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Surface deformation during an action potential in pearled cells
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Electric pulses in biological cells (action potentials) have been reported to be accompanied by a propagating
cell-surface deformation with a nanoscale amplitude. Typically, this cell surface is covered by external layers of
polymer material (extracellular matrix, cell wall material, etc.). It was recently demonstrated in excitable plant
cells (Chara braunii) that the rigid external layer (cell wall) hinders the underlying deformation. When the cell
membrane was separated from the cell wall by osmosis, a mechanical deformation, in the micrometer range, was
observed upon excitation of the cell. The underlying mechanism of this mechanical pulse has, to date, remained
elusive. Herein we report that Chara cells can undergo a pearling instability, and when the pearled fragments
were excited even larger and more regular cell shape changes were observed (∼10–100 μm in amplitude). These
transient cellular deformations were captured by a curvature model that is based on three parameters: surface
tension, bending rigidity, and pressure difference across the surface. In this paper these parameters are extracted
by curve-fitting to the experimental cellular shapes at rest and during excitation. This is a necessary step to
identify the mechanical parameters that change during an action potential.
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I. INTRODUCTION

Several types of cells, including neurons, myocytes, and
epithelial as well as some plant cells, propagate all-or-none
pulses called action potentials (APs) [1–3]. The mechanism
that underlies an AP is widely considered to be electrical, and is
typically interpreted through a representation of the cell mem-
brane as an equivalent electric circuit [4]. However, evidence
of nonelectrical aspects that copropagate with the electric
pulse has been accumulating. These include mechanical [5],
optical [6], and thermal [7] variations. These results are not
explained in the classical framework, and thus have motivated
the development of more comprehensive theories [1,8,9]. The
focus of this paper is on the mechanical displacement of the
surface that copropagates with the electric pulse. In neurons,
mechanical pulses are usually revealed as a swelling of the
cell cylinder followed by a contraction. These deflections
have amplitudes of ∼1–10 nm [5]. Several hypotheses were
suggested to explain this phenomenon, including: ion and
water flow across the membrane [10], distortion of the lipid
bilayer due to electrostrictive forces [11], a change in the lipid
bilayer state due to a propagating density pulse [8,9], and a
volume phase transition in the cortical polymers [1]. Even
larger biphasic surface displacements, ∼100 nm in amplitude,
have been observed during an AP in excitable plant cells
(Characean algae) [12,13]. These cells are large and easy to
handle, and their electrical properties have been widely investi-
gated [14]. Like other plant cells, Characean algae are covered
by a rigid cellulose sheath (cell wall). The cell membrane is
tightly pressed against this external casing by a large osmotic
pressure (turgor) of ∼6 bars. By increasing the extracellular
osmolarity, the cell membrane can be separated from the
cell wall (a process called plasmolysis). It has recently been
demonstrated that the mechanical pulse that copropagates with
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the electric pulse is 10–100 times larger in plasmolyzed cells
(∼1–10 μm) [15]. These amplitudes are not readily explained
by any of the theories that have been previously proposed.

It has been noted previously that plasmolyzed Chara cells
develop a pearling instability [16]. Over time, the cylindrical
cell geometry developed a sinusoidal-like shape of dilatations
and constrictions. Pearling [17] is an abundant phenomenon
that has been observed in elongated cells [18–20] as well
as in nonliving systems such as lipid membranes [21,22],
gels [23,24], and liquids [25,26]. It is typically explained
through the Plateau-Rayleigh instability, with the interplay
between surface and bulk forces under certain constraints.
The most common example is that of a liquid column that
collapses into a sphere once its length becomes larger than its
circumference. This is a result of the tendency of the liquid to
minimize its surface area under a constant volume condition
[27]. Lipid membranes, gels, and living systems are somewhat
more complex, since they have an elastic energy that allows
the formation of pearls only above a critical surface tension
[21,28]. The dominant parameters in these systems are the
surface tension, bending rigidity, and transmembrane pressure
[29].

As will be shown herein, membrane excitation of pearled
Chara cells is accompanied by a substantial surface de-
formation. These deformations are even larger and more
regular as compared to plasmolyzed cells. Furthermore, the
deformations resemble a transient reversal of the pearling
process. This provides a good hint that the mechanical changes
during an AP may be related to the parameters that govern
the pearling condition (surface tension, bending rigidity, and
transmembrane pressure).

