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Hierarchical organization is an important, prevalent characteristic of complex systems; to understand their
organization, the study of the underlying (generally complex) networks that describe the interactions between their
constituents plays a central role. Numerous previous works have shown that many real-world networks in social,
biologic, and technical systems present hierarchical organization, often in the form of a hierarchy of community
structures. Many artificial benchmark graphs have been proposed to test different community detection methods,
but no benchmark has been developed to thoroughly test the detection of hierarchical community structures. In
this study, we fill this vacancy by extending the Lancichinetti-Fortunato-Radicchi (LFR) ensemble of benchmark
graphs, adopting the rule of constructing hierarchical networks proposed by Ravasz and Barabási. We employ
this benchmark to test three of the most popular community detection algorithms and quantify their accuracy
using the traditional mutual information and the recently introduced hierarchical mutual information. The results
indicate that the Ravasz-Barabási-Lancichinetti-Fortunato-Radicchi (RB-LFR) benchmark generates a complex
hierarchical structure constituting a challenging benchmark for the considered community detection methods.
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I. INTRODUCTION

Hierarchical organization [1–3] is a typical trait of complex
systems, appearing in many biological, social (corporations,
education systems, governments, and organized religions), or
technological (internet and other infrastructure) arrangements
whose different scales are apparent. The interactions between
the constituents of those systems are correctly described as
networks of interconnected modules nested hierarchically
[4,5]. Typical hierarchical networks include food webs, protein
interaction networks, metabolic networks, gene regulatory net-
works, social networks, etc. [6]. While interactions ultimately
occur between the basic or microscopic constituents of the
systems, effective coarse-grained elements and interactions
between them emerge at the different levels of organization
which should be characterized and understood at their own
scale. Because of this, finding the appropriate hierarchical and
modular structure of complex networks is of great interest for
the understanding of complex systems [6,7].

Community detection helps to unveil the nontrivial or-
ganization of complex systems at the mesoscopic scale
[8–10]. Many algorithms have been developed to identify
the community structure in networks [11–18]. Some of them
are also able to reveal the hierarchical community structure
within. Without the intention of being exhaustive, the most
widely used are: Infomap [15], which first uses the probability
flow of random walks on the network under consideration
as a proxy for information diffusion in the real system, and
then decomposes the network into modules by compressing
a specific description of said probability flow; Louvain [16],
which employs a computationally efficient greedy algorithm
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for the optimization of Newman’s modularity [19]; Spinglass
[17], which uncovers the community structure of networks
by minimizing the energy of a Hamiltonian whose spin-states
represent the community indices; OSLOM [18], which detects
clusters by using the local optimization of a fitness function
expressing the statistical significance of a community with
respect to random fluctuations; and hierarchical stochastic
block model [20], which seeks to fit a hierarchy of stochastic
block models to the different levels of organization of
networks.

Comparing the accuracy of different community detection
algorithms is a nontrivial problem. Commonly, two separately,
intricate tools are required for the task [9]. The first one are
benchmark graphs. These can be either real networks with
known community structure (i.e., ground truth) or ensem-
bles of artificial graphs with built-in community structure
[8,11,21–26]. The second tool required is a measure quan-
tifying the similarity between different allocations of nodes
into communities for the same network. This enables the
comparison between the known community structure and the
identified by the algorithms under study. Recently, to cover
the need of the second requirement, a similarity measure
for the comparison of hierarchical community structures has
been introduced—the so-called hierarchical mutual informa-
tion (HMI) [27]—which is a generalization of the mutual
information (MI), a standard measure for the comparison of
nonhierarchical community structures [28]. As we show in
this paper, the HMI can be further combined with the more
traditional approach, where a level-by-level comparison of the
hierarchies is performed with the standard MI [18,29].

The main goal of this paper is to cover the first of the
essential tools previously mentioned, i.e., to devise a network
model that can be used as a benchmark test for the problem
of hierarchical community detection. By requirement, the
model should be able to generate networks that: (i) have an
arbitrary number of hierarchical levels; (ii) have a power-law
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degree distribution; (iii) have a power-law community size
distribution; (iv) have a network size that scales well on
the number of levels in the hierarchy; (v) combine more
than one type of hierarchical structure; and (vi) display an
adjustable degree of disorder. We consider these properties
to be convenient for the generation of benchmark tests
for the following reasons. Properties (i), (ii), (iii), (v), and
(vi) are convenient because they turn more challenging the
benchmark test. Property (iv) is convenient for computational
purposes; otherwise, few community detection methods would
be tested with the benchmark. Properties (ii), (iii), and (vi),
which are commonly observed in real networks [8], are
aimed at providing some level of realism to the generated
networks. To fulfill the requirements (i)–(vi), we introduce
the Ravasz-Barabási LFR (RB-LFR) network model as a
benchmark test for hierarchical community detection. Broadly
speaking, the RB-LFR is obtained combining the complex
community structure of the standard LFR benchmark [8] with
the celebrated Rabasz-Barabási mechanism for constructing
hierarchies [30].

