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We develop a statistical framework for studying recurrent networks with broad distributions of the number of
synaptic links per neuron. We treat each group of neurons with equal input degree as one population and derive a
system of equations determining the population-averaged firing rates. The derivation rests on an assumption of a
large number of neurons and, additionally, an assumption of a large number of synapses per neuron. For the case
of binary neurons, analytical solutions can be constructed, which correspond to steps in the activity versus degree
space. We apply this theory to networks with degree-correlated topology and show that complex, multi-stable
regimes can result for increasing correlations. Our work is motivated by the recent finding of subnetworks of
highly active neurons and the fact that these neurons tend to be connected to each other with higher probability.
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I. INTRODUCTION

The information processing by large ensembles of neurons
has often been discussed in the context of population coding.
This refers to the assumption that no single neurons are respon-
sible for the computational processes in the brain, but rather
populations of neurons [1,2]. Accordingly, in this approach,
firing rates of individual neurons are averaged over the entire
population and the information from the heterogeneity of firing
rates is discarded. However, there is increasing evidence that
in many brain structures subnetworks of highly active neurons
exist. Yassin et al. have shown that a large fraction of neurons
in the neocortex fire at extremely small rates, while a small
fraction of neurons are highly active [3]. Furthermore, they
have observed that the highly active neurons are linked to each
other with a higher probability. Nigam et al. estimated that
70% of the information is transmitted through only 20% of the
neurons forming a hub, or a rich club [4].

Population coding is known to be the underlying principle
for a variety of sensory functioning in the brain [5–8] and has
often been discussed mathematically, for instance, in terms of
information content and tuning curves [9,10], or in relation
to direction sensory functioning [11]. Population equations or
neural field models are a fruitful mathematical approach to
neural information processing.

The additional heterogeneity of neurons in the population
has also been incorporated, mostly regarding the different
types of neurons (e.g., excitatory versus inhibitory) as well
as spatial distribution of neurons [12,13]. However, the
statistical heterogeneity in degree, as described in the recent
experiments, has rarely been discussed so far. Here we
try to close this gap by introducing a distribution of the
neuron’s degree as well as correlations in degrees of interacting
neurons.

Our discussion will be based on the investigation of systems
of equation for firing rates on neurons. Concentrating on the
firing rate (which we will also refer to as activity) and not on
precise temporal evolution of each neurons membrane poten-
tial, has a long history in neuroscience starting with Ref. [14]
where it was first demonstrated that it is this rate which governs
the information transmission in interneuronal communication,
a phenomenon that is now commonly discussed within the
context of rate coding.

We first show that averaging of the firing-rate equations
over neurons of same degree can lead to a well-defined system
of equations for the averaged firing rates. This result hinges on
the fact that in neural ensembles both the number of neurons
as well as the number of synapses per neuron is typically large.
We argue that in this case one can interchange the averaging
over neurons with the application of the firing rate function,
which leads to a drastically reduced system of equations
corresponding to a mean-field approximation.

In certain cases, e.g., when the firing rate function is
binary, analytical solutions of these population equations can
be constructed. Indeed, it is straightforward to find solutions
with highly connected active subpopulations. Moreover, we
show that one can study the behavior of the neuronal system
under increasing levels of degree correlation in the network,
which can lead to a transition to multistable solutions for the
activity. The comparison of the results of direct simulation
of the neuronal system of tens of thousands neurons with the
ones of our reduced description shows that the last performs
extremely well in a large domain of parameters and gives
theoretical explanation of what is seen in such numerical
simulations.

There are different approaches to formally introduce or
to control correlations in complex networks [15,16]. Within
this work we follow a previous study in which the influence
of the topology of a network of spiking neurons on the
response to a stimulus was studied [10]. Therein correlations
are described in terms of conditional probabilities. Especially
for directed networks, this proves to be a handy way to explore
the connection between the structure of a network and its
functional properties.

II. MATHEMATICAL ANALYSIS OF COUPLED
POPULATION EQUATIONS

We consider a neural network with recurrent connectivity.
The firing rate of each individual neuron is given by vi , where
i, 1 � i � N , denotes the neuron’s number. Those systems
have often been modeled by equations of the form

τ
∂vi

∂t
= −vi + frecurrent,i , (1)
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where τ is a time constant that describes the time scale on
which the firing rate relaxes toward its steady-state value. On
a microscopic level, i.e., considering every single neuron i

within the network, the synaptic input current depends on the
properties of the synapses within the network. The function f

is usually referred to as activation or transfer function. The
dimension of the firing rate, and therefore of the transfer
function f , is the one of the frequency, i.e., of the inverse
time.

In this work we are solely interested in the influence of
the networks topology on the network’s self-sustained activity
and therefore consider all synapses to be identical of unit
coupling strength. Also no synaptic time delays or external
input is considered. The recurrent input to neuron i can then be
written as frecurrent,i = f (

∑
j ajivj ), with aji being the entries

of the adjacency matrix of the network, which are unity if
there is a link from node j to node i, and zero otherwise. The
transfer function f is often assumed to have a sigmoidal form.
The firing rate of any realistic neuron model is bounded from
above. Normalizing vi over the maximal firing rate we get
the dimensionless form of the corresponding Eq. (1). Such a
dimensionless rate will be often called the neuron’s activity in
what follows. This variable is bounded to a unit interval. We
will also assume that the domain of values of f is also [0,1].

Following the previous work [10], we consider directed
networks, in which each neuron has an equal number of
incoming and outgoing synapses. This in- and out-degree will
be denoted by k and is distributed according to the probability
distribution P (k). The set of all neurons of degree k in the
network is called k-population. For ease of computation we
will usually assume that the distribution P (k) has cutoffs at
small and large k, i.e., is concentrated on the interval between
kmin and kmax.

A. Population approach

One main goal of our work is to derive and discuss equations
for population activities uk of a k population defined as

uk = 1

Nk

N∑
i=1

viδki ,k = 1

Nk

∑
i:ki=k

vi, (2)

where Nk = ∑N
i=1 δki ,k � NP (k) is the number of neurons in

the k population. The network’s heterogeneity is characterized
in terms of the average number N (k,k′) of direct links from
the k′ population to the k population: For every input link of a
k neuron the probability that this link originates in a k′ neuron
is N (k,k′)/k.

Mapping the dynamics from the neural network equations
Eq. (1) to the population firing rates Eq. (2) requires two steps:

(1) As is usually the case in population models, we assume
that the firing rates of a k neuron can be approximated by the
mean firing rates of the entire k population, vi ≈ 〈vi〉 ≡ uk

for all neurons i whose degree ki is equal to k. It means
that the only relevant property of a neuron, determining the
heterogeneity of the neurons in the population, is the input
degree. If, for instance, two neurons in the k population have
sets of input neurons with different degrees, their firing rates
will be statistically the same. This is a strong, although intuitive
assumption. Below, using analytical as well as numerical

considerations, we will show that this procedure generates
useful generalization of the standard population approach,
where one puts all neurons into a single population.

(2) Combining Eqs. (1) and (2) allows us to obtain an
equation for the population average uk , which reads

τ
∂uk

∂t
= −uk + 1

Nk

∑
i:ki=k

f

⎛
⎝∑

j

ajivj

⎞
⎠, (3)

with kmin � k � kmax. The second term on the right-hand
side represents the steady-state firing-rate averaged over all
k neurons. However, to obtain a closed system of equations
for uk it needs to be rewritten in terms of the weighted average
of mean firing rates uk′ . Since this involves interchanging the
averaging with the application of a nonlinear function this is
not necessarily possible.

