency spectrum in the infinite planar geometry is 1/f ,
whereas in the spherical geometry it is 1/f 2 because of the
partitioning of energy into discrete modes. At small θ the
low-frequency cross spectrum is stronger than in the infinite
planar geometry and the alpha peak is sharper and stronger,
again due to the partitioning of the energy into discrete
modes.

(vi) The coherence has also been calculated for the
infinite planar and spherical geometries in Eqs. (75) and (81).
The normalized coherence function for the infinite planar
geometry falls off with distance, with a faster decrease at
higher frequencies due to the dependence on R in (75)
and more slowly at resonances. Its rate of decrease as R

increases is slightly faster than in one dimension due to the
asymptotic properties of the Macdonald function in (75). For
the spherical geometry, the normalized coherence function
decays monotonically as θ increases at a fixed frequency in
Eq. (81). As in the planar geometry, the coherence persists to
large θ at spectral resonances, which are projected across the
whole brain.

(vii) Correlation functions have also been calculated for the
infinite planar and spherical geometries in Eqs. (77) and (86).
For the planar geometry the normalized correlation function
goes to zero as |T | and |R| go to ∞. In the spherical geometry,
the features are similar to those of the 2D planar geometry, with
the correlation decreasing with both θ and T . The correlation
between two points decreases more quickly as their separation
increases in the spherical geometry than in the planar geometry,
where the separation in the spherical geometry is given by
R = Rsθ .

Overall, we find that modal effects in spherical and
finite planar geometries are most important near resonances,
particularly the low-frequency resonance at f = 0, where they
lead to large enhancements in responses, correlations, and
coherence. The present analysis for the spherical geometry will
enable more realistic modeling and analysis of experimental
brain signals in the future, particularly given the strong
parallels between exact brain modes and spherical harmonics
that have been established in recent works, as discussed in the
Introduction.
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