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Correlations in eigenfunctions of quantum chaotic systems with sparse Hamiltonian matrices
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In most realistic models for quantum chaotic systems, the Hamiltonian matrices in unperturbed bases have
a sparse structure. We study correlations in eigenfunctions of such systems and derive explicit expressions for
some of the correlation functions with respect to energy. The analytical results are tested in several models by
numerical simulations. Some applications are discussed for a relation between transition probabilities and for
expectation values of some local observables.
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I. INTRODUCTION

Statistical properties of energy eigenfunctions (EFs) of
quantum chaotic systems have been studied extensively in
the past years [1–26]. They are of interest in various fields
of physics and have many applications, e.g., in statistical
and transport properties in chaotic quantum dots [27,28], in
wave functions in optical, elastomechanical, and microwave
resonators [29–35], and in the decay and fluctuations of heavy
nuclei [36–38]. In particular, they play an important role in the
understanding of thermalization [39–43].

Due to the remarkable success of the random-matrix theory
(RMT) in the description of statistical properties of energy
levels of quantum chaotic systems [1–3,44], it would be natural
to expect that the RMT may be useful in the description of
statistical properties of EFs in these systems. Indeed, this
expectation has led to some successful applications (see, e.g.,
reviews given in Refs. [3,45]). In fact, restricted to main bodies
of EFs [5], or to the so-called nonperturbative regions of the
EFs [46,47], numerical simulations show that the distribution
of the components of the EFs has a Gaussian shape, as
predicted by the RMT. But, deviation from the Gaussian
distribution has been observed, when the tail regions of EFs
are taken into account [6].

Consistently, for EFs in the configuration space, Berry’s
conjecture assumes uncorrelated phases for their components
in the momentum representation [4]. Based on Berry’s
conjecture and semiclassical analysis, it has been found that
neighboring EFs in many-body systems predict similar results
for local observables [40]. This property, which has also been
found in a RMT study [39], is of relevance to thermalization
and, in a broader situation, is nowadays referred to as eigen-
states thermalization hypothesis (ETH) [41]. Furthermore,
when specific dynamics, e.g., periodic orbits and long-range
correlations, are taken into account, modifications should be
introduced to Berry’s conjecture [10–14].

In fact, for EFs in chaotic many-body quantum systems,
correlations more than that predicted by the original RMT
have been found and modified versions of the RMT have been
investigated [48–51]. For example, contrary to the vanishing
correlation function predicted by the RMT, in a many-body
system with a sparse Hamiltonian matrix, nonvanishing four-
point correlations have been observed, which are of relevance
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to important physical quantities such as transition probabilities
[8]. Moreover, correlations have been studied for operators at
different times in a two-dimensional kicked quantum Ising
model [52].

In this paper, we study correlations among components of
EFs, particularly the phase correlations, in quantum chaotic
systems whose Hamiltonian matrices have a sparse structure
in unperturbed bases. Such a sparse structure is commonplace
in realistic models. Under this structure, each unperturbed state
is coupled to a small fraction of other unperturbed states. As
a result, it is reasonable to expect certain correlations among
components of the EFs, as shown in the example mentioned
above in Ref. [8]. We derive explicit expressions for some
of the correlation functions and test the results by numerical
simulations. We also discuss some applications of the results.

The paper is organized as follows. In Sec. II, we discuss
the models to be employed. Section III is devoted to generic
discussions for the type of correlation functions to be studied.
Then, some specific correlation functions are discussed in
Sec. IV, for the case in which the perturbation matrix has
elements with a homogeneous sign. The case with nonhomo-
geneous signs of the matrix elements is discussed in Sec. V.
Some applications are given in Sec. VI for a relation between
some transition probabilities, as well as for expectation values
of some local observables. Finally, conclusions are given in
Sec. VII.

II. MODELS EMPLOYED

We consider quantum chaotic systems, for each of which
the Hamiltonian is written as H = H0 + V , where H0 is an
unperturbed Hamiltonian and V indicates a perturbation. We’ll
employ four models in our numerical simulations. Parameters
in the four models are set such that they are in the quantum
chaotic regime, in which the distribution of the nearest-level
spacings is close to the prediction of the RMT.

