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Zealotry effects on opinion dynamics in the adaptive voter model
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The adaptive voter model has been widely studied as a conceptual model for opinion formation processes on
time-evolving social networks. Past studies on the effect of zealots, i.e., nodes aiming to spread their fixed opinion
throughout the system, only considered the voter model on a static network. Here we extend the study of zealotry
to the case of an adaptive network topology co-evolving with the state of the nodes and investigate opinion
spreading induced by zealots depending on their initial density and connectedness. Numerical simulations reveal
that below the fragmentation threshold a low density of zealots is sufficient to spread their opinion to the whole
network. Beyond the transition point, zealots must exhibit an increased degree as compared to ordinary nodes
for an efficient spreading of their opinion. We verify the numerical findings using a mean-field approximation
of the model yielding a low-dimensional set of coupled ordinary differential equations. Our results imply that
the spreading of the zealots’ opinion in the adaptive voter model is strongly dependent on the link rewiring
probability and the average degree of normal nodes in comparison with that of the zealots. In order to avoid a
complete dominance of the zealots’ opinion, there are two possible strategies for the remaining nodes: adjusting
the probability of rewiring and/or the number of connections with other nodes, respectively.
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I. INTRODUCTION

The study of opinion dynamics on social networks is a
popular application of network and complex systems theory
[1,2]. Among others, the voter model (VM) is a widely in-
vestigated idealized model describing the dynamical behavior
of individual opinions on social networks and represents a
bridge between instructive toy models in physics and social
science [3–6]. Closely related to the VM are epidemic models
on a network structure, where the health state of an individual
(node) takes the role of a discrete opinion [7–10].

The problem of driving a given system to a desired state
(like a certain consensus opinion) is commonly addressed by
concepts of control theory [11–14]. Specifically, the problem
of network controllability was reformulated as an eigenvalue
problem [12], the applicability of which to real-world networks
has been discussed in [13]. As a result, a simple control
strategy for heterogeneous networks was proposed [14]. From
this problem setting, interesting concepts arose (such as the
maximum matching set, i.e., the maximum set of links which
do not share the same start and end nodes) to identify the
minimum set of driver nodes to structurally control the whole
network [11]. Surprisingly, with this procedure hub nodes are
avoided as driver nodes.

From the perspective of opinion dynamics and, more specif-
ically, the VM, one way to conveniently study the problem of
controlling (social) network dynamics is by introducing zealots
to the system. Here zealots are stubborn agents who either
favor [3] or fully maintain [4] one specific opinion. Both types
of zealotry have been extensively studied in the context of
different opinion formation models [3,4,15,16]. In the present
study, we take the latter viewpoint and define zealots as nodes
of a network that never change their dynamical state (opinion)
during the evolution of the VM. In analogy to control theory,
this type of zealots can be seen as nodes receiving an external
input signal which pins their state [17]. It might be interesting

to note that extremists in bounded confidence opinion models
can also be seen as a weak form of zealots [5,6]. In contrast to
fully stubborn zealots as studied in the present work, they can
still change their opinion, but this process is very unlikely as
compared to other nodes.

In the context of the classical VM, the effect of zealotry has
already been studied on regular lattices with a single zealot [3]
and with a finite number of zealots on regular, complete [4],
and random graphs [18]. The latter study found a transition at
a specific density of zealots where the time to reach consensus
was drastically decreased. Moreover, the optimal topological
placement of zealots was investigated [16,19], whereby high-
degree hubs were found to be good positions from where to
spread the opinion. Similar observations have also been made
in bounded confidence models with extremists [5,6], in which
hubs were found to be good placements for extremists to bias
the overall opinion. Moreover, other opinion formation models
like the majority rule model [15] are also known to exhibit
particularly rich dynamics on introduction of zealots.

All aforementioned studies assumed dynamics on a fixed
network structure. However, the results obtained do not apply
to systems with a time-evolving network topology [20].
Adaptive network models like the adaptive voter model (AVM)
[21] or other more realistic models of opinion formation
[22] generate a time-dependent network structure through
a feedback mechanism between topology and node (agent)
states. The AVM extends the classical VM by giving the
nodes the possibility to break an existing link and reconnect to
a like-minded node which results in a temporally evolving
network. The standard AVM has been analyzed in terms
of mean-field theory which revealed the existence of two
absorbing states, namely the active and frozen (fragmented)
state, where for finite systems, the active state asymptotically
becomes the consensus state (exhibiting a giant component
with a single opinion only) [23,24]. Furthermore, it was found
that minor changes in the microscopic update rules can reduce
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or increase the time necessary to reach a final state due to
network topology-state feedbacks [25].

In the context of temporal networks (i.e., networks with
links that are only present intermittently, including the adaptive
networks investigated in the present work as a specific class),
controllability was investigated, alongside other studies, by a
time-respecting path-based method [26] and by an analytical
approach combined with graphical tools [27]. The latter study
revealed a positive relation between the aggregated degree of
a node, the number of interactions during a given time, and
the size of the subset which is controlled by it. Both studies
quantified the controllable subset by the influence of a single
node, assuming linear dynamics and considering networks
which are statistically equivalent at different times. However, it
has remained unclear so far how the control of the AVM could
be best achieved or avoided, because its dynamics are strongly
nonlinear and the network is in certain parameter regimes
evolving in such a way that it is not statistically equivalent
at different times. Furthermore, previous studies on network
controllability commonly addressed only temporal networks
without feedback between topology and node state, which is
a key property of the AVM. Despite the resulting differences
between the AVM and controllability studies on other temporal
networks, we are confident that the combination of both aspects
is a very promising field of research. To our best knowledge,
the concept of zealots, widely studied in the static VM, has
not yet been applied in the AVM. Since the latter is a relevant
conceptual model for opinion formation on temporal networks,
which obeys relatively simple rules allowing for a fair degree
of understanding of the resulting dynamics, we see a great
interest in addressing the issues mentioned above.