II. MATERIALS AND METHODS

Materials. All reagents were purchased from Sigma-
Aldrich (St. Louis, MO, USA) and were of analytical purity
(�99%).
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FIG. 1. Illustration of (a) fully turgid, (b) slightly plasmolyzed, and (c) pearled internodal Chara cell. Dashed line represents the cell wall.
Solid line represents the cell membrane. (d) Image of pearled Chara fragment. Arrow indicates location of tether. (e) Membrane potential
pulse (upper) and out-of-plane displacement of a point on the cell surface close to the tether (lower). Arrow marks time point of stimulation. A
close-up of the tether region (f) before stimulation, and (g) at the peak of the surface deformation.

Cell cultivation and storage. Chara braunii cells were
cultivated in glass aquariums filled with a layer of 2–3 cm
of soil, quartz sand, and de-ionized water. The cells were
grown under illumination from an aquarium light (14 W, Flora
Sun Maximum Plant Growth, Zoo Med Laboratories Inc., San
Luis Obispo, CA, USA) at a 14:10 light:dark cycle at room
temperature (∼20◦C). Prior to use, single internodal cells were
stored for a minimum of 12 h in a solution containing 0.1 mM

NaCl, 0.1 mM KCl, and 0.1 mM CaCl2.
Pearling of Chara internode and excitation of an AP.

A detailed description of the procedure has been published
previously [15]. In brief, a single internodal cell (3–6 cm long)
was placed on a plexiglass frame into which compartments
(∼2 × 5 × 10 mm) had been milled. The cell was subdivided
into electrically isolated sections (length ∼5 mm) by per-
pendicular vacuum grease stripes placed above and below
the cell (Dow Corning Corporation, Midland, MI, USA).
This allowed for excitation of the cell by means of Ag/AgCl
wire electrodes in the compartments. Artificial pond water
was added (APW) (1 mM KCl, 1 mM CaCl2, 5 mM HEPES,
110 mM D-sorbitol; pH set to 7.0 with NaOH). After ∼10 min,
the extracellular osmolarity was gradually increased by ad-
dition of APW with higher sorbitol concentrations (initial:
∼120 mOsm; final: ∼280 mOsm). This led to a gradual
efflux of water from the cell [Fig. 1(b)]. When the cell had
plasmolyzed (i.e., when the cell membrane had separated
from the cell wall), the extracellular solution was replaced
by APW (∼280 mOsm) containing 50 μM cytochalasin D.
This procedure was reported to accelerate the formation of
a pearling instability in fibroblasts [19]. Indeed, after 1–2 h,
75% of the cells had pearled [Fig. 1(c)]. Subsequently, the
hemispherical region of a pearled cell fragment was monitored
by video microscopy (Olympus IX71). Action potentials were
triggered by a waveform generator (Agilent 33250A; Agilent,
Santa Clara, CA, USA) in combination with a stimulus
isolation unit (SIU5; Grass Technologies, Warwick, RI, USA).
The membrane potential was monitored by the potassium
anesthesia technique [30].

Extraction of cell-surface shapes from video recordings.
Single frames were extracted from video files. The frame
rate of the video recording was ≈10 frames/s, and the field
of view was ≈860 × 650 μm2. For each frame, the cellular

outline was distinguished from its environment by using a
threshold-based segmentation algorithm [31]. The cell surface
was subsequently identified by tracing a continuous line of
boundary pixels.

III. EXPERIMENTAL RESULTS

Surface displacement in pearled cells during APs. Plant
cells are covered by a rigid cellulose sheath, 1−10 μm thick,
called the cell wall. In the native state, an internal pressure
(turgor) pushes the cell membrane against the cell wall
[Fig. 1(a)]. This pressure difference across the cell surface
is due to an osmolarity difference between the intra- and ex-
tracellular medium (∼270 mOsm vs ∼0 mOsm, respectively).
When the extracellular osmolarity was increased gradually
by addition of sorbitol, a point was reached when the cell
volume started to decrease due to an outflow of water. In this
process (plasmolysis), the cell membrane detached from the
cell wall (Fig. 1(b) and Ref. [15]). Within 1–2 h, the cell formed
elongated pearls, within the cell wall cylinder. These pearls
were connected by small-radii tethers [Figs. 1(c) and 1(d)].
The radius and length of the pearls were ≈300 μm and several
millimeters, respectively. The tether radius was ≈2 μm. When
the cell was electrically excited during pearling formation,
the surface motion reversed transiently (Movie S1 in the
Supplemental Material [32]). These observations suggested
that the same parameters that govern the pearling procedure
are involved in the mechanical pulse component of an AP.