There are many probabilistic models that can be used to
represent standard (i.e., flat) and hierarchical communities in
complex networks. Many of them are well devised for the
detection of their structure but not all of them are flexible
enough to fit different desired properties. For example, the
Sierpinski gasket [31] and the original Ravasz-Barabási (RB)
[30] models have excessively regular and rigid hierarchical
structures. Real networks have more complex hierarchical
community structures (see, for example, the political blogs
network and IMDB film-actor network [20,32]). The Sierpin-
ski gasket is a minimalistic self-similar network and fails with
most requirements. Also, the RB model fails at requirements
(iii), (v), and (vi) and has a trivial community size distribution
at each level of the hierarchy. The hierarchical Girvan-
Newman benchmark [29] contains disorder but it has almost
trivial degree and community size distributions and also fails
requirements (ii), (iii), and (v). The Stochastic Block Model
[33–35]—also known as the Planted Partition Model—and
its degree-corrected [36] and hierarchical variants [20,37] are
more flexible than the previous alternatives. However, it is
not clear nor it is specified in the literature how to adjust
their parameters and structure to generate networks that meet
at the same time all the aforementioned requirements. For
instance, in Ref. [20] the hierarchical community structure
is obtained from the adjacency matrix of a seed network
that is expanded into a hierarchy of block structures by
means of the Kronecker-product trick [38,39]. The resulting
blocks have all the same size and the degree distribution is
not a power-law, hence requirements (ii) and (iii) are not
satisfied. In principle, this Kronecker-based SBM can be
modified to satisfy properties (ii) and (iii) by replacing, for
example, the trivial seed network by an LFR network with
C communities and N0 nodes. However, for hierarchies with
L levels, this results in networks with NL = CL−1N0 nodes,
a number that is considerably larger than the corresponding
NL = (R + 1)L−1N0 for the RB-LFR networks, since—in
practice—R + 1 can be significantly smaller than C as we
later show (Sec. II). As a consequence, an hypothetical
Kronecker-based SBM-LFR cannot satisfy requirement (v) as
the RB-LFR can. A potential solution to this problem could

be to prune branches in the community hierarchy, in order
to reduce the network size. However, this creates another
problem: requirements (ii) and (iii) become difficult to satisfy
under the tree pruning. Overall, how to satisfy all requirements
(i)–(vi) with a hierarchical SBM remains an open question.
Similar problems hold for the hierarchical random graph
(HRG) [6] and its recent and more general variants [40,41].
For example, requirements (ii) and (iii) involve the solution
of a nontrivial optimization problem which for the RB-LFR
model is solved in the LFR part. An analogous problem holds
for the HRG where the determination for the model parameters
becomes almost as difficult as the original problem itself. For
the existing hierarchical extension of the LFR network, only
realizations with two levels have been considered up to now
[29]. The so-called fine or microcommunity and the coarse or
macrocommunity levels, for which property (i) is not satisfied.
Based on considerations similar to those discussed for the case
of the SBM, it can be seen that this problem cannot be easily
solved. In fact, for such model there is no recipe on how to
construct the macrocommunities from the microcommunities;
a lesser of a caveat is that the properties of the hierarchical
LFR have not been systematically studied.

Data about the hierarchical organization of real network
with multiple levels is scarce. Hence, we develop the RB-LFR
benchmark as a stylized representation of real-world networks
by reproducing properties of well-established artificial models
that are inspired in real data. We argue that only after solid
hierarchical community detection methods have been devel-
oped and pass challenging tests posed by artificial benchmarks,
a proper understanding of hierarchical organizations in real
world will be possible. In this paper, we show that the
RB-LFR benchmark poses challenging detection problems for
the most popular hierarchical community detection methods
and evince that the HMI is a superior tool for the comparison
of hierarchical community structures as compared to the
traditional MI.

The outline of the paper is the following. In Sec. II, the
construction of the benchmark is presented. In Sec. III, three
community detection algorithms have been tested on the RB-
LFR benchmark graphs with different setups: in Sec. III A,
the benchmark graphs have two levels, while in Sec. III B,
the benchmarks have three levels. Finally, the discussions and
conclusions are summarized in Sec. IV.