Consequently, this paper addresses the efficiency of control
by zealot opinion spreading (ZOS) in an extension of the
AVM. Here the zealots are chosen at random and possess
additional links and therefore an excess degree compared
to ordinary nodes, which is beneficial for the spreading,
as former related studies suggest [5,6,16,19,27]. The excess
degree is not only motivated by the expected effect on the
spreading but also from real world examples [28]. For instance,
election campaigns aim to reach as many voters (nodes)
as possible. Following their mission, campaigners are not
convinced by voters, there is only an unidirectional influence
of campaigners on voters. Additionally, campaigners reach
an effectively increased degree in social networks due to
their professional outreach efforts [28]. Another example for
zealotry are lobbyists intervening in political processes. The
number of zealots and their excess degree can be interpreted
as a measure of the resources that have been invested to pursue
the campaign. Another important issue is how easily a system
can be controlled and what needs to be changed in order to
increase its resilience against external pressure or corruption.

After the description of the model and methods in Sec. II,
we focus on the question how the zealot opinion is spread
over clusters of different sizes in Sec. III. Thereby, we
observe the emergence of subgraphs with a significantly
larger mean degree than that of the whole network. We
identify three different parameter regimes, closely related to
the phase transition in the AVM, in which different effects
lead to a significant increase in the spreading efficiency of
the zealots’ opinion. Our numerical microscopic results are

further supported by an analytical macroscopic approximation
of the AVM including zealots (Sec. IV). Ultimately, we explore
the consequences of two different adaptation rules, in which
the zealots either do not rewire at all or obey heterophilic
rewiring only (Sec. V). All obtained results are discussed and
conclusions drawn in Sec. VI.

II. METHODS

A. Model description

We study the AVM in the version originally formulated
by Holme and Newman [21], but thoroughly extended by
introducing zealots with excess degree. Here the two processes
governing the opinion dynamics in a network with N nodes,
also referred to as voters, and G different opinions are
the change of node opinions and the link rewiring process,
the mathematical formulations of which will be presented
in the following. As the most crucial parameter of the
resulting adaptive network model, the rewiring probability
φ is considered as the fraction of cases in which the latter
process takes place instead of the former. Each node i initially
possesses an opinion gi , which is on average the opinion of a
number of γ0 = N/G nodes. For each node i, we define the set
of nodes Si = Sgi

\{{i} ∪ Ni} by excluding from the set Sgi
of

nodes having opinion gi the node i itself and the set of its direct
neighbors Ni = {j : Aij = 1} (here Aij denote the entries of
the network’s adjacency matrix at a given point in time, where
we have suppressed the associated time index for brevity).

The dynamic update cycle of the model is then described
as follows:

Step 1: Randomly select a node i. If the degree ki of node
i is zero do nothing, otherwise randomly select a neighbor
j ∈ Ni .

Step 2(a): With probability φ, delete the link to j and rewire
to a randomly selected node j ∗ ∈ Si with j ∗ �= j (rewiring).
If |Si | = 0 do nothing.

Step 2(b): With probability (1 − φ), node i imitates the
opinion of node j and, thus, gi → gj (imitation).

In contrast to the classical formulation of the AVM, in this
formulation no multiple links and self-loops are possible due
to node rewiring to the set Si (instead of rewiring to the set Sgi

as in the standard AVM). Note that step 2 is applied regardless
of an existing opinion conflict. The algorithm is iteratively
repeated until a time tc, where the final state is reached in
which only like-minded nodes are connected to each other
(Ni ⊆ Sgi

∀i).
It shall be stressed that the rules employed in this model

variant are based on node selection [21,24,29] instead of link
selection [30–32], because we consider it more realistic for a
social network that agents (nodes) spend on average the same
time for communicating with others. The number of nodes N

and the total number of links M stay constant over time, which
implies that the mean degree k0 = 2M

N
of the network is kept

fixed.
As already mentioned in the Introduction, in this work, we

consider zealots as nodes that cannot change their opinion. For
the sake of simplicity, we assume here that all zealots carry
the same specific opinion gz. The set of zealots Sz is created at
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the start of each simulation by randomly declaring a fraction
of nodes n0

z to be zealots. Their key property of having an
immutable opinion is ensured by modifying the last step in the
above scheme:

Step 2 (b) With probability (1 − φ), if i ∈ Sz do nothing,
otherwise node i adopts the opinion of node j .

In comparison with all nonzealot nodes, the initial mean
degree of zealots can be further increased by an excess degree
kx to kz(t = 0) = k0 + kx , which describes additional links
that are randomly connecting each zealot to nonzealots. This
excess degree (which is considered here to be the same for each
zealot to simplify the following analyses) is motivated by the
additional efforts of campaigners or lobbyists to convince as
many nodes as possible. Starting with a specific configuration,
the degree of individual zealots then changes over time
according to the considered rules of the update cycle. Let the
initial fraction of nodes holding opinion gz be ngz

(0) = n0
z . To

simplify the notation, ngz
will be denoted in the following as

nz = ngz
. Note that introducing the excess degree kx increases

the mean degree of the whole network to k = k0 + 2n0
zkx ,

and the introduction of zealots changes the average number of
nodes initially holding a certain opinion different from gz to
γ = γ0(1 − n0

z).