It was also possible to electrically excite fully formed
pearled fragments. Upon stimulation of an AP, a substantial
mechanical motion took place on both hemispherical caps
of a pearl. The onset of deformation coincided with the
depolarization phase of the AP [Fig. 1(e)], and the time of
the peak of deformation varied between experiments, 10–60 s.
The deformation of the cell surface was most evident at the
connecting region to the tether. Figures 1(f) and 1(g) show a
close-up of this part of the surface before an electric stimulation
and at the peak of the displacement, respectively (Movie S2 in
the Supplemental Material [32]). Interestingly, the pulse did
not seem to propagate across the tether into neighboring pearls
as evidenced by the absence of mechanical deformation there
(Fig. S1 and Movie S3 in the Supplemental Material [32]).
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FIG. 2. (a) Traces of the cell surface before (t = 0) and during various stages of an AP. Inset demonstrates an inward displacement near
the cell wall. Cell radius is rmax = 330 μm. (b) Illustration of the fixed circle (collection of points on the surface that do not move during a
deformation) that separates the hemispherical cap into two parts: one which moves outward (frontal) and one which moves inward (rear). Four
small arrows indicate the respective direction of deformation.

Extraction of cell-surface shapes during an AP. The shape
of a pearl was captured from movies that recorded the
entire hemispherical cap during an AP (Movie S4 in the
Supplemental Material [32]). An example of surface traces
for four time points is plotted in Fig. 2(a) for the cell at
rest (t = 0) and during various stages of an AP (t = 4.9 s,
17.7 s, 54.1 s). The surface underwent a substantial outward
displacement with amplitude of ≈30 μm near the tether
(different experiments resulted in varied amplitudes between
10 and 100 μm). Conversely, the surface moved inward near
the cell wall with an amplitude of ≈5 μm [inset of Fig. 2(a)].
The outward and inward deformations were separated by a
fixed circle—a collection of points on the surface of the
hemispherical cap that did not move during an AP [see
illustration in Fig. 2(b)]. In the subsequent section we use

this definition of a fixed circle as a geometrical marker, to
investigate partial changes in volume and area during an AP.

Volume and area changes during a surface deformation.
Volume and area of the hemispherical regions of the pearl were
calculated by assuming cylindrical symmetry [Eq. (8) below].
Furthermore, these were also calculated separately for the two
parts distinguished by the fixed circle [Fig. 2(b)]. The results
are plotted in Fig. 3 as relative values to the resting state (t=0).
The total change in volume and area of the hemispherical cap
was less than 2%. The volume of the frontal part of the pearl
increased by 21% and its area increased by 8%. Apparently
this was compensated by a decrease in volume and area of the
rear part. These results repeated themselves in trend and order
of magnitude in n = 4 cells. These observations indicate that
the shape changes are not simply due to a decrease or increase
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FIG. 3. Total (a) volume and (b) area of the hemispherical cap as a function of time (solid line), upon excitation of an AP at t = 0. Values
were normalized by the resting state value (t = 0). Volume and area were also calculated separately for the frontal (dashed line) and rear
(dashed-dotted line) parts of the hemispherical cap [see Fig. 2(b)].
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of the pearl volume, but rather due to a shift of intracellular
volume.

IV. THEORETICAL MODEL AND ANALYSIS

Model description. When a Chara cell is excited, a
membrane potential pulse is generated and propagates along
the cell cylinder. In parallel, a cell-surface deformation pulse
occurs. The mechanical and the electrical signals propagate
together along a Chara cell at a velocity of ∼1 cm/s (Fig. 1(e)
and Ref. [15]). In the present work we do not attempt to provide
detailed dynamical equations that describe the propagation of
the mechanical pulse. Rather, our objective is to understand its
underlying mechanism. We hypothesize that the deformation
of the surface may be explained by a reversible change in its
mechanical properties.