II. THE RB-LFR HIERARCHICAL BENCHMARK

In this section, we provide a detailed description for the
construction of the networks in the ensemble defined by the
RB-LFR benchmark. By performing a topological analysis, we
also show that the resulting networks exhibit both: power-law
degree and community size distributions.

Lets introduce the Ravasz-Barabási LFR benchmark (RB-
LFR), an extension of the LFR benchmark [8] obtained by
combining it with a construction procedure inspired in the
work by Ravasz and Barabási [30]. Compared to previous
alternatives, the RB-LFR benchmark has a complex and
realistic network degree and community-size distributions—
like the LFR benchmark does—its hierarchy can have an
arbitrary number of levels and the RB procedure can be
generalized in a straightforward manner even further. In the
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FIG. 1. (a) An example of the LFR benchmark taken as original
building block of the benchmark. (b) Four replicated LFR benchmarks
are generated and connected to the original or seed LFR benchmark,
community by community. (c) An schematic diagram of the con-
nections between the seed community and the replicated ones; the
red node is the hub, i.e., the node with the largest degree in the
community. We have only shown the links between the black nodes
and the hub. The other links are not visible. (d) A realization of a
three-level RB-LFR benchmark. Links of the other communities are
not visible.

standard RB method, the hubs of different network motifs
are connected to the nodes of corresponding replicas [30]
but, in a more general setup, these restrictions can be relaxed
by allowing alternative interreplica connections by combining
different ways or modes of doing so [42]. In the present work,
to simplify the analysis, we restrict ourselves to study the case
of the original RB procedure, leaving for future work the study
of the alternative generalizations of the RB-LFR benchmark.

Our starting point is a standard nonhierarchical LFR
benchmark network [Fig. 1(a)], which we consider as the seed
network motif for an adapted Rabasz-Barabási procedure for
constructing hierarchical networks. The parameters used to
generate this LFR benchmark network are indicated in Table I.
The number of nodes in the seed network is N0 = 1000. Each
node is given a degree taken from a power-law distribution with
exponent γ = −2. We have fixed the average degree 〈k〉 = 20,
and the maximum degree to kmax = 0.1N0. Community size
is taken from a power-law distribution with exponent β = −1
and the upper bound and lower bound of community size are
0.1N0 and 〈k〉, respectively. The mixing parameter, μ, which
represents the fraction of links with the other nodes outside of

TABLE I. Parameters defining the ensemble of seed LFR bench-
mark graphs. To deal with possible discrepancies in the network
properties, we have generated ten independent networks for every set
of parameters.

Parameter Value

Number of nodes, N0 1000
Average degree, 〈k〉 20
Maximum degree 0.1N0

Maximum community size 0.1N0

Minimum community size 〈k〉
Degree distribution exponent, γ −2
Community size distribution exponent, β −1
Mixing parameter, μ [0.01, 0.05,. . ., 0.89]

its community, is defined as

μ =
∑

i k
ext
i∑

i k
tot
i

,

where kext
i stands for the external degree of node i and ktot

i is
the total degree of i [24]. In this study, the values of μ are
taken from an arithmetic sequence from 0.01 to 0.89 with step
0.04.

Next, following the constructing RB procedure, we generate
R replicas of the seed LFR network in this context, it means
that we generate R replicas of each seed community and
connect each seed community to their corresponding replica
communities [Fig. 1(b)] [8,30]. We denote community hubs,
the node with the largest degree in that community. Then, the
connections between the seed and the replica communities
are always between the hub of the seed community and
nearest neighbors of the replicated hub [Fig. 1(c)]. To ensure
the success of establishing the one-to-one connections, the
seed LFR network would remain exactly the same through
the whole constructing process. This replication and connec-
tion procedure can be repeated up to the desired number
of levels. Each replication increases the number of nodes
of the benchmark graph by a factor R + 1, so the number of
nodes of a RB-LFR network with L levels scales as NL ∼
(R + 1)L−1N0, a number that can be considerably smaller
than the analogous NL = CL−1N0 for a hierarchical LFR
obtained with the Kronecker product since, in practice, C

has to be relatively large to ensure requirement (iii) and,
therefore, R + 1 can be chosen to be significantly smaller than
C. In Fig. 1(d) we show a three-level RB-LFR benchmark
graph. Importantly, by assuming that each node in the network
chooses to join the community to which the maximum
number of its neighbors belong to Ref. [14], introducing
the intercommunity connections does not cause vanishing,
merging, or generation of communities. For instance, in the
most stylized case, the hub node has the same amount of links
to the seed community and to the replica communities. As
we will show later by introducing a nonzero probability of
removing connections between the seed communities and the
replicas, we can guarantee that the hubs will always belong
to the seed communities. Hence, a power-law community
structure is preserved at the bottom level (or top level,
depending of the benchmark parameters) of the hierarchy,
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FIG. 2. log-log plot of the degree distribution for different RB-
LFR benchmark graph samples with two levels (red triangles) and
three levels (green pluses), constructed from a seed LFR with N0 =
50 000 nodes and mixing parameter μ = 0.05 (black crosses).

while a uniform community-structure is generated at the other
levels.