B. Perspectives on zealot opinion spreading

Zealots are nodes with excess degree intending to spread
their fixed opinion gz to as many other nonzealot nodes as
possible. In this special case, we investigate the zealot opinion
spreading (ZOS) process characterized by the fraction of nodes
nz(t) holding the zealots’ opinion, which is a special opinion
since it is (unlike the others) always present due to the zealots
that cannot become convinced by others. The ZOS efficiency
is defined as the fraction of nodes nz(tc) holding opinion gz

when the final state is reached.
As emphasized above, the considered problem can also be

viewed from a controllability perspective. Here zealots are just
normal nodes that are influenced by a constant control signal
b(t) = b which fixes their opinion to gz. The excess degree kx

of zealots can be viewed as a “topological input signal” applied
to the network only once at t = 0. In real world applications,
constraints exist in terms of resource limitations (campaigners
or lobbyists need to be paid) or ideology (not everyone wants
to be a zealot), which motivates us to limit the number of nodes
which can receive the said control signal b(t).

III. NUMERICAL RESULTS

The AVM, obeying the discrete-time update rules as
described in Sec. II A, starts evolving at t = 0 from an
Erdős-Rényi random graph, which is known to exhibit a
giant component if k0 � 1 [1,33]. A phase transition occurs
when increasing the rewiring probability φ to a level at
which the giant component of the initial network vanishes
and homogeneous clusters emerge which are formed by
like-minded nodes. This fragmentation transition occurs at a
critical rewiring probability φc (for fixed mean degree k) or at
a critical mean degree kc (for fixed φ). In what follows, we
will mostly follow the strategy of varying φ but keeping the
mean degree fixed.

FIG. 1. Coefficient of variation of convergence time Vt indicating
a phase transition at φ = φc where the giant component vanishes.
The different parameter settings are (a) no zealots n0

z = 0, (b) zealot
density n0

z = 0.01 with no excess degree kx = 0, and (c) zealot density
n0

z = 0.01 with an excess degree of kx = 20. The red lines in (a)
and (b) at φc = 0.45 indicate the approximate positions of the phase
transition, which is shifted towards φc = 0.505 if the excess degree
kx is nonzero (c). Distributions are computed from n = 104 runs on
graphs with N = 800 nodes and a mean degree (without the zealots’
excess degree) of k0 = 4.

A. Fragmentation transition

One way of identifying the fragmentation transition and
the associated parameter value φc is based on critical slowing
down [21] indicated here by a maximum of the coefficient
of variation Vt = σtc/tc of the convergence time as a charac-
teristic parameter, where t c and σtc denote the empirical mean
value and standard deviation of the convergence time estimated
from a sufficiently large ensemble of independent realizations
of the considered AVM variant [21]. In the present work, Vt

is estimated as a function of φ for N = 800, k0 = 4, γ0 = 10
and 104 simulation runs (Fig. 1). If no zealots exist [Fig. 1(a)],
the phase transition occurs at φc ≈ 0.45, as expected from
previous studies [21]. If only few zealots are introduced
(n0

z = 0.01) [Fig. 1(b)] the phase transition point is not altered.
However, declaring them as hubs with an additional excess
degree of kx = 20 [Fig. 1(c)] shifts the phase transition to
φc = 0.505. Since the mean degree k has a strong impact
on the transition [21], this shift in φc can be explained by
its change k0 → k = 4.4. Simulations with k0 = 4.4 and no
zealots (not shown) indeed perfectly reproduce the observed
shift, implying the redistribution of the additional links to the
whole network in t � tc.

Another phenomenon is observed if the zealots’ excess
degree is increased, which manifests in a second broad
maximum of Vt in Fig. 1(c) at about φ = 0.08. This secondary
maximum is shifted towards larger φ if kx is further increased
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(not shown) and is explained by the assortativity in degree,
the degree correlation of neighboring nodes, at the final state
[34]. The initial state has negative assortativity because the
hub zealots are mostly connected to lower degree nodes at
t = 0. The secondary maximum coincides with the peak of
the coefficient of variation of the assortativity (not shown)
and low values of its mean. Thus, the network is on average
uncorrelated in degree, while for the same φ, some simulations
exhibit negative degree correlations while others show positive
ones. The negative degree correlations imply that hubs, which
are mostly zealots due to their excess degree kx , are mainly
connected to low degree nonzealot nodes. Because randomly
chosen nodes mimic the opinion of a randomly chosen
neighbor, the opinion of high degree nodes gets imitated more
often, resulting in a faster spread of the zealot opinion and
a shorter tc. In turn, positive degree correlations result in a
longer tc, since in this situation, hubs are frequently connected
with other hubs and, thus, their opinion gz reaches other
hubs (mostly being zealots with the same opinion themselves)
with elevated probability in a short amount of time, but takes
much longer to affect the rest of the graph. Consequently, the
secondary peak of Vt indicates the rewiring probability that
is necessary to compensate for the effect of the introduced
degree heterogeneity. Accordingly, the coexistence of both
types of degree correlations triggers a large σtc and therefore a
large Vt . However, this effect has minor relevance for the ZOS
because the secondary maximum of Vt is located below the
fragmentation threshold.

B. Cluster size distributions

The most straightforward approach to maximize the ZOS
efficiency nz(tc) is to dominate the largest connected com-
ponent in the final state. In the following, we will refer to
connected communities with homogeneous node state (opin-
ion) as clusters. In Fig. 2 the resulting frequency distribution
P (s) of cluster sizes s (i.e., the number of nodes in a cluster) is
shown for rewiring probabilities below [Figs. 2(a)–2(c)], close
to [Figs. 2(d)–2(f)], and above the fragmentation threshold
[Figs. 2(g)–2(i)] of the three cases presented in Fig. 1.