Under certain conditions, however, this second step can be
performed and, as shown in Appendix A 1, we obtain

τ
∂uk

∂t
= −uk + f

(∑
k′

N (k,k′)uk′

)
. (4)

It should be noted that we here rely on the fact that, in addition
to a large number of neurons in the population, the number of
synapses per neuron is sufficiently large, so that the quantity∑

j ajivj hardly fluctuates. Equation (4) represents the mean-
field approximation to Eq. (3), and the numerical simulations
of the full system show that these equations perform very well
and lead to important insights.

Note that Eqs. (1)–(4) describe the general case of
continuous-time evolution of neuronal activities for general
transfer functions f . For most of this work, we will, however,
limit ourselves to discrete-time systems, where the differential
equations reduce to a map and take f to be a Heaviside
step function. This fixes the possible activity states of the
neurons to 0 or 1. The situation is thus described by a binary
neuron model, sometimes referred to as McCulloch-Pitts
model [17], for which we report our most important findings.
We will, however, turn back to the continuous-time evolution
of population activities and to more general transfer functions
in Appendix B when discussing the generality of the approach
proposed.

B. Network correlations

In the following, we will briefly introduce common
concepts to describe correlations in networks to achieve a
better understanding of the joint distribution function N (k,k′).
Correlation in networks usually refers to the correlation
between degrees of pairs of connected nodes. For quantifying
purposes it is useful to introduce an edge end distribution,
which is the degree distribution at one end of a randomly
selected edge. It reads Pe(k) = kP (k)/〈k〉, [15,18], where 〈k〉
is the mean degree of the network with respect to nodes,
〈k〉 = ∑

k kP (k). Correspondingly, one can define a joint
probability distribution P (k,k′) giving the probability that
a randomly chosen link connects nodes with degrees k and
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k′. For uncorrelated networks this is Punc(k,k′) = Pe(k)Pe(k′).
The correlations are then formally introduced via

P (k,k′) = Pe(k)Pe(k′)g(k,k′), (5)

as in Ref. [15]. It is then natural to define a conditional
probability

P (k|k′) = P (k,k′)/Pe(k′) = Pe(k)g(k,k′), (6)

which is the probability to find a node of degree k, when
following a link that originates from a node of degree k′. As
in previous work [10], we treat heterogeneity in networks by
employing the joint distribution function N (k,k′), which is
defined as

N (k,k′) = kP (k′|k). (7)

For a given network realization, this corresponds to the number
of links that point from k′ neurons to k neurons, averaged over
all k neurons. For uncorrelated networks, the joint distribution
function reads

N (k,k′) = kk′P (k′)
〈k〉 = N (k,k′)unc. (8)

It is useful to list the properties of the joint distribution function
that follow the above definitions:

N (k,k′) � 0, ∀ k,k′, (9)∑
k′

N (k,k′) = k, (10)

∑
k

P (k)N (k,k′) = k′P (k′), (11)

which are discussed in Appendix A 2 in more detail. While
Eq. (8) defines uncorrelated networks, in principle any joint
distribution function that obeys conditions Eqs. (9)–(11)
represents an ensemble of networks. To obtain one realization
of this ensemble of networks, also the number N of the
neurons, and the degree distribution P (k) are required, as the
joint distribution function N (k,k′) only constraints the wiring
possibilities. The constraints on the joint distribution function,
given by Eqs. (9)–(11), allow the formal introduction of degree
correlations of the form

N (k,k′) =N (k,k′)unc + γ
η(k,k′)
P (k)

, (12)

with ∑
k

η(k,k′) =
∑
k′

η(k,k′) = 0. (13)

The function η(k,k′) describes the deviation from the uncorre-
lated network and γ is a parameter describing the strength of
this deviation. The values of γ are constrained by the positivity
of the joint distribution function, Eq. (9); see Appendix A 3
for more detail. For the remaining part of this work, we focus
on one possible choice of η that fulfills Eq. (13), i.e.,

η(k,k′) = (k − k0)(k′ − k0), (14)

where k0 = (kmax + kmin)/2, so that the resulting joint distri-
bution function reads

N (k,k′) = kk′P (k)

〈k〉 + γ
(k − k0)(k′ − k0)

P (k)
. (15)

Using this simple choice for η(k,k′) we will illustrate how
nontrivial mixing can be introduced into complex networks,
and what are the effects of such mixing on the firing rates.

C. Steady-state solutions for Heaviside step functions

In the following, we want to find steady-state solutions for
the population activities uk in the system Eq. (4). Generally,
this requires knowledge about the specific form of the
recurrent activation function f . One often assumes a sigmoidal
relation, and approximates f (u) by f (u) ≈ 1/[1 + exp(−u)],
or alternatively f (u) ≈ 1 + erf(u) [19]. To discuss stationary
solutions for the population activity, we will approximate this
sigmoidal function by a step, i.e., by a Heaviside θ -function:
f (u) ∼ θ (u − �). Consequently, for the stationary case and
under the population-dynamic assumption, Eq. (4) reduces to

uk = θ

(∑
k′

N (k,k′)uk′ − �

)
. (16)

The threshold � is a property of the neurons. For example, in
the case of spiking neurons modeled by some sort of integrate
and fire system, it translates to the membrane potential
threshold, which, if exceeded, leads to a spike of the neuron.
Similarly, the population activity can be interpreted as an order
parameter uk ∈ [0,1], which is 1 (0) if the population is active
(inactive). Then the threshold � represents the critical number
of input links from active neurons. Equation (16) corresponds
to a system known as McCulloch-Pitts model [17] and has,
e.g., been discussed in the context of memory capacity of a
neuronal network [20]. Note that the system of equations for
the population activity [Eq. (16)] itself can be interpreted as
a recurrent neuronal network with uk describing the state of
neuron k and N (k,k′) being the interaction matrix between
neuron k and k′. Equation (16) reduces to

uk =
{

1, if
∑

k′ N (k,k′)uk′ � �

0, otherwise.
(17)

Now we seek self-consistent solutions of this last expression.
Clearly, uk = 0 for all k is always a solution provided that
� > 0. However, there may be further solutions in which uk

is k-dependent. The simplest case of such solutions is a step
solution at some threshold degree κ between kmin and kmax:

uk =
{

1, if k � κ,

0, otherwise.
(18)

Note that since large-k neurons have more input links than
small-k neurons, the former will be more likely to be active
than the latter and thus the step solution seems natural. In that
case the summation in Eq. (16) simplifies to

uk = θ

(
kmax∑
k′=κ

N (k,k′) − �

)
, (19)

and therefore Eq. (18) satisfies Eq. (17) if

kmax∑
k′=κ

N (κ,k′) � � and
kmax∑
k′=κ

N (κ − 1,k′) < �. (20)
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For simplicity we seek κ with

kmax∑
k′=κ

N (κ,k′) = �. (21)

The remainder of the sum is only a function of κ and we will
therefore refer to it as

F (κ) =
kmax∑
k′=κ

N (κ,k′), (22)

and thus we find the condition

0 = F (κ) − � (23)

for step steady-state solutions of the system.