The system under consideration is the cellular surface,
represented as a two-dimensional contour embedded in a
three-dimensional space. We consider three macroscopic
parameters to describe its mechanical properties: the surface
tension σ , the bending rigidity κ , and the pressure difference
across the surface �p ≡ pout − pin [29]. Clearly this is an
oversimplification since the surface is not an infinitesimally
thin fluid. Rather, it consists of the cell membrane, cortical
cytoskeleton, chloroplasts, and subcortical actin bundles [33].
Nonetheless, our results demonstrate that this minimum set
of parameters captures the shape transformations in a very
satisfactory manner. We return to this issue in the Discussion
section. Under these assumptions, the elastic energy of the
surface is given by

E =
∫

σdA +
∫

κdH +
∫

�pdV, (1)

with A the surface area, H the mean curvature of the surface,
and V the enclosed volume [29]. A Gaussian curvature
term was dropped from the equation, since it contributes a
deformation-independent term.

We treat the mechanical parameters as constants in space,
but not in time. This assumption is valid when the pulse
length is much larger than the field of observation. The spatial
extension of an AP can be estimated from the pulse velocity
(∼1 cm/s) and duration (∼10 s) to be ∼10 cm. Indeed, this
is significantly larger than the field of observation (∼1 mm).
In addition, only the linear regime of the bending modulus
is considered. Under these additional assumptions, the energy
function becomes

E = σ

∫
dA + κ

2

∫
(2H )2dA + �p

∫
dV. (2)

At the cell wall additional forces are induced by the rigid
structure [Fig. 1(c)], and at the tether the surface is likely
balanced by intracellular polymers (see Discussion section and
Ref. [34]). Thus, the model is valid only in the hemispherical
cap region, and the connections with the cell wall and tether
are treated as boundary conditions [Eq. (7) below].

In order to estimate the mechanical change of the surface,
we make a simplified assumption that the rate of change of
the parameters is slower than the surface response [35]. This
implies that at each time frame the curves are extremum
solutions of the energy function. We discuss the validity
of this assumption in the Discussion section. The Euler-

r
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ψ

FIG. 4. Parametrization of the surface curve.

Lagrange equation that minimizes the above energy function
was calculated by Zhong-Can and Helfrich [36],

�p − 2σH + 2κ(2H 3 + ∇2H ) = 0. (3)

To keep calculations simple, only axially symmetric solu-
tions of the above equation are considered.

Parametrization of the surface curve is shown in Fig. 4.
The internal coordinate of the surface is represented by
the arclength s along the contour. The external cylindrical
coordinates (r, z) are related to the arclength by [37]

rs = cos(ψ),

zs = − sin(ψ), (4)

where rs ≡ dr
ds

and ψ is the angle between the tangent to the
contour and the r axis.

The curvature of axisymmetric curves satisfies [38]

H = 1

2

(
rss

zs

− zs

r

)
= 1

2

(
ψs + sin(ψ)

r

)
, (5)

and the Laplacian operator is

∇2H = 1

r

d

ds
(rHs). (6)

Four boundary conditions describe the connection point
with the cell wall and the tether:

r(0) = rmax,
dr(0)

dz
= 0,

r(end) = rmin,
dr(end)

dz
= 0, (7)

where rmax is the radius of the cell wall and rmin is the
radius of the tether. These four conditions determine a unique
solution that depends on three dimensionless parameters: h ≡
�prmax

2σ
(pressure-to-tension parameter), ε ≡ κ

σr2
max

(bending-to-

tension parameter), and S
rmax

(curve length). Thus the space
of solutions is three dimensional. The Zhong-Can–Helfrich
model [Eqs. (3)–(7)] was solved using standard relaxation
methods [39].
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FIG. 5. (a) Experimental traces of the hemispherical cap, before stimulation (solid black line) and at the peak of the deformation during
an AP (dashed black line). These are compared with solutions of the Zhong-Can–Helfrich equation (solid and dashed gray lines, respectively).
Parameters of the curved solutions are given in Ref. [32]. (b) Multiple parameter combinations which led to a good fit of the experimental
shapes are plotted in phase space. The four areas correspond to successful fits to the four contours shown in Fig. 2(a) [error function
<1.5 × 10−4, Eq. (9)].