The distributions without zealots are characterized by the
presence of a giant component below the critical point φc

[Fig. 2(a)], a power-law behavior close to the transition
[Fig. 2(d)] and the absence of a giant component above the
fragmentation threshold [Fig. 2(g)], where the cluster size s is
distributed around γ0, indicated by a vertical line in Fig. 2(g).
Since no zealots (therefore no opinion gz) are present, the ZOS
efficiency is always zero.

Below the fragmentation transition, zealots dominate the
giant component in both cases with and without excess degree
[Figs. 2(b) and 2(c)] and on average spread their opinion to a
fraction of nz ≈ 0.98N nodes. Close to φc, the distribution of
clusters having the zealots’ opinion gz (red squares) without
excess degree [Fig. 2(e)] is similar to the total distribution (blue
triangles) with the difference that convinced clusters have on
average a size of at least Nn0

z , indicated by a red dashed
line. The excess degree [Fig. 2(f)] causes a peak at larger
cluster sizes. The size distribution of convinced clusters starts
at a size significantly larger than Nn0

z and coincides at larger
cluster sizes with the total distribution, which shows that the

FIG. 2. Frequency distributions of cluster size P (s) at t = tc for
all clusters (blue triangles) and for the fraction of convinced clusters
(red squares) computed from n = 104 simulation runs on graphs with
N = 800 and γ0 = 10. The distributions are computed for no zealots
n0

z = 0 [(a), (d), and (g)], for zealot density n0
z = 0.01 and no excess

degree kx = 0 [(b), (e), and (h)], and for zealot density n0
z = 0.01 and

excess degree kx = 20 [(c), (f), and (i)]. The rows represent different
values of the rewiring probability φ: φ = 0.04 
 φc (a)–(c), φ =
φc(k) (d)–(f), and φ = 0.96 � φc (g)–(i). Blue solid and red dashed
vertical lines indicate γ0 = 10 and initial number of zealots Nn0

z ,
respectively. Note the black arrows indicating the giant component.

corresponding maximum consists solely of convinced clusters.
At the fragmentation transition the cluster size distribution is
expected to obey a power law [Figs. 2(d) and 2(e)], which is
disturbed by an additional peak at large cluster sizes if zealots
posses an excess degree [Fig. 2(f)]. Consequently, it can be
assumed that the excess degree is splitting the system into
gz-dominated subgraphs which have a larger mean degree than
subgraphs that are not influenced by the zealots’ opinion and
excess degree. Hence, the gz-dominated subgraphs effectively
lie below or close to the fragmentation transition and, therefore,
tend to form larger clusters [Fig. 2(f), red squares]. These
subgraphs give rise to an approximately five times larger ZOS
efficiency as compared to the case of zealots without excess
degree [Fig. 2(e)].

The gz-dominated subgraphs are also present above the
fragmentation threshold, which is indicated by the fact that the
previously discussed maximum of the cluster size distribution
does not vanish suddenly but is gradually shifted towards
smaller cluster sizes [Fig. 2(i)]. In the case without excess
degree [Fig. 2(h)], far above the transition point the size
distribution of convinced clusters exhibits a maximum at Nn0

z

(red line), while in the case with excess degree [Fig. 2(i)] this
maximum is shifted towards larger cluster sizes, resulting in
almost twice as high ZOS efficiency as compared to the case
with kx = 0 [Fig. 2(h)].

In summary, the cluster size distributions reveal that ZOS
close to and above the fragmentation transition is more efficient
if hub zealots are present due to a formation of convinced
subgraphs with a larger per-subgraph average degree. Below
the transition point, the mere existence of zealots is sufficient
to reach a maximum ZOS efficiency.
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FIG. 3. (a)–(c) Fraction of convinced nodes at the final state
nz(tc) and (d)–(f) the former minus nzk(tc) in which the kxNn0

z

additional edges are distributed homogeneously among all nodes
(no zealot hubs) resulting in �nz(tc) = nz(tc) − nzk(tc), both as a
function of excess degree kx and zealot density n0

z . The rewiring
probability is increased from (a) and (d) φ = 0.4 via (b) and (e)
φ = 0.5 to (c) and (f) φ = 0.75. The black [(b), (c), (e), and (f)] and
white [(c) and (f)] lines indicate contours where k = kc and kz = kc,
respectively, highlighting the fragmentation transition, with kz being
the mean degree of gz-nodes. All results have been obtained from 200
simulation runs on networks with N = 800 nodes and a mean degree
without zealots of k0 = 4.

C. Systematic parameter study

So far, the only parameter settings considered have been
no zealots and zealots with initial density n0

z = 0.01 with and
without excess degree kx = 20. We now study a much wider
set of parameters regarding the ZOS at final state nz(tc) (Fig. 3).
The horizontal and vertical axes in Fig. 3 represent the excess
degree kx and density n0

z of zealots. The parameters k0 = 4
and N = 800 are kept constant. Three different rewiring
probabilities are considered: φ = 0.4 < φc(k0) [Figs. 3(a),
3(d)], φ = 0.5 > φc(k0) [Figs. 3(b), 3(e)], and φ = 0.75 >

φc(k0) [Figs. 3(c), 3(f)]. Note that the fragmentation threshold
depends on both kx and φ, and the critical rewiring probability
φc(k0) = 0.45 can therefore only be considered as a reference
point for kx = 0. Thus, for a fixed φ there exists a critical
mean degree kc. If this mean degree is exceeded, the system
is below its fragmentation threshold, and, hence, in a regime
where ZOS profits from the presence of a giant component.

Below the fragmentation transition [Fig. 3(a)], we find
that an increase in either the excess degree or the number of
zealots strongly increases the ZOS efficiency, which quickly
maximizes because a giant component is easily dominated.
Sufficiently far below the transition point (e.g., for φ = 0.1,
not shown), every individual configuration results in maximum
ZOS.