D. Example

An analytical approach to our problem requires the calcula-
tion of the sum in Eq. (21). One specific choice that allows for
an exact calculation are networks with a flat degree distribution
within a given range of degrees given by

P (k) =
{
C, k ∈ [kmin,kmax]

0, otherwise,
(24)

with C = 1/(kmax + 1 − kmin). The joint distribution function
is then given by

N (k,k′) = kk′C
k0

+ γ
(k − k0)(k′ − k0)

C
, (25)

where again we used the constant k0 = (kmax + kmin)/2.
Requiring N (k,k′) to be positive limits the correlation strength
parameter to

γ ∈
[
−4kminC

2

k0
k2
,
4kminkmaxC

2

k0
k2

]
, (26)

where 
k = kmax − kmin. Figure 1 shows the joint distribution
function for uncorrelated networks in the k,k′ plane in blue.
The red mash shows the maximally correlated case γ =
γmax ≈ 1.45 × 10−6 for the range of degrees of this example,

FIG. 1. The joint distribution function N (k,k′) for k,k′ ∈
[100,240] for the maximal possible correlation strength parameter
γ (red) and the joint distribution function N (k,k′)unc (blue) for the
same degree range.

i.e., k ∈ [100,240]. One can see that the correlation between
the population of minimal degree (here k = 100) and itself
is increased compared to the uncorrelated case, which is also
true for the population of maximal degree (here k = 240).
On the contrary, the correlation between the population of
maximum degree and the population of minimum degree is
reduced, compared to the uncorrelated case. For our particular
choice of correlation, this is the limiting point for the strength
parameter γ , as choosing any higher value would lead to
negative values, which are prohibited by Eq. (9). Analogously,
for negative strength parameters, there is a lower bound. In that
case the “self-correlation” of the smallest population degree
is the first to approach zero, while the correlation between the
smallest and the highest population is larger compared to the
uncorrelated case. (This case does not lead to more interesting
dynamics and is therefore not displayed in the plot Fig. 1.)

For uncorrelated networks with a flat degree distribution,
as defined by combining Eqs. (8) and (24), Eq. (22) leads to

F (κ) =
∑
k′=κ

N (κ,k′) = Cκ

k0

kmax∑
k′=κ

k′ (27)

= Cκ

2k0
[kmax(kmax + 1) − κ(κ − 1)]. (28)

Thus, according to Eq. (23), we expect stationary solutions for
κ if

0 = Cκ

2k0
[kmax(kmax + 1) − κ(κ − 1)] − �. (29)

The expression above is a polynomial of third order in κ ,
which allows for up to three real solutions. These solutions
can be understood such that for a given threshold �, there are
possibly three values for κ = κ1,2,3 above and including which
degree, all populations are active, so uk = 1, ∀ k � κ . In
Fig. 2(a) we show the function F (κ) for a number of different
threshold values � and in Fig. 2(b) we show self-consistent
solution for Eq. (21) for the uncorrelated network with flat
degree distribution.

The blue dashed line in Figs. 2(a) and 2(b) illustrates an
exemplar threshold, i.e., the number of input links from active
neighbors, that is required for a neuron to be active. The black

(a) (b)

FIG. 2. (a) The function F (κ) vs. κ for a network with a flat degree
distribution with 100 � k � 240. The blue dashed line indicates an
exemplary threshold, in this case � = 108. Intersections of F (κ)
and this threshold give the solutions of the self consistent equation
0 = F (κ) − �, which are shown in (b) for a number of different
thresholds.
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dots in Fig. 2(b) represent the solutions of Eq. (23) for κ .
As can be seen F (κ = kmin) = kmin, which is consistent with
what is expected from Eq. (10). In other words, setting the
threshold value � equal to the minimum possible population
degree kmin yields one solution at κ = kmin, thus a completely
active network. This is quite intuitive, because � = kmin does
not forbid any population to be active by default.

III. METHODS

In this section, we briefly discuss the methods that were
used for a numerical validation of the theory. Namely, we
describe the algorithm used to create realizations of the
ensemble of networks with given number of neurons N , degree
distribution P (k), and joint distribution function N (k,k′).

A. Methods—Network creation

The creation of a network realization of the ensemble of
networks defined by {N,P (k),N (k,k′)} foots on one basic
idea. “Measuring” the joint distribution function from a given
network boils down to the calculation of histograms of the
degrees of all neurons that are connected to all neurons of
the same degree, i.e., to one entire population. Inversely,
we can generate a realization of a network with a desired
joint distribution function by assigning outgoing links from
all neurons of one population in a way that the expected
histogram is met. Specifically, a histogram of the degree of
all neurons that have incoming links from neurons of degree
k must approach NP (k)N (k,k′). The reason for this is that
NP (k) is roughly the number of neurons with degree k, and
N (k,k′) is roughly the average number of links that point from
a neuron of degree k to a neuron of degree k′. Note that in
our example N and P (k) are constant, and thus the histogram
corresponds to a cut through the surface shown in Fig. 1 along
the line corresponding to a chosen degree k′.

Thus, since we know what histogram should be created,
we randomly select as many neurons (with open stubs) as
required and put them all into one list. Note that this list
contains kNk = ∑

k′ Nk′N (k,k′) indices of neurons, consistent
with Eq. (11). Then we take all neurons of degree k and connect
each to k randomly selected neurons of this list. This is repeated
subsequently for all populations of the network, until there is
no neuron left with open stubs, i.e., the network is completely
connected. Note that at the point when neuron indices are
added to a list that holds all available neurons, every neuron of
degree k is added to the list the number of times, which is equal
to k minus the number of its already assigned in-neighbors,
i.e., it is added once for its every open in-pointing stub. Then
links are assigned to randomly chosen neurons from that list
of indices. The algorithm obviously doesn’t avoid double or
self links (which is sometimes desirable but not generally
required). A multiple link between the two neurons may be
interpreted as a single link with higher synaptic coupling
strength, i.e., may be considered to mimic the situation where
not all synapses are assumed to have equal properties.

Note that even though double and self links are allowed,
not every joint distribution function is perfectly realizable.
This has mainly two reasons. First, the actual distribution of
degrees can, but must not, be perfectly equivalent to the desired

degree distribution. Second, the joint distribution function is a
matrix whose entries are real rather than natural numbers, as
it would be required to assign a perfectly matching number of
links. Therefore, its entries are rounded of to the corresponding
integer part, whenever the number of links between two
populations is calculated.

B. Methods—Binary neurons

To demonstrate the correctness of the calculated steady-
state solutions, we discuss simulation results of the spreading
of simple time-discrete binary, or two-state neurons, some-
times referred to as McCulloch-Pitts neurons [17]. These are
fully characterized by being in one of the two possible states
which we will refer to as the active and the passive one. The
state vi of the neuron i depends on the number of input links
from other active neurons. If this number exceeds a certain
threshold � in one time-step, the neuron is active in the next,
independently of the current state of the neuron. In one iteration
of such a discrete-time procedure, the numbers of all active
neighbors are counted for all neurons in the current state. Then
the state of the system updated according to

vi(t + 1) = θ

⎛
⎝∑

j

aij vj (t) − �

⎞
⎠; (30)

see Chapter 12.2.1 of Ref. [19]. This system is known to be
able to show bistability under appropriate conditions (see,
e.g., Refs. [21,22]). In Appendix B we will briefly discuss
the temporal evolution of such a system as described by
the population equations Eq. (4) in continuous time, as well
as different degree distributions and transfer functions. The
continuous-time representation is also more convenient for
performing the stability analysis of the solutions as discussed
in Sec. V A.