In Fig. 2, the degree distributions of 2 and 3 layers
networks generated by the RB-LFR benchmark are plotted,
always starting with a seed LFR graph with the same set
of parameters. We have fitted the degree distributions and
reported the exponent of the fitted power-law distribution. As it
can be seen, the added inter-community connections produce
minor changes to the exponent of the degree distribution. In
other words, an RB-LFR benchmark network approximately
preserves the degree distribution of the seed LFR.

Depending on the value of the mixing parameter μ for
the seed LFR benchmark, the process described above can
generate hierarchical graphs with two different well-defined
ground truths. Taking the two-level RB-LFR benchmark
graphs as an example, when the mixing parameter of the
seed LFR benchmark is small, its community structure and
that of its replicas are well-defined. First, on the first level,
the RB-LFR benchmark displays as many communities as the
seed LFR has, i.e., C communities. Each community in this
first layer contains one community of the seed LFR together
with all its replicas. At the second level, each community
of the first one contains R + 1 subcommunities [Figs. 3(a)
and 3(c)]—one for each replica plus the seed one—summing
a total of C × (R + 1) subcommunities in the complete
network. Notice, this occurs because there are no connections
between each of the seed communities and the replicas of
other seed communities. This sort of inter-replica connections
could be added and studied in future works, an interesting
aspect showing how much richer in possible variations is the
hierarchical case as compared to the nonhierarchical one.

When the mixing parameter μ is increased, the community
structure of the seed LFR becomes more fuzzy and harder to
detect. Therefore, the seed and the replica communities within
the RB-LFR benchmark become harder to detect, too. This
obviously occurs to all replicas, while the number of interlayer
links remain the same regardless of μ. Therefore, the seed LFR

FIG. 3. (a), (b) Circular representations of the hierarchical struc-
ture of an RB-LFR benchmark with R = 4 replicas. The center
represents the whole network at level 0. In the example, LFR seeds
with N0 = 1000 nodes, C = 13 communities and varying mixing
parameterμ are used. In (a), the mixing parameter of the seed LFR
benchmark is small, and the RB-LFR has C communities on the first
level and each of them has R + 1 subcommunities on the second
level. A larger mixing parameter for the seed LFR is used in (b),
where the RB-LFR benchmark has R + 1 communities on the first
level, each having C subcommunities on the second level. (c), (d)
Schematic network representations corresponding to the hierarchies
in (a) and (b) are shown, respectively. The shaded (blue) areas
represents a community on the first level, and the black circles
represent subcommunities on the second level. Communities might
have different sizes. For clarity reasons, links between the seed LFR
and the replicas are not shown.

and the replicas may be interpreted as R + 1 communities at
the first layer. Each of them has as many subcommunities at
the second level as the seed LFR had, i.e., C [see Figs. 3(b)
and 3(d)]. Again, the total number of sub-communities at the
second level is (R + 1) × C, but, this time, such number is
reached through different means, as you can see by comparing
Figs. 3(a) and 3(b).

If the mixing parameter of the seed LFR becomes too
large, then the communities become impossible to detect and
the community structure of the RB-LFR benchmark network
becomes mono-level; i.e., no second level arises and only
R + 1 communities exist at the first level, one for the seed
LFR and others for the replicas.

III. TEST

In the previous section, we have given the intuition
that the RB-FLR benchmark is compatible with different
ground truths for the hierarchical community structure. In
this section, we verify that this topological transition oc-
curs. But the main result of this section is the use of the
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RB-LFR benchmark to test the performance hierarchical
community detection algorithms. To achieve this, we compare
the similarity of the ground truth and detected community
structures, employing the normalized mutual information
(NMI) [28] and the normalized hierarchical mutual informa-
tion (NHMI) [27]. In addition, we calculate the difference
between the hierarchical mutual information (HMI) and the
mutual information (MI) at the different levels, to quantify
the cumulative contributions of the deeper levels of graphs,
only.