Just above the transition point [Fig. 3(b)], the presence of
additional zealots increases the ZOS efficiency as expected.
However, ZOS efficiency quickly saturates to a maximum if
together with an elevated excess degree, the critical degree
kc = 4.4 is reached where the giant component fragments.

Finally, far above φc(k0) [Fig. 3(c)], the fragmentation
transition is reached at kc = 9 (black contour line) with, of
course, larger amounts of zealots and excess degrees. It is
remarkable that already below the corresponding transition

point, ZOS efficiency increases to multiples of n0
z . This effect

can be explained by the convinced clusters that have larger
mean degree than unconvinced ones [compare Fig. 2(f)]. Note
that the mean degree of gz-nodes kz at the final state crosses kc

already at a smaller zealot density and excess degree than the
total mean degree [the case kz = kc is highlighted by a white
contour line in Fig. 3(c)]. Those subgraphs with larger mean
degree are a key finding of this study and can be interpreted
as a community in which intense discourses were triggered
by the excess degrees of the zealots and their opinion. Note
that the critical mean degree kc is estimated by reproducing
Fig. 1(a) with a different k0 until the peak of Vt coincides with
the value of φ used in Figs. 3(b) and 3(c), respectively.

In order to properly interpret the results discussed above,
it is important to understand to which extent the observed
emergence of densely connected subgraphs, responsible for
ZOS efficiency, originates from the presence of zealots with
distinct excess degree as opposed to mere effects of an
elevated mean degree k of the whole network. For this
purpose, Figs. 3(d)–3(f) presents the difference �nz(tc) =
nz(tc) − nzk(tc) between the ZOS efficiency nz(tc) of our AVM
variant as discussed above and the ZOS efficiency nzk(tc) that
would arise if the additional kxNn0

z links were distributed
homogeneously among all nodes of the networks instead of
assigning them exclusively to the zealots. This difference
is always positive and largest in the nonfragmented phase
close to the transition point [Fig. 3(e)]. However, at large
rewiring probabilities [φ = 0.75, Fig. 3(f)], the parameter
range for which marked differences between both settings
are found extends over large parts of the parameter subspace
corresponding to the nonfragmented phase. These findings
demonstrate that the emergence of subgraphs with increased
mean degree is mainly caused by the presence of hub zealots.

We emphasize that qualitatively and quantitatively similar
results are observed (not shown) for situations in which the
excess degree is distributed among randomly selected nodes
of the network (random hubs) or among randomly chosen
nonzealots only (nonzealot hubs). In fact, the results for the
random hubs are quantitatively extremely similar to the case
with homogeneously distributed edges [Figs. 3(d)–3(f)]. Thus,
we conclude that it does not matter much if the mean degree
is increased homogeneously or heterogeneously as long as the
increase does not favor nodes of a specific opinion. In turn,
marked differences emerge if the excess degree is fixed to
nodes of a single opinion (in our case, the zealots).

IV. MACROSCOPIC APPROXIMATION

For a model similar to that studied in the present work [29],
it was recently shown that a mean-field approximation can be
performed to derive analytical results by considering solely
pairwise interactions under the assumption that the network
is large, i.e., N → ∞. In the above work, only two distinct
node states (aka opinions) have been present. This assumption
is adopted in the following by treating all opinions different
from gz as equivalent, i.e., as the opinion of the others go.
Following [29], this simplification reduces the problem to three
coupled differential equations for the time evolution of three
macroscopic properties of the model: the fraction of nodes nz
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holding opinion gz and the average numbers of links per node
mzz (moo) among nodes holding opinion gz (go):

dnz

dt
= (1 − φ)

[
noP

z
o − (

nz − n0
z

)
P o

z

]
, (1)

dmzz

dt
= φnzP

o
z + (1 − φ)

[
P z

o mzo − nz − n0
z

nz

2P o
z mzz

]
, (2)

dmoo

dt
= φnoP

z
o + (1 − φ)

[
nz − n0

z

nz

P o
z mzo − 2P z

o moo

]
.

(3)

Here mzo = Mzo/N where Mzo is the number of links between
nodes of distinct opinions gz and go, respectively. Note that
the excess degree kx enters the above equation via the fraction
of initially active links mzo(t = 0) = n0

z(k0 + kx). P o
z is the

probability of a gz-node to interact with a go-node and is given
by the heterogeneous mean-field approximation [29] as

P o
z = ko

z

kz

= mzo

2mzz + mzo

. (4)

Here kz is the mean degree of gz-nodes and ko
z is the mean

number of links from a gz-node to go-nodes. P z
o follows

analogously by exchanging the respective indices o and z.
Equation (1) implies an increase of nz by go-nodes being

convinced by gz-nodes and a decrease through nonzealot
gz-nodes being convinced by go-nodes. The first term in Eq. (2)
describes an increase of mzz by gz-nodes cutting links with
go-nodes and simultaneously establishing new links to
gz-nodes. The second term consists on the one hand of an
increase due to go-nodes becoming convinced, adding to mzz

the mean per-node number of links between different opinions
mzo/no, and on the other hand a decrease by nonzealot
gz-nodes changing their opinion and, thus, adding to mzo the
mean number of mzz-links of one gz-node 2mzz/nz [analo-
gously for Eq. (3)]. Also note that Eqs. (1)–(3) are closed,
i.e., mzz + moo + mzo = k/2 and nz + no = 1. The main dif-
ference to the model in [29] is the presence of zealots included
by reducing the fraction nz in the convincing process by n0

z .
For the model considered here, five fixed points can be iden-

tified as unstable or outside the regime of interest (0 � n0
z �

nz � 1, 0 � mzz + moo � k/2). A two-dimensional manifold,
which represents the consensus/final state, also satisfies the
stationarity criterion:

m�
zz = k

2
− moo (mzo = 0). (5)

Note that this manifold extends over all values of nz and moo.
Its linear stability properties are determined by the eigenvalues
of the Jacobian at m�

zz, which are 0, 0, and

f
(
nz,moo,n

0
z,k,φ

)

= φnz

2moo − k
+ 2moo

(
n0

z − 2nz

)
(φ − 1) + (nz − 1)nzφ

2moonz

.