IV. RESULTS

A. Steady-state firing in uncorrelated networks
with flat degree distribution

For the simulation, we created networks with N = 80 000
neurons. As shown below, the steady-state activity depends
on the initial conditions of the system. In our simulations we
use the initial condition where all neurons with degree larger
then a given threshold kinit are initialized in the active state.
Then we let the system evolve and wait until it reaches the
steady state. This is registered when all neurons do not change
their state during two consecutive iteration steps. Figure 3
shows the convergence behavior for an uncorrelated network
for different numbers of initially active neurons in the system
with � = 108. The figure shows that there are two possible
steady states to which the activity pattern converges. One of
them is a trivial one with no active neurons at all, another one
has a nonzero number of active neurons. These two represent
stable fixed points of the system’s dynamics. The nontrivial
stable point is labeled as I in Fig. 3. One can also see that there
is a clear line above and below which the system strives to
one of the steady-state regimes, indicating the existence of the
unstable fixed point labeled as II in Fig. 3. The evolution of
the three specific initial conditions is indicated by the green,
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FIG. 3. The number of active neurons versus the number of itera-
tion steps. Different lines correspond to simulations with different
initial conditions. This image captures the convergence behavior
of an uncorrelated network of N = 80 000 binary neurons with a
threshold of � = 108, whose degree is flatly distributed in a range of
k ∈ [100,240].

red, and blue lines. Figure 3 suggests that the system under
investigation possesses exactly one nontrivial stable and one
unstable fixed point.

The specific degree that corresponds to the unstable fixed
point II in Fig. 3 will be denoted by κu and is simply determined
as the number of neurons per population, Nk , times the number
of populations, starting from the largest, that would have to
be active to achieve the equivalent number of active neurons
indicated by the dashed black line II in Fig. 3. The number of
active neurons in the system is given by

Nactive = N

kmax∑
k=kmin

P (k)uk = N

kmax∑
k=κ

C (31)

= NC(kmax − κ + 1), (32)

where C is the normalization constant in Eq. (24). Thus,
because Nk and kmax are fixed, and Nactive can be observed
from the simulation, we can use Eq. (32) to calculate κu.

Figure 3 shows that relaxation of the system to its steady
state takes only a few iteration steps, i.e., happens very fast. We
note that the initial number of active neurons can be interpreted
as a stimulus to the system, and the number of active neurons
in the steady state as the corresponding response. Then, the
rather fast relaxation of the system corresponds to a rapid
information transfer through the system. The dependence of
the response time on the system’s size is weak due to the
small-world topology of all networks considered in this work
and also of realistic subnetworks of neurons in the brain. The
only case in which we observed slightly prolonged relaxation
times in our simulations was when the threshold value � was
chosen close to but below the bifurcation point, and for the
network sizes small enough. In this case we observed the
system to “almost” converge to the steady-state solution but
then eventually turn to an inactive state, as illustrated in Fig. 9.
This is a finite-size effect that will be discussed in detail in
Sec. V.

Figure 4 shows the time evolution of the population activity
“fronts” in time. It can be seen that during the temporal

100 120 140 160 180 200 220 240

k

0.0

0.2

0.4

0.6

0.8

1.0

u
k

FIG. 4. The time evolution of the population activity for the
three exemplary initial conditions discussed in Fig. 3. Every line
corresponds to the population activity after one subsequent iteration
step starting with the initial conditions indicated by the vertical
lines of the same color. The expected stable and unstable stationary
solutions shown in Fig. 3 are displayed as solid and dashed black
lines. Starting from the initial step function, the shape of the curve
rapidly changes to a sigmoidal “front,” which retains its form while
traveling along the κ axis.

evolution, the shape of the front remains very similar, while it
propagates toward a stable fixed point. For initial conditions
past the unstable population degree (shown with blue lines),
the front vanishes, i.e., converges to the trivial stable fixed
point of a completely inactive network. For initial conditions
below the unstable population degree (red and green lines),
the “fronts” move toward the nontrivial stable solution, which
is marked by I in Fig. 4. The gray line in Fig. 4 shows a
fit of the population activity after the fourth iteration to an
error function. It can be seen that the resulting population
activity is very well approximated by an error function. From
the population activity in the nontrivial steady state (indicated
as I in Fig. 3) we define the position κs of the stable steady
state solution as the population degree κ at which uκ (1 − uκ )
attains its maximum. This turned out to be a very robust
method for approximating κs in the sense that even though
the particular values of the population activities uk varied in
different network realizations, no changes in the estimated
values of κs were ever observed for networks of N = 80 000
neurons.

In Fig. 5(a) we show the steady-state population activity
uk against the population degree k for a number of different
threshold values �. From left to right, the lines correspond
to increasing thresholds �. We find that for smaller threshold
values, approximating the population activity as step function
is quite good, for larger values of �, the sigmoid function
uk appears less steep. Our findings show that the population
activity uk monotonically increases with k, which agrees well
with the intuitively assumed functional dependance.

Figure 5(b) shows the approximated steady state population
degree κ∞ as function of the initial population degree κ0 that
was set at the beginning of the simulation for the same values of
� as in a. It can accordingly be seen as a tuning curve, showing
the response of the system (κ∞) as function of the stimulus (κ0).
All curves show the same characteristic behavior: κ∞ � kmin
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(a) (b)

(c)

FIG. 5. The figure above shows the simulation results for an
uncorrelated network of N = 80 000 neurons with flat degree
distribution. The simulations were carried out for threshold values
� ∈ [100,111]. (a) The population activity uk against the population
degree k. Every line corresponds to the population activity, after
the dynamics died out within the network, i.e., further iterations
did not lead to a changed state of any neuron. Lines from left to
right correspond to simulations with increased threshold value. (b)
The calculated steady-state solution degree κ∞ as function of the
population degree κ0, above and including which all neurons were
initially active in the simulation. Therein, vertical lines from left to
right correspond to simulations with decreasing threshold value. (c)
The stable (red dots on the lower branch) and unstable (blue hollow
dots on the upper branch of the curve) fixed points calculated from
simulations (see text for details) as functions of the threshold �. The
dashed line corresponds to solutions of the equation F (κ) − � = 0;
cf. Fig. 2.

stays constant up to a certain point at which they jump to zero
(which is not seen from the plot cut at its lower part). This point
corresponds to the unstable fixed point κu, while the nonzero
constant value represents nontrivial stable fixed point κs and
zero corresponds to the trivial stable one.

In Fig. 5(c) we plot κu (blue circles) and κs (red circles) for
a number of different threshold values against the values of κ ,
which solve Eq. (21) and were shown in Fig. 2. It can be seen
that the values agree very well for the entire range of chosen
thresholds, ranging from the minimal degree kmin = 100 to
the largest value allowing for the solution of F (κ) − � = 0
(Fig. 2), i.e., � = 112 for this specific system. The surprisingly
good agreement justifies the approximation of the population
activity by a Heaviside step function. Even for larger threshold
values �, where the steady-state population activity shows a
broad range of populations that are not completely active nor
completely inactive, the approximate solution agrees very well
with the numerical one.

The roman numerals shown in Fig. 5 mark the stable and
unstable branches of the solutions (cf. Figs. 3 and 4): The
lower branch I in Fig. 5 is the stable solution and the upper
branch II in Fig. 5 is the unstable one. Note that a higher initial
degree κ corresponds to a smaller number of initially active
neurons. The same roman numerals are used in Fig. 3 to show

the corresponding state, but in that case only for the threshold
� = 108.