Three hierarchical community detection algorithms have
been chosen, which are: Infomap [15], a recursive application
of Louvain method for the generation of hierarchies [16,27]
and the minimum description length implementation of the
hierarchical stochastic block model (HSBM) [20]. Two other
algorithms, Spinglass [17] and OSLOM [18], which are widely
used for the detection of hierarchical communities in networks,
are, however, not tested: the former is computationally slow
[26], and the latter generally produces overlapping community
structures—the cleaning-up procedure of OSLOM for each
community is performed independently of others, such that a
fraction of its vertices may belong also to other community
eventually [18]. Since the mutual information devised for the
comparison of overlapping community structures does not
reduce to the standard case for nonoverlapping ones, a compar-
ison of OSLOM with the other methods cannot be appropriately
carried on. This limitation only exacerbates when considering
hierarchical mutual information.

A. Test on two-level RB-LFR benchmark

We first concentrate on the two-level RB-LFR benchmark
ensemble. The seed LFR benchmark graphs we employ are
undirected and unweighed networks with non-overlapping
communities. The parameters of LFR benchmark are shown
in Table I. The number of replicas equals to R = 4.

First, we study the accuracy of the community detection
methods as a function of the mixing parameter μ of the seed
LFR graph. There are two reasons why we do it like this.
First, the LFR mixing parameter and the appropriate mixing
parameter for the RB-LFR networks are close quantities,
since

μRB−LFR ≈ ρL〈k〉μN0 + 2(ρL − 1)N0

ρL〈k〉N0 + 2(ρL − 1)N0

≈ 〈k〉μ + 2

〈k〉 + 2
, if ρL := (R + 1)L−1 � 1,

≈ μ + O(〈k〉−1), if 〈k〉 � 2.

The numerical calculations have shown that, for R = 4
replicas, a seed LFR network with N0 = 1000 nodes and
average degree 〈k〉 = 20, and mixing parameter μ between
0.01 and 0.89 (see Table I), the mixing parameter of the
RB-LFR network is between 0.08 and 0.90 for L = 2 and
between 0.10 and 0.90 for L = 3. Second, the use of μ instead
of μRB−LFR helps to understand the conditions of the seed LFR
itself, clarifying the overall analysis.

We define three different ground truths: the first ground
truth, namely seed-replica, corresponds to the hierarchy that
should emerge for small mixing parameter [Fig. 3(a)]; the
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FIG. 4. Average NHMI, NMI, and (HMI-MI) as a function of the
mixing parameter, μ at the left, middle, and right panels, respectively.
Here, the NMI compares partitions at second level of the detected and
ground truth hierarchies. Similarly, the HMI compares full hierarchies
while the MI compares partitions at the first level. From top to
bottom, the methods are Infomap, Louvain, and HSBM. Averages
are computed over 10 different network realizations with the same
set of parameters of the seed LFR benchmark. The parameters of the
seed networks can be found in Table I.

second ground truth, namely replica-seed, corresponds to a
larger value of the mixing parameter [Fig. 3(b)], and the last
ground truth corresponds to a flat structure that there is only
one level [9,43]. These three ground truths are represented in
black, red, and green, respectively.

The results are shown in Fig. 4. In the left panels the
accuracy of the different community detection algorithms
are quantified by the average value of the NHMI computed
between the detected hierarchical community structures and
the different ground truths. In the center column, the similarity
is quantified with the average NMI computed between the
detected partitions at the second level and those exhibited by
the different ground truths. In the right panels, the similarity
is quantified by the difference HMI-MI between the HMI
computed for the full hierarchies and the MI computed for the
partitions at the first level. The tested methods are Infomap,
Louvain, and HSBM from top to bottom. Taking the top-left
panel as an example: Infomap can unveil the community
structure until μ ≈ 0.6 (with the difference between both
ground truths). For μ � 0.1, it detects the first type of
ground truth, and for 0.2 � μ � 0.6, it detects the second
type of ground truth. We observe a clear transition between
the ground truths for μ between μ = 0.1 and μ = 0.2; in
both regions, the NHMI reaches values close to one making
apparent that the algorithm gives a description of the hierarchy
very close to the ground truth. For μ � 0.6, Infomap detects
a flat community structure. This result showcases that the
RB-LFR benchmark shows a clear hierarchical community
structure which can be recognized successfully by Infomap.

052311-5



ZHAO YANG, JUAN I. PEROTTI, AND CLAUDIO J. TESSONE PHYSICAL REVIEW E 96, 052311 (2017)
0.

0
0.

4
0.