(6)

Since two eigenvalues are zero, the manifold cannot be
asymptotically stable but (un)stable if f (nz,moo,n

0
z,k,φ) <

0 (> 0). In the following, it is assumed that the links are,
regardless of the initial conditions, homogeneously distributed

at tc, i.e., m�
oo = k(1 − nz)/2, which simplifies the nonzero

eigenvalue to

f
(
nz,m

�
oo,n

0
z,k,φ

) = 2 − n0
z(1 − φ)

nz

− 2(1 + k)φ

k
. (7)

The latter changes its sign at

φ̃c

(
nz,n

0
z,k

) = 1 − 2nz

2(1 + k)nz − kn0
z

. (8)

Thus, the transition depends on k such that limk→0 φ̃c = 0 and
limk→∞ φ̃c = 1. The macroscopic approximation is strictly
valid in the case N → ∞; otherwise, finite-size effects may
lead to deviations of the system from the analytically calculated
behavior.

The fragmentation threshold is approximated by φ̃c(nz =
1), because at the transition weakly connected clusters split up
regardless of their size and φ̃c increases with nz. This results
in

φ̃c

(
1,n0

z,k
) = 1 − 1

1 + k
(
1 − n0

z

/
2
) . (9)

Note that for n0
z 
 1 the transition can be considered as being

independent of n0
z , which is in perfect agreement with the

numerical findings in Fig. 1 with n0
z = 0.01 
 1, where the

transition is not shifted by changing n0
z [Fig. 1(b)] but by a

change in kx [Fig. 1(c)], since k = k0 + 2n0
zkx .

We compare the mean-field model and the microscopic
model by computing the final state values of nz, mzz and moo for
Eqs. (1)–(3) by forward integration and by taking an average
over the outcomes of 200 simulations of the microscopic
model (Fig. 4). Both the excess degree with kx = 20 and
the zealot density with n0

z = 0.01, are kept constant across
all simulations. A low mean degree k0 = 4 is considered in
Figs. 4(a), 4(c) and 4(e). Simulations with this setting show
a fragmentation transition at φc ≈ 0.5, which disagrees with
the analytical approximation of Eq. (9), φ̃c ≈ 0.814, marked
by a dashed vertical line, by a relative error of δφc = 0.38.
This large discrepancy is to be expected since a large mean
degree is necessary for the mean-field approximation to reach a
good agreement with the full numerical results of microscopic
simulations [35].

In Figs. 4(b), 4(d) and 4(f) the mean degree is increased to
k0 = 15. The numerical results indicate φc ≈ 0.85, while the
analytics give φ̃c ≈ 0.94, which reduces the discrepancy to a
relative error of δφc = 0.096. The remaining disagreement can
very likely be further reduced by including higher-order terms
in the presented macroscopic approximation [24], which is a
promising task for future research. Note that far above and
below the transition point, both modeling approaches agree
well with each other.

Additionally, in Figs. 4(a), 4(c) and 4(e) the validity of the
simplification of considering all opinions other than gz the
same as go is checked by decreasing γ0, which increases the
diversity of opinions. Below but close to the phase transition
point, simulations with a higher diversity show a reduced ZOS
efficiency due to the higher probability of small groups to
cluster and cut their links to the giant component, cf. the
black circles in Fig. 4(a). Above and sufficiently below the
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FIG. 4. Results of microscopic ensemble simulations (symbols)
and macroscopic approximation (solid lines) using Eqs. (1)–(3).
Mean values have been estimated from 200 simulation runs. (a)
ZOS efficiency nz(tc), (c) density of links between convinced nodes
mzz(tc), and (e) density of links between unconvinced nodes moo(tc) at
convergence time tc with N = 800 and varying γ0 as indicated in (c).
(b), (d), and (f) Same as for (a), (c), and (e) but with varying N = γ0

and therefore only one opinion different from gz. The blue dashed
vertical line marks the approximate phase transition φ̃c [Eq. (9)]. For
all runs, n0

z = 0.01 and kx = 20 have been kept fixed. In (a), (c),
and (e), k0 = 4, while in (b), (d), and (f), k0 = 15. Note the different
scales along the horizontal axes.

fragmentation transition, the obtained results are robust for
different γ0.

In Figs. 4(b), 4(d) and 4(f) we check for finite size effects
by simulating at N = 400, 800, and 1600 while keeping the
diversity of opinions at its minimum (γ0 = N ). The finite
size smoothens the transition from the giant component to the
fragmented phase, as can be seen in Fig. 4(b). Here simulations
with the largest number of nodes (green triangles) switch more
sharply to the fragmented phase (compare black circles and
green triangles) than such for smaller networks.

We note that the excess degree is responsible for the
observed slow decrease of nz(tc) after the fragmentation
transition until it reaches n0

z at φ = 1 [Figs. 4(a) and 4(b)]. If the
kxNn0

z additional links are instead distributed homogeneously
among all nodes, resulting in an elevated degree without
distinct zealot hubs, the ZOS efficiency is markedly reduced
already at the transition point (not shown), which can also be
seen in our microscopic simulations for the ZOS efficiency
difference between the two cases in Figs. 3(e) and 3(f) close
to the transition point.