Let us summarize the findings of this section with respect
to the analytical approximation used. We have a system of
equations of the following form:

uk = θ [F (κ) − �]. (33)

For the current system (flat degree distribution, no degree-
correlations), there are two solutions for the population degree
k = κ1,2 that correspond to vanishing of the argument of the
Heaviside step function:

F (κ1,2) = �. (34)

The numerical simulations suggest these indeed indicate the
regime change and that one of these solutions corresponds
to the stable and another one to the unstable fixed point of
the dynamics. We referred to them as κu and κs . It is rather
difficult to give a mathematically rigorous discussion of the
stability properties of the steady-state solutions of our system
with discontinuous dependencies; Sec. V A, however, gives
hints on the reasons for the observed behavior.

B. Steady-state firing in correlated networks
with flat degree distribution

The example discussed above shows the existence of three
steady-state solutions: two stable solutions, where one is
a zero-activity state and the other is a step solution, and
one unstable step solution. In correlated networks, we may
encounter more complex situations. This is demonstrated by
the case for k ∈ [100,240] as shown in Fig. 6. In this figure we
plotted the function F (κ) as defined by Eq. (22) for the minimal
(green), zero (blue), and maximal (red) possible correlation
strength parameter γ . The inset shows a zoom. As one can see,
especially in the inset, for the maximal value of γ = γmax, there
exist threshold values, that intersect three times with F (κ) and
we therefore expect three nontrivial solutions κ . The dashed

FIG. 6. The figure shows F (κ) as function of the population
degree κ for three different values of the correlation strength
parameter γ . The green line corresponds to the minimal possible
value γ = γmin ≈ −0.60 × 10−6, the blue line to the uncorrelated
case (γ = 0), and the red line to the maximal possible value
γ = γmax ≈ 1.45 × 10−6. The inset shows a zoom of the same graph,
where the dashed black line shows an exemplary integer value for
the threshold, here � = 99, that intersects three times with F (κ)
for γ = γmax.
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FIG. 7. Simulation results for correlated networks of different
sizes at a threshold of � = 99. A steady-state solution is shown as
function of the correlation strength parameter. For this simulation,
the initially active population degree was chosen to be κ0 = 150.

black line in the inset exemplarily shows the threshold � = 99,
which exhibits the property of more than two intersections
with F (κ) for γ = γmax. The corresponding joint distribution
function N (k,k′) is shown in Fig. 1 in red, compared to the
uncorrelated joint distribution function in blue. Figure 7 shows
stable fixed points of the system as function of the correlation
strength parameter γ for different network sizes at a threshold
of � = 99. Simulation results are indicated by blue, green
and black marks (different colors represent different network
sizes). Theoretically predicted results are indicated by the gray
dashed line. For the simulations, each system was initialized
at κ0 = 150. The marks show steady state solutions of the
system. They were approximated as discussed in Sec IV A
for uncorrelated networks. One can see, that for the largest
chosen system size of N = 80 000 neurons, the expected and
simulated results agree very well. For the smaller system sizes,
the simulation results differ from the expected. Especially
at the point where the second unstable solution emerges,
the discontinuous “jump” is only observed for the larger
system sizes. Unstable fixed points for this situation were also
recovered from direct simulations (not shown). In Fig. 8 we
show a surface of solutions of the self-consistent equation
0 = F (κ,γ ) − � for the entire possible range of the strength
parameter γ . One can see that for smaller values of γ , there are
two nontrivial solutions κ , while for large correlation strength
parameters, four κ’s can be found.

V. DISCUSSION

In Fig. 8, the lowest κ values correspond to a stable solution
of the system, i.e., represent points, to which the system
converges, depending on the initial conditions. The largest
κ value displayed by this surface are unstable solutions. In
the vicinity of that point, a slight change of initial conditions
leads to the convergence of the system to a different stable
point. Going above this value leads to vanishing activity in the
system, i.e., to κ = 0, which is always a stable fixed point. For
higher correlation strength parameters γ , one additional stable
and one additional unstable fixed point emerge. However,
this is only possible for threshold values below the minimal
population degree. One of the stable fixed points is then

FIG. 8. The figure shows the solutions κ of the equation 0 =
F (κ,γ ) − � within the maximally possible range of γ for networks
with flat degree distribution in the range 100 � k � 240. The color
code simply indicates the height of the surface.

κs = 100, which means that all populations are completely
active.

Note that Fig. 5 corresponds to a cut through the surface
displayed in Fig. 8 in the �-κ plane at γ = 0. Figure 7,
on the other hand, corresponds to a cut in the γ -κ plane at
� = 99. Approaching the vertex in the former can be done
quite precisely, as the correlation strength parameter can be
arbitrarily chosen. In the latter case, this is not possible,
because only integer values of � are allowed here. (Note that
the surface shown in Fig. 8 was also calculated for noninteger
numbers of �, which we do not allow in our simulations at
this point.)

Our simulations recover the theoretically predicted values
quite precisely for system sizes that are appropriately large.
For too small system sizes, the simulation results differ more
and more from the theoretical predictions. For example, for
uncorrelated network with degree range k ∈ [100,240], the
vertex of F (κ) lies very closely and actually slightly above
� = 112 and accordingly we would expect a steady-state
solution for that threshold, which we, however, do not find for a
network consisting of N = 80 000 neurons. The simulation of
that particular situation is displayed in Fig. 9. As one can see,
there is a regime of initially active neurons, which change only
very little in a range of roughly 20–80 iteration steps. However,
iterating further eventually leads to vanishing number of active
neurons for all initial conditions. Thus, we find no nonzero

FIG. 9. The figure above shows the number of active neurons as
function of iteration steps for an uncorrelated network with different
initial conditions, similar to Fig 3, but at a threshold of � = 112.
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steady state solution for � = 112. This could probably be
circumvented by going to even larger system size, but also
doesn’t really provide any more insight. While it is known that
networks of McCullogh-Pitts neurons can lead to bistability in
the activity of the network [22], we showed how the structural
properties of the network affect and even introduce these stable
patterns.

A. Stability of the steady-state solutions of the system

Steady-state solutions for our system of interest are de-
fined by

u̇k = 0, (35)

with

u̇k = −uk + f

(∑
k′

N (k,k′)uk′

)
, (36)

where uk is the activity of population k. The function f

introduced in Sec. II A is the recurrent input function of
sigmoidal form (which will then be approximated by a
Heaviside step function). For the fixed point we then get

uk = θ

(∑
k′

N (k,k′)uk′ − �

)
. (37)

Discussing the stability of fixed points of this system in a
general manner is problematic, because Eq. (37) fixes uk to
either 1 or 0. It is intuitive that there is a certain degree k = κ

that represents a step solution, i.e., uk = θ (κ − k). Evidently,
the degree κ satisfies the equation

F (κ) − � = 0, (38)

where we again introduced F (κ) = ∑kmax
k′=κ N (κ,k′).

Although the approximation in which uk only takes two
values, 0 or 1, together with the Heaviside recurrence function,
is sufficient to reproduce the positions of the fixed points
of dynamics, it is too rough to reasonably describe the
temporal evolution of the system, and therefore to classify
the stability properties of the fixed points. Let us consider a
step-function distribution of uk = θ (k − κ), and let us take κf

to be the solution of F (κf ) − � = 0, where the argument of
the recurrence function changes its sign. Let us consider the
whole interval of k, kmin � k � kmax, and the values of uk ,
which are uk = 0 for k < κ and uk = 1 for k � κ . The whole
interval of the k values can then be separated into subintervals
where uk = θ [F (κ) − �], where u̇k = 0, and no changes
take place, and the ones where uk �= θ [F (κ) − �], where uk

change, namely grow or decay. This growth or decay initially
takes place “vertically”: all uk in the corresponding domain
grow or decay initially at the same rate, take values that are
different from zero or unity, and during this growth or decay the
assumption uk = θ (κ − k) breaks down. A slight modification
of the model, however, allows for making statements about the
stability.