Other geometrical quantities of use are the volume V , area
A, and axial length L,

V = −
∫

πr2 sin(ψ)ds,

A =
∫

2πrds, (8)

L = −
∫

sin(ψ)ds.

Finally, curve solutions were fitted to experimental traces
and were evaluated by a least-squares error function,

LSerr = 1

L

∫
�r2dz, (9)

where �r is the difference between the experimental trace and
the calculated curve.

Comparison of surface solutions to experimental results. In
order to calculate surface traces, we have used an idealized
curvature model which is governed by three mechanical
parameters: surface tension σ , bending rigidity κ , and pressure
difference across the surface �p. Before describing its results,
one may ask if a simpler model may be sufficient to capture
the surface deformation. It was previously suggested that
a curvature model with negligible rigidity (κ = 0) may be
used to model stretch-induced pearling in axons [40]. Thus,
solutions were first explored for this simplified version which
reduces the equilibrium equation into the Young-Laplace
equation [32]. Indeed, solutions roughly approximated the
pearling formation process (Fig. S2 in the Supplemental
Material [32]). However, these solutions did not describe fully
developed pearls connected by tethers with small radii (see
also Ref. [38]). Therefore, to capture the experimental traces
it was necessary to solve the full Zhong-Can–Helfrich model
[Eqs. (3)–(7)], i.e., an elastic energy equation that includes a
nonzero bending rigidity.

The Zhong-Can–Helfrich model depends on three dimen-
sionless parameters: h ≡ �prmax

2σ
(pressure-to-tension parame-

ter), ε ≡ κ
σr2

max
(bending-to-tension parameter), and S

rmax
(curve

length). For a given curve length, solutions were found in a
limited region of the (h,ε) phase space. A comparison between
experimental traces of the surface and the calculated curves is
plotted in Fig. 5(a). Two traces, before stimulation (solid black
line) and at the peak of the deformation (dashed black line),
are overlaid with solutions of the Zhong-Can–Helfrich model
(solid and dashed gray lines, respectively). This constitutes
evidence that the mechanical parameters (�p, σ , and κ) are in
principle sufficient to provide a satisfactory description of the
shape of the surface.

The experimental traces are well captured in a restricted
region of the (h,ε) phase space [Fig. 5(b)]. Each point in the
two-dimensional phase space represents a state of the surface
and is related to a particular shape. It is impossible to relate an
experimental trace to a unique state, because different pairs of
(h,ε) yield very similar curves. This suggests a compensation
effect between h and ε in this regime of phase space. To
estimate values of the physical parameters (surface tension,
bending rigidity, and pressure difference across the surface)
we use a previously measured value of the surface tension of
a plasmolyzed Chara cell membrane, σ ∼ 10−5 N

m
, and the

cell wall radius, rmax ∼ 10−4 m [15]. In the regime of well-
fitted solutions in phase space (h ∼ −1 and ε ∼ 0.01–0.1) this
corresponded to �p ∼ 0.1 N/m2 and κ ∼ 10−15−10−14 J. In
the Discussion section we clarify the relatively large value of
the bending rigidity, as compared to a lipid bilayer membrane
(κlbm ∼ 10−19 J).

V. DISCUSSION

Surface displacements during an AP were typically con-
sidered to be of nanoscale order [5]. However, it was recently
demonstrated in Chara cells that by separating the cell surface
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from the cell wall, the actual surface deformation is 10–100
times larger in amplitude [15]. In this paper we continue
this study and report that even larger and more regular
deformations are observed in fully developed pearls of Chara
cells.

A. Shapes of pearled excitable plant cells
from elastic energy models

Experimental traces of cellular shape during excitation
were analyzed in the frame of the Young-Laplace and the
Zhong-Can–Helfrich models. The absence of bending rigidity
in the Young-Laplace model did not allow the formation of
small tethers. This has been noted by others previously [38].
On the other hand, satisfactory solutions that captured the
cell-surface traces were obtained in the Zhong-Can–Helfrich
model. This indicates that the state of the surface can be rep-
resented by three surface properties (�p, σ, κ). Although the
Zhong-Can–Helfrich model provides a satisfactory description
of the cell surface during cellular excitation, it was not possible
to identify a unique trajectory in the mechanical phase space.
This is apparently due to a compensation effect between
the model parameters (h ≡ �prmax

2σ
, ε ≡ κ

σr2
max

). In order to
capture the surface deformation during an AP, one can, for
instance, decrease ε fivefold at constant h (Fig. S3a in the
Supplemental Material [32]). This would occur, for example,
if the bending rigidity decreased fivefold at constant surface
tension and pressure difference. A very similar shape change
is induced by decreasing the absolute value of h by 15% at
constant ε (Fig. S3b in the Supplemental Material [32]). This
would occur, for example, if the pressure difference decreased.
Clearly, other trajectories are possible by combining changes
in σ, κ , and �p [Fig. 5(b)].