V. ALTERNATIVE ZEALOT UPDATE SCHEMES

In the previous sections, we have treated zealots as different
from normal agents exclusively in terms of their additional
property to be stubborn. Doing so, we have been in line with
vast parts of the existing literature. However, considering that
real world zealots can be expected at aiming to maximize the
spread of their respective opinion, it appears unintuitive that
they should follow almost the same update rules as nonzealots.
Therefore, in the following we investigate two alternative

FIG. 5. Coefficient of variation of convergence time Vt indicating
a phase transition at φ = φc where the giant component vanishes.
Passive (a) and heterophilic (b) zealots are compared. The red line in
(a) marks φc = 0.45 and in (b) φc = 0.77. Distributions are computed
from n = 104 runs on graphs with N = 800 nodes, a zealot density
of n0

z = 0.01 with no excess degree kx = 0 and a mean degree of
k0 = 4.

update schemes, which should potentially increase the ZOS
efficiency. For brevity, we leave any in-depth analysis of the
resulting dynamics along the lines of the previous sections as
a subject of future research.

As a first possible scenario, we investigate the case of
passive zealots that do not rewire at all and, thus, do not cut
links to go-nodes. This procedure then enhances the probability
to interact with the latter. In this case, the second step in the
update cycle as presented in Sec. II A is modified such that

Step 2: If i ∈ Sz do nothing, otherwise follow steps 2(a)
and 2(b).

Passive zealots can be interpreted as agents who are forced
to a trade-off between the large number of connections kept
to other agents and their ability to rewire to new agents. They
benefit from their large degree but in turn cannot manage to
establish new links.

As a second case, we study heterophilic zealots that
rewire exclusively to go-nodes. This restriction is expected
to further enhance the efficiency of interacting with the latter.
Accordingly, the second step in the update scheme of Sec. II A
is then modified as follows:

Step 2(a): With probability φ, if i ∈ Sz and |Si | �= 0, delete
the link to j and rewire to a randomly selected node of the set
Sgo

\ Ni . If i /∈ Sz and |Si | �= 0, rewire to a node of the set Si .
Otherwise, do nothing.

Former studies on AVM variants with heterophily found
that the fragmented phase vanishes [24]. However, in contrast
to these previous works which introduced heterophily to all
nodes, we here only declare zealots as being heterophilic,
whereas normal nodes remain homophilic. Thus, the frag-
mented phase can still be reached if there exist no links to
any gz-node, i.e., mzz = mzo = 0.

In Fig. 5 the coefficient of variation of the convergence
time Vt is analyzed for both types of zealots for the case
without excess degree only, since we focus here on the effect
of different zealot update schemes rather than on the effect
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of hub zealots [cf. Fig. 1(b)]. Interestingly, φc ≈ 0.45 remains
valid for the case of passive zealots [Fig. 5(a)]. Furthermore,
the difference �n0

z(tc) between the ZOS efficiency in the case
of passive and normal zealots, as shown in Figs. 3(d)–3(f), does
not show any differences between the two rewiring schemes
over a wide parameter range (not shown).

A possible explanation for the aforementioned finding is
that, as expected, the unrewired links to go-nodes increase the
probability to interact with go because of an increase in mzo,
while keeping moo constant. Consequently, this increases P z

o

and therefore the first term in Eq. (1), resulting in larger values
of nz. However, mzz is reduced in the absence of homophilic
rewiring of the zealots. Assuming that mzz is decreased by
the same amount of links that increase mzo results in an
increase of P o

z which ultimately reduces nz, as can be seen
from the second term of Eq. (1). In fact, P o

z also increases if
mzz stays constant. Thus, these two processes compete against
each other, which could explain the observed effect, that the
ZOS efficiency remains unchanged with passive zealots. Note
that the above explanation only argues with the dynamics of nz

(Eq. (1)). Thus, it is by far not complete since the dynamics of
mzz (Eq. (2)) and moo (Eq. (3)) do change for passive zealots
and are not discussed here.

In contrast to the aforementioned behavior, the fragmen-
tation transition for heterophilic zealots [Fig. 5(b)] shifts
strongly to φc ≈ 0.77. This shift causes an increase of ZOS
efficiency, since a giant component is present over a larger
parameter range in φ. This increased stability of the giant
component is caused by the mixed behavior of the gz-nodes:
while the nonzealots exhibit homophilic rewiring and therefore
stay connected to the zealot gz-nodes, the zealots themselves
reach out for other go-nodes, which could already be parts of
an isolated component consisting only of like-minded nodes.
These isolated components were not reachable for normal
zealots, whereas heterophilic zealots can “invade” these groups
of nodes and convert parts of them or even the whole groups.
Note that nonzealot gz-nodes provide the zealots with links via
their homophilic rewiring.

In summary, the two alternative zealot rewiring schemes
discussed in this section illustrate that there is a large class
of update schemes, which perform equally well or even better
than the one discussed in the previous sections in terms of ZOS
efficiency. Especially the strong effect of heterophilic zealots
and how nonzealot gz-nodes provide links to them to enable
the zealots to connect to not like-minded nodes demonstrate
that there can exist interesting feedback effects between two
coexisting rewiring schemes, which seems a promising field
of future research.

VI. CONCLUSIONS

In this paper we have introduced zealots with an increased
mean degree, the excess degree, into the adaptive voter
model (AVM) and investigated how their fixed, uniform, and
new opinion spreads over a social network until a full or
fragmented final state is reached. The efficiency of zealot
opinion spreading (ZOS) has been quantified by the fraction
of nodes holding the zealots’ opinion at the asymptotic state.

After reproducing the results of a previous study [21]
by means of numerical simulation, a detailed comparison

of the resulting cluster size distributions below, at, and far
above the fragmentation transition revealed the existence of
zealot-dominated subgraphs if the introduced zealots exhibit
an excess degree. These subgraphs are characterized by an
elevated mean degree and the presence of opinions enforced
by the hub zealots.