Let us return to Fig. 4 and consider the domain of the
realistic “front,” in which uk is neither close to zero nor to unity
(i.e., the growth domain of uk which is depicted by a vertical
wall, when passing to the θ -function approximation). Let us
now assume uk in this domain to grow or to decay. Growing

FIG. 10. The figure above shows the propagation of a population
activity “front” from one exemplary iteration to the next. It can be
seen, that a growing of uκ in this domain leads to a shift of the front
to the left (lower values of κ), as indicated by the red arrow. The
red shaded lines show best fit error functions for each “front.” Black
arrows indicate the change in uκ for exemplary values of κ .

of uk then corresponds to the shift of the growth domain to the
left, while decaying of uk corresponds to shifting the domain
to the right. Figure 4 gives a hint onto exactly this kind of
“horizontal” behavior of the solution of the whole problem:
The form of the front forms relatively early in the course of its
temporal evolution, after which the spatial distribution of uk

keeps its form, but moves as a whole.
When going to the approximate, steplike form of the front,

we now have to assume that this growing of uk in the domain
takes place by shifting the border between zero and unit values
(the “front”) to the left (to lower values of κ), while decaying
corresponds to shifting this border to the right (larger values
of κ). Shifting to the right takes place if F (κ) − � < 0, and
shifting to the left if F (κ) − � > 0. Figure 10 illustrates
this for two exemplary population activity “fronts.” One
corresponds to the other after exactly one iteration step. The
direction of the front propagation is indicated by the red arrow,
pointing from the median of the one front to the other. Black
arrows show the evolution of uκ for exemplary κ values before
and after this one iteration step. The red shaded lines show
fitted error functions. It can be seen that both “fronts” are well
approximated by the error function and that the shape changes
only very little in the course of one iteration.

Now we neglect the discreteness of k and consider the
changes in some formal timelike variable τ , so that

dκ

dτ
= −[F (κ) − �], (39)

which depicts our discussion about the direction of the front’s
motion. Now we simply can discuss the stability of the front
position using the standard method. The fixed-point front
position κf is stable if

dF (κ)

dκ

∣∣∣∣
κ=κf

> 0 (40)

(the “force” acting on the front is a restoring one) and unstable
otherwise. For an uncorrelated network with F (κ) given by
Eq. (28) the nontrivial fixed point at a smaller value of κ is
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(a) (b)

FIG. 11. The figure above shows a summary of the two possible
cases for the stability discussion. (a) F (κ) − � for an uncorrelated
network with flat degree distribution as discussed in Sec. IV A,
with � = 108, corresponding to Fig. 2. (b) The same for the
maximally correlated case as discussed in Sec. IV B and for � = 99,
corresponding to the red line in Fig. 6. In both figures, the fixed
points are defined by the intersection, and their stability by Eq. (40),
i.e., the slope of F (κ) at the intersection. Hence, the uncorrelated
network with flat degree distribution gives rise to one stable and one
unstable nontrivial fixed point. Degree correlations in networks with
flat degree distribution can lead to a third nontrivial fixed point, which
is here unstable.

therefore stable, and the one at the larger value is unstable.
For the correlated network of our other example the situation
is similar. A comparison of two exemplary cases is shown
in Fig. (11). This is in agreement with what we see in our
simulations.

On a final remark, we want to point out that the discrete
time version of our system with step function θ as a transfer
function [Eq. (30)] is very similar to the Hopfield model
[23], which has been extensively studied in the context
of storing patterns in neuronal networks and spin glasses,
etc. This model is know to be able to exhibit cyclic or
chaotic behavior if the interaction matrix, i.e., the adjacency
matrix of the network, is not symmetric [24]. While this is
generally the case for any directed network, our analytical
considerations as well as the simulation results gave no hints
onto cyclic or chaotic behavior for the networks studied in this
work.

VI. SUMMARY AND OUTLOOK

In this work we formulated a description of steady activity
states in complex networks and advertise that population
statistics is sufficient to describe dynamics of this particular
system. We have seen that approximating the population
activity in neuronal networks by a function as simple as the
Heaviside step function allows an analytical approximation for
flat degree distributions, that is well retrievable by numerical
simulations of binary neurons.

Throughout this study, we have only focused on the
case of flat degree distributions, as those are easy to solve
analytically. However, the presented formalism should hold
for degree distributions that do not show a simple analytical
approximation of κ .
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APPENDIX A

1. Population equations

The population equations used in the text are the mean-
field equations. As often, they may represent an uncontrolled
approximation of the initial model based on interchanging
averaging with a nonlinear operation, and may be obtained as
a special limiting case of an exact theory in which the range
of interaction (i.e., the total number of interacting sites) goes
to infinity while the interaction strength goes to zero. In what
follows we show that this is exactly what is done. As always,
the accuracy of such approximation must be checked in explicit
simulation, as it was done in the main text.

Let us return to our Eqs. (2) and (3) and note that the second
term in the right-hand side of Eq. (3),

f̃ (uk) = 1

Nk

∑
i:ki=k

f

⎛
⎝∑

j

aij vj

⎞
⎠ (A1)

(assumed in the approximation to be a function of uk), is the
arithmetic mean of the recurrence functions f for the neurons
of the k population in a given realization of the network. The
number of k neurons in the network is usually large; in the
limit of an infinitely large network Eq. (A1) defines the true
statistical mean (mathematical expectation) of the recurrence
function f for a k neuron. The approximation done in the
population model corresponds to the approximation of the
mean value of the function by the function of the mean value
of its argument.

The aim of our discussion is to clarify what additional
assumptions have to be done on the way, i.e., what kind of
the limiting transitions are done, and how the accuracy of the
approximation may be estimated. In what follows we assume
that for each k population the mean population value of the
activity uk and that lower moments of vi within each population
are well-defined.

If not only the number of neurons in the network, but also
the number of synapses k per neuron is large enough (which
in our case is guaranteed by using the relatively large lower
cut-off kmin), the total number of connections of a k neuron
to k′ ones is also large, and the relative fluctuations of this
number are small. Moreover, separating the sum over j into
contributions of populations corresponding to different k′, with
N (k′,k) contributions on the average, we see that

∑
j

aij vj �
kmax∑

k′=kmin

N (k,k′)uk′ . (A2)

Using this expression in the argument of f [Eq. (A1)],
we see that f̃ (uk) = f [

∑
k′ N (k,k′)uk′], which leads to our

Eq. (4). Let us first rewrite the sum in the argument of f ,
Ai = ∑

j aij vj by first summing over all the neurons in the k′

population connected to i, and then over all the k′ populations,

Ai =
∑

j

aij vj =
kmax∑

k′=kmin

∑
j :kj =k′

v
(i)
j .
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Here, we introduced the notation v
(i)
j = aij vj , where super-

script (i) denotes the number of the neuron whose connections
are considered. Further introducing n

(i)
k′ = ∑

j :kj =k′ aij , i.e., the
number of k′-neurons connected to neuron i, we rewrite this
expression as

Ai =
kmax∑

k′=kmin

n
(i)
k′

∑
j :kj =k′

v
(i)
j

n
(i)
k′

.