8

0.0 0.5 1.0
(a)

Mixing parameter, µ

Infomap

N
H

M
I

(〈k
〉=

1
0

)

0.
0

0.
4

0.
8

0.0 0.5 1.0
(b)

Mixing parameter, µ

Louvain

N
H

M
I

(〈k
〉=

1
0

)

0.
0

0.
4

0.
8

0.0 0.5 1.0

Seed−Replica
Replica−Seed
Flat

(c)

Mixing parameter, µ

HSBM

N
H

M
I

(〈k
〉=

1
0

)

0.
0

0.
4

0.
8

0.0 0.5 1.0
(d)

Mixing parameter, µ

N
H

M
I

(〈k
〉=

4
0

)

0.
0

0.
4

0.
8

0.0 0.5 1.0
(e)

Mixing parameter, µ

N
H

M
I

(〈k
〉=

4
0

)

0.
0

0.
4

0.
8

0.0 0.5 1.0
(f)

Mixing parameter, µ

N
H

M
I

(〈k
〉=

4
0

)

FIG. 5. Average NHMI as a function of the mixing parameter, μ.
The top panels correspond to seed LFR benchmarks with average
degree 〈k〉 = 10 and the bottom ones to 〈k〉 = 40. From left to
right, the methods are Infomap, Louvain, and HSBM. Averages are
computed over ten different network realizations with the same set of
parameters of the seed LFR benchmark. The parameters of the seed
networks can be found in Table I.

The fact that NHMI = 1 highlights that this is indeed
nontrivial.

Comparing Figs. 4(a) to 4(d) and 4(g), we observe that
the new benchmark poses a challenging task that can test
the performance of the algorithms: the accuracy of Louvain
reaches 0.6 until μ ≈ 0.6 but, it still detects some hierarchical
community structure until μ ≈ 0.9, a far wider range than
Infomap. The HSBM always has an accuracy smaller than 0.2.
We note here that the poor performance of the HSBM is most
likely related to its approach, i.e., a bottom-up approach, while
the other two methods are taking the top-down approaches to
build the hierarchies [27].

The right panels, Figs. 4(c), 4(f) and 4(i), which show the
difference between the full HMI and MI of the first level,
overall giving the contribution that the second level has on
the HMI. In other words, it quantifies how accurately the
algorithms detect the second level and how relevant is the
corresponding contribution as measured by the HMI. For
instance, for Infomap, under the second definition of ground
truth, the observed value represents 64.7% of the total value of
the HMI when μ = 0.37. Hence, the contribution of the second
level is nonnegligible, showing the convenience of hierarchical
mutual information as a measure for the comparison of
hierarchical community structures, when compared to the
traditional mutual information.

Now, we measure the effect of the average degree 〈k〉 on
the performance of algorithms. We use the NHMI to quantify
the accuracies of the algorithms and the results are shown in
Fig. 5. The top panels correspond to 〈k〉 = 10, and the bottom
ones correspond to 〈k〉 = 40. Comparing panels (a) and (d),
and panels (b) and (e), we can observe that for sparse RB-LFR
benchmark graphs, the community detection methods have
better performance with increasing 〈k〉. This is the result that
is typically observed [9] and is a reasonable one since, in the
sparse regime 〈k〉 � N0, where N0 is the number of nodes in
the network, the larger is 〈k〉 the less important are the sample
to sample fluctuations that may affect how well defined the
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FIG. 6. Average NHMI as a function of the complementary
mixing parameter, p. From left to right, the mixing parameters are
μ = 0.05, 0.3, and 0.7, respectively. From top to bottom, the methods
are Infomap, Louvain, and HSBM. Averages are computed over ten
different network realizations with the same set of parameters of the
seed LFR benchmark. The parameters of the seed networks can be
found in Table I.

communities are. Furthermore, we observe a similar pattern to
the Fig. 4: while Infomap exhibits higher accuracy, Louvain
is able to detect a hierarchical structure in a wider range of
the mixing parameter μ [Figs. 5(d) and 5(e) and Figs. 4(a)
and 4(d)].