By investigating a wide range of initial zealot densities and
excess degrees, three regimes were identified in which different
effects allow a maximum or an increased ZOS efficiency.
Below the fragmentation transition, maximum ZOS is easily
achieved by introducing solely a few zealots without excess
degree due to the emergence of a giant component, which
allows for ZOS across the whole network. Shortly above
the fragmentation transition, an increase of zealot density is
insufficient to increase ZOS efficiency. In addition, an excess
degree needs to be introduced and raised to a certain level to
allow for the system returning to the nonfragmented phase
in which ZOS efficiency is quickly maximized. Thereby,
either the mean degree of a large amount of zealots is
slightly increased by the excess degree, or a small amount of
zealots is declared as hubs. Far above the phase transition,
only a large density of hub zealots is able to push the
system to the nonfragmented phase. However, the formation
of zealot-dominated subgraphs with increased mean degree
plays a crucial role and allows for increased ZOS efficiency
already far below the phase transition point. Since these
subgraphs emerge in the fragmented phase, they only include
a specific fraction of nodes, determined by the cluster size
distribution.

We have macroscopically approximated the model by
considering pairwise interactions. An analytical approxima-
tion of the phase transition point was found, which was
validated by forward integration. However, the theoretically
approximated critical point is much larger than suggested
by the numerical simulation of the microscopic model. This
discrepancy was reduced by considering systems with larger
mean degree. Previous studies [24] suggest the potential for
further improvement if the approximation is not only based on
pairwise interactions. However, far below and above the phase
transition point, analytics and numerics agree well with each
other.

Finally, we have studied the effect of two alternative
update schemes for the zealots. Here it was shown that
passive zealots, which do not rewire, perform as good as
their normal counterparts in terms of ZOS efficiency. In
turn, heterophilic zealots, which rewire to not like-minded
nodes only, shift the fragmentation transition strongly to
larger rewiring probabilities and therefore have a much larger
ZOS efficiency. These update schemes provide an interesting
starting point for future research, which should investigate the
effects of a coexistence of different update rules in the same
model.

The finding of zealot-dominated subgraphs with a larger
mean degree than in the rest of the graph in the fragmented
phase allows drawing the following conclusion: Large commu-
nities (subnetworks) with agents engaging in active discourse
(larger mean degree than in other communities) are likely to
be targeted by the interests and the resources of an already
convinced group. In our model, an active discussion can imply
that there is an attempt to control the system. In order to avoid
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being controlled by an external opinion, each node should keep
links to nodes from other subgraphs.

How to maximize or minimize opinion spreading by zealots
is a relevant question in the context of the AVM as well as
related models of opinion dynamics. Similar studies already
focused on the static voter model [16,19] or on general
dynamical systems [11–14,36] on static networks. In the latter
research, it was of crucial interest if there exist specific nodes
which have topologically favorable or unfavorable positions to
spread their opinion, or if there exists a minimum set of nodes
necessary to spread an opinion across the whole network.
Along these lines, it is of interest to quantify the effect of
network topology on ZOS efficiency in the AVM in future
research. An increase of the rewiring probability changes
the topology faster and increases (below the fragmentation
transition) the convergence time. Consequently, the larger the
rewiring probability φ, the stronger the initial topology is
modified. Hence, topological effects are only expected to play
a role at low rewiring probabilities. However, as shown by our
study for random graphs, in this regime opinion spreading is
already maximized by randomly positioning a small number
of zealots without excess degree. For networks with a more
complex topology than a random graph, the corresponding
effect might be quantitatively or even qualitatively different.
Above the transition point, especially the topological effects on
cluster formation with increased mean degree are of interest.

More generally, this study has also presented a strong
motivation for further investigating the controllability of the
AVM as an example for a nonlinear dynamical system on
a dynamic network. This is because the ZOS efficiency, on
which we have focused our interest, does not represent exactly
the controllable subset of the zealots, but might still be closely
related to this concept. If the ZOS efficiency would represent
the subset of nodes controllable by the zealots, we could drive
this subset from any initial state to any desired state within
a time tc by an appropriate input signal. However, the ZOS
efficiency only shows that we drove the subset to a specific,
not an arbitrary, state.

This study has been based on the approach of intervening
in the opinion adoption process in the AVM. Clearly, a
complementary approach would be to interfere with the
rewiring process, which could imply to declare specific links
as unbreakable or harder to break. Also, the creation of links
between zealots by rewiring could be excluded, assuming that
campaigners or lobbyists have no interest in clustering among
themselves. First, it would be easier to identify them as zealots
and second, they would waste their linkage resource needed
for influencing other nodes.

Another way of intervening in the opinion formation
process is to change the update rules for the zealots. In this
case, we have already studied two model variants with passive
and heterophilic zealots, whereby the latter results in a large
increase of ZOS efficiency. A former study investigated how
agents maximize their power (represented by a score function
increasing with centrality and decreasing with degree, the
diplomats dilemma) by following specific link creation and
deletion strategies, assuming knowledge up to the second
neighborhood [37]. The most common strategy to increase the
corresponding performance was to delete the link to the direct
neighbor with largest centrality and add an edge to the neighbor
in the second neighborhood with largest centrality. This could
be one further update rule, next to many others. In this
context, an interesting question would be to identify specific
update schemes which are robust across different network
types.

In summary, we emphasize that the combination of inter-
vening in opinion adoption and rewiring processes, different
zealot update schemes, considerations regarding the role of
complex network topology, and generalizing those approaches
to more realistic models of social network dynamics (e.g.,
[22,38]) are promising fields of future research.
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