The second sum is the arithmetic mean of v
(i)
j in the

subpopulation of the k′ population, namely for all k′ neurons
connected to i. According to the law of large numbers, for
n

(i)
k′ → ∞ this sum tends to the mathematical expectation of

vj in the k′ population, i.e., to uk′ , and its fluctuations between

realizations of neighbors of i decay as 1/

√
n

(i)
k′ , so that this one

tends to a deterministic limit which ceases to depend on the
number i of the neuron considered. Thus,

∑
j :kj =k′

v
(i)
j

n
(i)
k′

= uk′ + δuk′ � uk′ + δvk′/

√
n

(i)
k′ ,

where δvk′ is the random fluctuation of the values of vk′ . Its
typical size is given by the dispersion of the values of vi

within the k′ population. In our model vi represents normalized
activities of individual neurons and is therefore limited to the
range from 0 to 1, which also holds for means uk′ . Assuming
that the neurons connected to the one under consideration
are chosen randomly from the corresponding population, the
dispersion is σ 2

k′ = 〈u2
k′ 〉 − 〈uk′ 〉2 < 1. Summarizing, we see

that Eq. (A1) turns to

f̃ (uk) � 1

Nk

∑
i:ki=k

f

[
kmax∑

k′=kmin

n
(i)
k′

(
uk′ + δvk′/

√
n

(i)
k′

)]
.

Now we introduce the joint distribution function, i.e., the
average number of links from the k′ population to the k

population, which is mean of n
(i)
k′ for all neurons i in the k

population, i.e.,

N (k,k′) = 1

Nk

∑
i:ki=k

n
(i)
k′ .

In the models like the ones discussed above, where the
links are added to the node in a kind of a random process,
the fluctuations δn of n

(i)
k′ around their means N (k,k′) are

Poissonian and of the order of
√

N (k,k′), which gives us the
possibility to calculate the expectation of the argument of f in
Eq. (A1) to be

Ai:ki=k =
kmax∑

k′=kmin

N (k,k′)uk′ .

The fluctuations around this mean are given by

δA =
kmax∑

k′=kmin

N (k,k′)δu′
k + δnuk

and are of the order of
√

N (k,k′) (the corresponding dispersion
is σ 2

A � aN (k,k′) with the prefactor a � 2).

We note that the estimates above hold essentially for any
transfer function f bounded on [0,1], and what may change
are only the prefactors in the correction terms O(k1/2

0 ). In
any model with initial activities distributed on [0,1] they will
stay bounded to the same interval during the whole temporal
evolution of the system, and the estimates of the corresponding
dispersions stay true. The step function discussed in the main
text represents to some extent the worst case, and the bounds
for twice differentiable functions f may be pushed tighter.

Let us now discuss what limiting transitions have to be
done to make the approximation exact. First, as we have seen,
the transition k → ∞ has to be done. This can be done by
rescaling of P (k) in which the form of the distribution stays
constant, but both kmin and kmax tend to infinity. For N (k,k′)
we then obtain that this can be rewritten as a function of the
relative link numbers ν = k/k0, and ν ′ = k′/k0 depending on
the two dimensionless parameters, the correlation strength γ

and the relative width w = k0C
−1: N (k,k′) = k0N (ν,ν ′; γ,w).

In this notation for k0 → ∞, we will get

Ai � k0uk + O
(
k

1/2
0

)
,

where the second contribution denotes the fluctuating part of
the argument. This argument A of the f function [Eq. (A1)],
however, diverges in the limit k0 → ∞ which limit thus
does not exist in the mathematical sense. This is the typical
situation in all mean-field approaches, where the interactions
have to involve many particles (to create the mean field with
negligible fluctuations) but the strength of this field does
not have to diverge, exactly the same, as, say in an Ising
model with long-range interactions, as discussed in Sec. 6.6 of
Ref. [25]. This difficulty is overcome by explicitly introducing
the coupling strength c ∝ k−1

0 and taking the argument of
the transfer function to be Ai = c

∑
j aij vj . In this case, the

growth of the number of inputs of the neurons, leading to the
decay of relative fluctuations but to the growth of the total
impact, is compensated by the fact that the impact of each
particular neuron gets smaller. Under the limiting transition
k0 → ∞, the argument of the f function gets to be

A = uk + O
(
k

−1/2
0

)
,

so that fluctuations can be made arbitrarily small, and Eq. (4)
gets exact. We note that for a step function f (x) = θ (x − �)
such a renormalization of x → cx is equivalent to the rescaling
of � according to �′ → c−1� = k0�, as it follows from the
property θ (cx) = θ (x) for any c > 0. This gives us a simpler
recipe for rescaling: The theory gets exact in a limit when
k0 → ∞ provided the value of � is rescaled accordingly. The
behaviors of the systems with the same kmin/k0,kmax/k0, and
�/k0 will be similar.

For a flat and relatively narrow distribution N (k,k′) �
N (k,k) � k0 the fluctuations of each term are of the order
of

√
k0, i.e., by the order of k

−1/2
0 smaller than the mean, with

approximately Gaussian distribution following by virtue of
the Central Limit Theorem. This Gaussian distribution then
translates into the error function used for the fit of the actual
distribution of activities for a Heaviside-θ recurrence function
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f used, e.g., in Fig. 10 and also for the gray shaded front form
in Fig. 4, since

f̃ (uk) = 1

Nk

Nk∑
i=1

f (Ai) � 〈
θ (Ai:ki=k − �)

〉 = F (A),

where F (A) is the cumulative distribution function of the
distribution of Ai:ki=k . For the Gaussian distribution of Ai:ki=k

it is related to the error function. The widths of the fronts
obtained in simulations indeed are error-function-like, and
their widths are indeed of the order of

√
k0.

2. Constraints on the joint distribution function

Equation (9) follows from the positivity of probability.
Equation (10) holds because of normalization

∑
k′ P (k′|k) = 1

or
∑

k′ P (k,k′) = Pe(k). For undirected networks, Eq. (11)
can be seen by writing out the equation with the definition of
the joint distribution function Eq. (7) and using the detailed
balance condition∑

k

kP (k)P (k′|k) =
∑

k

k′P (k′)P (k|k′) (A3)

= k′P (k′)
∑

k

P (k|k′) (A4)

= k′P (k′). (A5)

For directed networks, the joint probability density P (k,k′)
is not generally symmetric and accordingly detailed balance
doesn’t hold. However, from the constraint of a given degree
distribution AND equal in and out degree, it follows that the
summation of the joint degree distribution over either degree
must yield the edge degree distribution of the remaining degree
(compare to Eq. (17) in Ref. [15]). That is,∑

k

P (k,k′) = Pe(k) and
∑
k′

P (k,k′) = Pe(k′). (A6)

Then again, from the normalization of the conditional proba-
bility

∑
k Pe(k)g(k,k′) = 1 we find∑

k

kP (k)P (k′|k) =
∑

k

kP (k)P (k,k′)
Pe(k)

(A7)

=
∑

k

kP (k)Pe(k)Pe(k′)g(k,k′)
Pe(k)

(A8)

= Pe(k′)
∑

k

kP (k)g(k,k′) (A9)

= 〈k〉Pe(k′)
∑

k

Pe(k)g(k,k′) (A10)

= 〈k〉Pe(k′) (A11)

= k′P (k′). (A12)

3. General form of the joint distribution function

Equation (13) is obviously fulfilled, if η is of the form

η(k,k′) = g(k)h(k′), with (A13)

kmax∑
k=kmin

g(k) = 0 and
kmax∑

k′=kmin

h(k′) = 0. (A14)

These conditions are satisfied, if g,h are of the form

φ(k) = φ̃(k) − 1

dk

kmax∑
k=kmin

φ̃(k), (A15)

where dk = kmax + 1 − kmin. For a first discussion we choose
g(k) = φ(k), h(k′) = φ(k′) and φ̃(k) = k, so that

φ(k) = k − 1

dk

kmax∑
k=kmin

k = k − k0, (A16)

where k0 = (kmax + kmin)/2, which correspondingly leads to
Eq. (15).