In order to obtain valid solutions of the surface, larger bend-
ing rigidities, as compared to typical lipid bilayer membranes,
were required [κ ∼ (104−105)κlbm]. While our analysis deals
with an infinitesimally thin surface, the cellular cortex of a
Chara internode consists not only of a plasma membrane, but
also of a cortical cytoskeleton, chloroplasts, and subcortical
actin bundles [33]. Thus the higher rigidity found in our analy-
sis simply reflects a higher overall bending stiffness of the com-
posite surface. To demonstrate that, let us recall that the bend-
ing rigidity is related to the Young’s modulus according to [41]

κ ∼ 1

10
Yd3, (10)

with Y the Young’s modulus and d the thickness of the layer.
For a lipid bilayer membrane, d ∼ 5 nm and Y ∼ 107 Pa [41].
The estimated bending rigidity is therefore κlbm ∼ 10−19 J,
which agrees well with measured values [42]. For the cell
cortex, the measured Young’s modulus is rather smaller than
that of a lipid bilayer, Y ∼ 103 Pa [43]. By considering a
surface thickness of d ∼ 5 μm, the estimated bending rigidity
is κ ∼ 10−14 J, which agrees with our curve-fitting results
(10−15−10−14 J). It should be noted that additional elastic
parameters, that were not considered in this simple model,
may also change during an AP (for example, the in-plane
shear rigidity and the surface compressibility). Therefore, it
may be worth investigating a more elaborate model of the
cell-surface elasticity in a future work.

Another point of interest was that the tether in pearled
Chara protoplasts (∼1 μm in radius) was larger compared
to other cell membrane tethers, for instance, in erythrocytes
(∼100 nm) [44]. One potential reason for this larger diameter
may be the inclusion of cytoskeletal filaments. It can be
estimated that ∼105 actin filaments, with a diameter of
∼5 nm, run along the axial direction of a Chara cell [45]. If
these filaments are enclosed within the tether, this will limit
its radius to �1 μm, similar to observations [Fig. 1(f)]. In
pearled neurons it was indeed shown that the tether region
contains a high number of filaments [34]. An indication of
the existence of filaments inside the tether of a pearled Chara
cell is shown in Movie S5 in the Supplemental Material [32].
In this experiment, application of voltage led to rupture of the
cell membrane and disintegration of the pearl. In the tether
region, there is an apparent recoiling of small filamentous
structures, which are most likely cytoskeletal filaments.

B. Dynamics of shape transformation during cellular excitation

One of the main assumptions of the model is that the
response of the surface is faster than the change of the sur-
face parameters. Let us now estimate the characteristic re-
sponse time of the surface by comparing the elastic forces with
the viscous resistance of the bulk [35]. For inflating, stretching,

or bending a surface it is τ�p ∼ η

�p
, τσ ∼ ηrmax

σ
, and τκ ∼ ηr3

max
κ

,
respectively. In a Chara cell, the intracellular bulk is composed
of a large vacuole filled with an aqueous solution of ions and
low molecular weight substances (cell sap). Assuming that the
cell sap has a viscosity of water ∼10−3 Pa s, the response time
scales are estimated as τ�p ∼ τσ ∼ 10−2 s and τκ ∼ 1 s. In
comparison, the duration of an AP in Chara cells is ≈5–10 s.
Thus, the use of a quasistatic analysis is not unreasonable.
This is not to say that the response of the surface is negligible.
Neither the viscous properties of the plasma membrane nor of
the cortical layers are properly reflected in this simple estimate.
It is reasonable to expect that these properties increase the
response time of the surface. In this regard, an interesting
point for future research will be to clarify why the deformation
outlasts the voltage pulse in time [Fig. 1(e)]. One possibility
is that the change in a mechanical parameter of the surface is
proportional to the change in membrane potential. If this is
the case, a delay in the surface response could, for example,
be due to a viscous effect. However, it may also be the case
that the voltage and the mechanical parameters are coupled but
have different time scales. Therefore, it will be very beneficial
to study the viscoelastic response of the cell surface in detail.