1. Decimated interlayer connections

So far we have considered a highly stylized model where
the communities in the seed network are deterministically
replicated in deeper layers. In this subsection, we relax this
assumption. We note that in these less stylized cases, all
the nodes would have more links to their own communities,
such that the topologies of the networks would remain the
same. With this in mind, we introduce a parameter p. It
specifies the probability of randomly removing connections
between the seed communities and the replicas [Fig. 1(d)].
The decimation procedure associated to p is applied to every
pair of seed-replica communities, independently. In this way,
p = 0 means that all connections are kept (the case studied
in the previous subsection) and p = 1 means all connections
are removed. Hence, p is a sort of complementary mixing
parameter; while μ controls the connectivity at the LFR level,
p controls the connectivity at the interlayer level. We study
the accuracy of the community detection methods by plotting
the NHMI as a function of p. We repeat calculations for
three different values of the mixing parameter, μ = 0.05, 0.3,
and 0.7, i.e., they represent the three qualitatively different
regions for the mixing parameter found in the previous results.
The findings are shown in Fig. 6. In Fig. 6(a), a transition
between the two seed-replica and replica-seeds ground truths
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FIG. 7. Average NHMI and NMI (top and bottom, respectively)
as a function of q, the fraction of replica communities removed
from a standard RB-LFR benchmark. From left to right, the mixing
parameters are μ = 0.05, 0.3, and 0.7, respectively. Averages are
computed over ten different network realizations with the same set of
parameters of the seed LFR benchmark. The parameters of the seed
networks can be found in Table I.

is observed as p is varied. This is analogous to what is
observed in Fig. 4(a) when μ is varied. In other words, the
previous result confirm the role of p as a complementary
mixing parameter. The rest of the panels in Fig. 6 essentially
show that, when the mixing parameter is large, the number of
connections between communities and their replicas is already
very small and p cannot have a significant impact on the
detected structure. Overall, we can conclude that the RB-LFR
benchmark graphs are relatively robust to random removal of
some connections, a desirable characteristic for a well defined
ensemble of benchmark graphs. Importantly, only the Infomap
algorithm is able to unveil such topological transition induced
by p. From now on, p = 0.

Since the previous results show that Infomap performs well
and, in some cases, considerably better than the other options,
in what follows we restrict our analysis presenting the results
obtained with Infomap, only.

2. Decimation of replicas

We now randomly remove a fraction q of the existing
replicas—together with all their connections—from a previ-
ously generated RB-LFR benchmark graph. For q = 0 all the
replica communities are kept while for q = 1 all of them are
removed. As before, we use μ = 0.05, 0.3, and 0.7 to represent
three different regions of the mixing parameter. The results
indicate that, in all cases, the RB-LFR benchmark graphs still
preserves a relatively stable hierarchical structure even after
60% of the replicated communities have been removed (Fig. 7).
From now on, q = 0.

3. Network sizes

Then, we have measured the effect of network size on the
performance of Infomap, observing that the accuracy of the
method mildly decreases as the number of nodes N0 increases.
It only has a measurable effect when for μ → 0.
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FIG. 8. Average NHMI, NMI, and (HMI-MI) as a function of the
mixing parameter μ, at the left, middle, and right panels, respectively,
for RB-LFR benchmark graphs with three levels. Averages are
computed over ten different network realizations with the same set of
parameters of the seed LFR benchmark. The parameters of the seed
networks can be found in Table I. “Seed-Replica*2” is an abbreviation
of “seed-replica-replica” and “Replica*2-Seed” is an abbreviation of
“replica-replica-seed.”

4. Number of replicas

In the end, we studied the effect of the number of
replicas on the performance of Infomap (going from R = 4
to R = 9). We observe that the range of the mixing parameter
μ, where the transition between ground truths occurs, becomes
slightly wider. Overall, we conclude that the results are robust
to variations of the number of replicas.

B. Test on three-level RB-LFR benchmark

In the last study, we focus on the three-level RB-LFR
benchmark. The setting is the same as those in the first study,
i.e., Table I and Fig. 4. Under this setting, the first ground
truth corresponding to a small value of the mixing parameter
of the LFR network, would be seed-replica-replica, and the
second ground truth for large values of the mixing parameter
becomes replica-replica-seed, while the third ground truth
corresponding to the flat structure remains the same. We
report the accuracy of Infomap as a function of the mixing
parameter, μ. The results are shown in Fig. 8. One could see
that the three levels RB-LFR benchmark is a much harder test,
but still Infomap is able to unveil the network structure for
certain values of the mixing parameter, μ. On the other hand,
the accuracies are much worse than those of the two-level
benchmark graphs in most of the cases [see Figs. 4(a) and
4(b) for a comparison]. In Fig. 8(c) we show the difference
between the full HMI and the MI of the first level. Similar to
what we have observed in Fig. 4(c), the second and third levels
contribute with an important fraction of the total value of the
HMI.

Finally, in Fig. 9, we provide three examples of the ground
truth hierarchical structure of different RB-LFR benchmark
graphs (top panels) and corresponding hierarchical structures
detected by Infomap (bottom panels). The mixing parameters,
μ, are 0.01, 0.33, and 0.77 from left to right.