APPENDIX B

In the present study, we focused on the steady-state
solutions for the population activity in recurrent neuronal
networks, which are analytically solvable as, for example,
in the case of flat degree distributions. In this Appendix,
we proceed to show that the population equations derived
still perform well for degree distributions different from flat
ones, for time continuous situations, and for transfer functions
different from step functions. We also note that the population
equations work well for networks of leaky integrate and fire
neurons as considered in Ref. [10]. The discussion below is
not a general proof of the concepts discussed, but it illustrates
the usefulness of the approach for situations different from the
simplest one considered above.

1. Steady-state firing in networks with other
degree distributions

While in general the function F (κ), Eq. (22), might
not be evaluated analytically, it can always be calculated
numerically for a given network. We start by studying an
Erdos-Renyi (ER) random graph [26] of similar size and
mean degree as the networks studied before, i.e., the one with
N = 100 000 and 〈k〉 = 200. For the network creation we used
the igraph software package for complex network research
[27]. Figure 12 shows the joint degree distribution N (k,k′),
“measured” from the obtained network (in blue), compared to
the corresponding distribution calculated according to Eq. (8)
for an uncorrelated random network with a binomial degree
distribution P (k) = (N − 1

k )pk(1 − p)N−1−k with p denoting
the probability that any two nodes share a link. For better
visibility, only every fourth degree displayed in the plot. In
this example, the value p = 0.001 was used both for the
creation of the network and for the calculation of the joint
degree distribution. The measured and the calculated joint
degree distributions agree reasonably well for intermediate
values of k, while there are large deviations towards the
smallest and largest measured values of k. This echoes bad
statistics, which is caused by the very few actual nodes of
these extreme degrees. (In this particular example, the correct
stable steady-state solution is calculated for population degrees
above k = 153. The total number of neurons of all populations
including and below this degree was 21 of 100 000.) Figure 13
shows a summary of the simulation results for the ER graph.
The two top panels, Figs. 13(a) and 13(b), show the number of
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FIG. 12. The figure above shows the joint distribution function,
calculated from a realization of a random graph as described in the
text (in blue), compared to the joint distribution function calculated
from Eq. (8) (in red). In that case, the degree distribution is given
by a binomial distribution. It can be seen that the two surfaces differ
significantly toward the maximum and minimum in-degree k.

active neurons and the population activity uk after subsequent
iteration steps for two different initial conditions. Red and
blue lines correspond to an initially active population degree
slightly below (kinit = 185) and slightly above (kinit = 186)
the unstable fixed point, respectively. The result for the lower
initial population degree converges to a stable steady state
of active neurons, the other one leads to vanishing activity,
similar to the behavior described in the sections above. The
lower panel of Fig. 13 shows the stable (red dots) and unstable
(blue hollow dots) fixed point of the system as function of
the neuron threshold �, compared to the expected result from
Eq. (23), shown by the black solid and dashed lines for N (k,k′)
calculated and N (k,k′) “measured.” It can be seen that the sim-

(a) (b)

(c)

FIG. 13. (a) The active neurons, sorted by degree and (b) the
corresponding population activity. The system was initialized slightly
above (blue dashed lines) and slightly below (red lines) the critical
population degree and then iterated, until the steady state was reached
(cf. Fig. 4). (c) The stable (red dots) and unstable (blue hollow dots)
solutions of the system, compared to the expected result.

ulation results agree very well with the expected result for the
most part, with the exception of results for stable fixed point for
low thresholds �. This deviation is caused by the bad statistics
due to the very few, if any, nodes at those extreme degrees.
The results show that the method described is not limited to a
particular flat degree distribution, but can also be applied for
the investigation of biologically more relevant situations.

2. Temporal evolution

Let us now present results of numerical simulations for an
exemplary sigmoidal transfer function f different from the
step function. We note that in this case the continuous-time
approach is more appropriate. We therefore assume that the
(normalized) activity vi of every individual neuron can take
continuous values between 0 and 1, and integrate the system
of Eqs. (1) using a simple forward Euler scheme:

vi(t + dt) = vi(t) + dt

τ

⎡
⎣−vi(t) + f

⎛
⎝∑

j

aij vj − �

⎞
⎠

⎤
⎦.

(B1)

Note that the map described by Eq. (30) is equivalent to
Eq. (B1) if we choose the time step to be equal to the time
scale τ , and both equal to unity, dt = τ = 1, and take f to
be a θ function. The macroscopic simulations are equivalently
performed using a forward Euler integration scheme for the
population equations, Eq. (4):

uk(t + dt) = uk(t) + dt

τ
[−uk(t)

+ f

(∑
k′

N (k,k′)uk′ − �

)]
. (B2)

FIG. 14. The figure above shows the temporal evolution of
the relative activity of recurrent neuronal networks of different
sizes (microscopic simulation, black lines), compared to the evo-
lution of the relative activity as expected from the population
equation, Eq. (4) (macroscopic simulation, red line). The black
dotted, dashed, solid lines correspond to network sizes of N =
14 100, N = 28 200, and N = 84 600, respectively, 100, 200, 600
neurons per population. The inset shows the population ac-
tivity uk , as function of the degree k with the same color
code.
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In this section, we return to the flat degree distribution and
display simulation results comparing the temporal evolution
of the relative activity of the networks as given by direct
simulations and by the population equations. The relative
activity is defined as

u(t) = 1

kmax + 1 − kmin

∑
k

uk(t)

= 1

N

∑
i

vi(t). (B3)

Figure 14 shows a comparison between microscopic sim-
ulation results and ones of the macroscopic description of
the temporal evolution of the relative activity for a recurrent
neuronal network with a flat degree distribution within k ∈
[100,240] for different network sizes. The inset shows the
normalized population activity uk attained after the steady
state was reached for the macroscopic simulation [Eq. (B2)]

(in red) and for the microscopic simulation in [Eq. (B1)]
(in black). For all simulations the time scale τ was set to
unity, and the integration time step was taken to be dt = 0.1
(smaller time steps did not change the results in any significant
way). The steady state was identified when two consecutive
relative activity values differed by less then 1%. We used
the transfer function f (x) = 1/[1 + exp(−x + 108)] for both
the microscopic and the macroscopic simulation. The value
108 can be associated with the threshold degree � for a
step transfer function f (x) = θ (x − �). The systems where
initialized so that uk = 1 for k � 150 and uk = 0, otherwise.
Note that for this particular choice of the transfer function and
degree distribution no simple steady-state solution in form of
a step above (below) which all neurons are active (inactive)
arises. However, the population Eqs. (4) still give a good
approximation for the activity of the neuronal populations. The
quality of the approximation improves for larger system sizes,
as expected, and this holds both for the temporal evolution
of the relative activity and for the resulting shape of the
dependence of the population activity on the degree k.
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