C. Theories of the AP in relation to mechanical state changes

We now turn to examine how mechanical changes of
the cell surface are treated within different theories of the
action potential. The classical theory of cellular excitation
[the Hodgkin and Huxley (HH) model] does not directly deal
with a mechanical aspect [4]. However, a main mechanism of
the HH model is transmembrane flux of ions, and some have
attempted to interpret mechanical deformations in neurons
solely based on volume changes induced by osmosis [10].
Indeed, excitation in Chara is associated with an influx of
Ca2+ and an efflux of Cl− and K+ ions [46]. In addition, it was
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reported that a slight decrease in volume occurs during an AP
[47], from which it can be estimated that the change of volume
is �V

V
∼ 10−4. Therefore, this common viewpoint suggests

the following cause and effect chain. (i) Transmembrane
flux of ions during an AP induces an osmotic pressure
difference across the membrane. (ii) The pressure gradient is
subsequently compensated by an outflow of water. (iii) Water
outflow reduces the cell volume. (iv) Due to volume reduction,
the surface of a Chara cell is predicted to move inward. Since
the transmembrane pressure is rapidly compensated by a flux
of water, it is not directly involved as a force that drives the
displacement. In contrast, our measurements in Chara cells
have showed that the surface deforms both inward and outward
(Fig. 2 and Ref. [15]). We have further demonstrated that the in-
tracellular advection is significantly larger than the previously
measured volume loss (Fig. 3). These observations cannot be
explained without considering the mechanical forces that act
on the surface. In conclusion, it is conceivable that changes
in transmembrane pressure drive the surface deformation, by
virtue of its direct action on the surface interface. However, in
order for that to occur, water flow across the membrane must
not cancel it, in contrast to the common viewpoint.

More comprehensive theories of cellular excitation treat the
pulse as a propagating thermodynamic state change [1,8,9].
The second law of thermodynamics provides a natural cou-
pling between observables, in particular, an electromechanical
coupling during pulse propagation [48]. Indeed, density pulses
in lipid bilayer membranes are associated with electrical
changes, as well as changes of surface tension and bending
rigidity [48,49]. The present work has shown that changes in
these elastic parameters can lead to shape changes as observed
in Chara pearls. Ideally, in a next step one will measure σ, �p,
and/or κ during an AP. This will allow one to identify the
trajectory in phase space that the system takes during cellular
excitation. Additionally, it will be crucial in future work to
establish state diagrams of excitable cell surfaces. This will
reveal if one of the fundamental requirements for a nonlinear
density pulse, i.e., a nonlinearity in the thermodynamic

susceptibilities of the system [50], is present in excitable
cell surfaces. Finally, it will be important to address if the
submembranous filaments in excitable cells play an active role
in the surface deformation, as was proposed previously [51].

D. Stability of cell cylinders

We finish with a short discussion of how cylindrical cells
and cell protrusions are stabilized in biological systems. It must
be emphasized that it is not trivial to maintain a cylindrical
stable shape in the soft and wet world of biological cells,
because of a looming pearling instability. The latter is driven by
tensile forces that act to minimize the surface area of the cell.
A cylindrical cell maintains stability, under the assumption
of a constant volume, if the value of ε ∝ κ

σ
is higher than a

critical value [21]. Indeed, cylindrical cell protrusions undergo
pearling if the surface tension is increased or if the bending
rigidity is decreased [18–20]. Accordingly, the finding that
Chara cells pearl upon exposure to a hypertonic solution is
surprising. The reduction in cell volume by osmosis should be
associated with a decrease in surface tension; i.e., ε should
increase and the state of the surface should move away
from the unstable regime. A possible explanation for the
occurrence of pearling in Chara cells is that their stability
is not maintained by ε alone. Rather, the large osmotic
pressure (turgor) that pushes the cell surface onto the cell wall
supports the cylindrical shape. Thus, it seems that biological
systems have developed two different strategies to maintain
cylinders—a high surface rigidity or a high internal pressure
accompanied by an external casing.
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