Figure 9(a) corresponds to the first type of ground truth.
In this case, the mixing parameter is small enough such that
the structure of the seed LFR is found on the upper level, and
the mechanism of Ravasz-Barabási model is observed in the
second and third levels. Figures 9(b) and 9(c) correspond to the
second type of ground truth. In this case, the mixing parameter
is large enough such that the mechanism of Ravasz-Barabási
is observed in levels 1 and 2, while the structure of the seed
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(a) (b) (c)

(d) (e) (f)

FIG. 9. The top panels are the circular representation of the
hierarchical structure of three-level RB-LFR benchmark graphs. The
bottom panels are the corresponding hierarchical structures detected
by Infomap. In cases (a) and (d) the mixing parameters of the
seed LFR benchmark is μ = 0.01, in cases (b) and (e) μ = 0.33
and in cases (c) and (f) μ = 0.77. The center of every panel
represents the whole network at level 0. Similar to the second level of
the two-level RB-LFR, the third level of the three-level RB-LFR
represents communities that do not contain any subcommunities
(see Fig. 3).

LFR becomes detected at the third level. In all the cases we
have fixed the value of R,p, and q to 4, 0, and 0, respectively.
Each node on the last level represents a community that does
not contain any subcommunities [see Figs. 3(c) and 3(d)]

Going into the detailed observation of the detected com-
munities, it is possible to compare the structure of the bottom
panels with that of the top ones. We can see that for μ = 0.01,
Infomap made a mistake in the detection of the first level;
two communities have been merged together. On the second
level, Infomap makes even more mistakes, by merging pairs
of communities in several cases [Figs. 9(a) and 9(d)]. In the
example of μ = 0.33, Infomap successfully unveils the first
level, but it makes mistakes on the second level [Figs. 9(b)
and 9(e)]. In the example of μ = 0.77, Infomap could neither
correctly detect the community structure of the first level,
nor unveil the structure of the deeper levels. In this case,
the detected network structure is closed to a flat one: there
are three communities on the first level. Each community on
the first level contains several subcommunities on the second
level, and each community on the second level has only
one subcommunity, i.e., itself, on the third level [Figs. 9(c)
and 9(f)].

IV. SUMMARY

In this study, we have introduced a new class of benchmark
graphs to test hierarchical community detection algorithms.
These new benchmark graphs combine the LFR benchmark
and the rule for constructing hierarchical network proposed by
Ravasz and Barabási, hence the name of RB-LFR benchmark.

They integrate the properties of the standard LFR benchmark,
i.e., a power-law degree distribution and community-size
distribution, while they also possess the clear hierarchical
structure of the Ravasz-Barabási model, and can be extended
to an arbitrary number of levels.

We have found that the newly introduced RB-LFR bench-
mark graphs pose challenging tests to state-of-the-art hier-
archical community detection algorithms. In particular, we
have seen that the size of the graph and the average degree
of nodes have sizable effect on the accuracies of the methods.
Our benchmark graphs, while parsimonious, exhibit a rich
phenomenology including a variety of topological transitions
between coexisting ground truths. Furthermore, by introducing
two parameters to randomly remove connections and replicas,
we have observed that the RB-LFR benchmark exhibits a ro-
bust hierarchical community structure. Additionally, our tests
have also validated that the recently introduced hierarchical
mutual information (HMI) suits better for the comparison of
hierarchical partitions than the traditional mutual information
(MI) does.

The comparison of the performance of the tested algo-
rithms: Infomap, Louvain, and the hierarchical stochastic
block model (HSBM) against the RB-LFR benchmark, in-
dicates that Infomap produce the best results overall. More
specifically, the tests on the two-level RB-LFR benchmark
graphs indicate that Infomap outperforms the other two
methods in terms of accuracy. However, it seems that the
three-level RB-LFR benchmark is very challenging for all of
the existing algorithms.

Our next step is to conduct a more comprehensive com-
parison of hierarchical community detection algorithms by
evaluating their performance on the RB-LFR benchmark. By
doing this, we will gain deeper understanding of the features
of the RB-LFR benchmark and learn more about its limitations
and the differences between the RB-LFR benchmark and the
real hierarchical systems have. The benchmark introduced in
this paper has a very stylized hierarchical structure, which
may be seen as a limitation of the approach. However, existing
empirical work on hierarchical community detection has found
hierarchies whose complexity is rather limited. Our results
highlight that the algorithms for community detection must be
vastly improved to ascertain more complex hierarchies. This
paper provides the foundation to proceed with this important
line of research.
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