The first model we consider is a three-orbital LMG model
[53]. This model is composed of � particles, occupying three
energy levels labeled by r = 0,1,2, each with � degeneracy.
Here, we are interested in the collective motion of this model.
We use εr to denote the energy of the rth level and, for brevity,
we set ε0 = 0. The Hamiltonian of the model is written as

H = H0 + V, (1)
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where H0 and V are the unperturbed Hamiltonian and the
perturbation, respectively,

H0 = ε1K11 + ε2K22, V =
4∑

t=1

μtV
(t). (2)

Here, Krr represents the particle number operator for the level
r and

V (1) = K10K10 + K01K01, V (2) = K20K20 + K02K02,

V (3) = K21K20 + K02K12, V (4) = K12K10 + K01K21, (3)

where Krs with r �= s indicate particle raising and lowering
operators. In our numerical simulations, the particle number
is set � = 40, as a result, the Hilbert space has a dimen-
sion 861. Other parameters are ε1 = 1.10, ε2 = 1.61, μ1 =
0.031, μ2 = 0.035, μ3 = 0.038, and μ4 = 0.033. In the com-
putation of the correlation functions, averages were taken over
50 perturbed eigenstates |Eα〉 in the middle energy region.

The second model is a single-mode Dicke model [54,55],
which describes the interaction between a single bosonic mode
and a collection of N two-level atoms. The system can be
described in terms of the collective operator Ĵ for the N atoms,
with

Ĵz ≡
N∑

i=1

ŝ(i)
z , Ĵ± ≡

N∑
i=1

ŝ
(i)
± , (4)

where ŝ
(i)
x(y,z) are Pauli matrices divided by 2 for the ith atom.

The Dicke Hamiltonian is written as [55]

H = ω0Jz + ωa†a + λ√
N

(a† + a)(J+ + J−). (5)

In the resonance condition, ω0 = ω. The operators J obey the
usual commutation rules for the angular momentum,

[Jz,J±] = ±J±, [J+,J−] = 2Jz. (6)

We write the Hamiltonian in the form H = H0 + V , with H0 =
ω0Jz + ωa†a. In numerical simulations, we take N = 40 and
λ = 1, and the particle number of the bosonic field is truncated
at n = 40.

The third model is a modified XXZ model, called a defect
XXZ model [56], in which two additional magnetic fields are
applied to two of the N spins in the XXZ model,

H = μ1s
1
z + μ4s

4
z

+
N−1∑
i=1

[
J
(
si
xs

i+1
x + si

ys
i+1
y

) + μsi
zs

i+1
z

]
. (7)

Without the additional magnetic fields, the system is inte-
grable. We also write H = H0 + V , where

H0 = μ1s
1
z + μ4s

4
z +

N−1∑
i=1

μsi
zs

i+1
z . (8)

The total Hamiltonian H is commutable with Sz, the z

component of the total spin, and we use the subspace with
Sz = −2 in our numerical study. Parameters used in this model
are N = 12, μ1 = μ4 = 0.444, μ = 0.5, and J = 1.4.

The last model we employ is a modified one-dimensional
(1D) Ising chain in transverse field, called a defect Ising

model [57], with the Hamiltonian

H = μ1s
1
z + μ4s

4
z +

N−1∑
i

Jzs
i
zs

i+1
z + λ

N∑
i=1

si
x . (9)

In the form of H = H0 + V ,

H0 = μ1s
1
z + μ4s

4
z +

N−1∑
i

Jzs
i
zs

i+1
z . (10)

Parameters used in this model are N = 10, μ1 = μ4 = 0.444,
Jz = 1, and λ = 0.45. The open boundary condition has been
used for the last two models discussed above.

III. GENERIC DISCUSSIONS ABOUT
CORRELATION FUNCTION

In this section, we discuss the type of correlation function
to be studied in this paper. We use |Eα〉 and |E0

i 〉 to denote
eigenstates of the perturbed Hamiltonian H and of the
unperturbed one H0, respectively,

H |Eα〉 = Eα|Eα〉, H0

∣∣E0
i

〉 = E0
i

∣∣E0
i

〉
, (11)

with eigenenergies in increasing order, and use Vij to denote
elements of the perturbation, Vij = 〈E0

i |V |E0
j 〉. We assume

that the perturbation V has a sparse structure in the eigenbasis
of H0, that is, Vij = 0 for most of the pairs (i,j ). (All four
models discussed in the previous section have this property.)
We also assume that the perturbation has vanishing diagonal
elements, Vii = 0 [58]. The expansion of |Eα〉 in |E0

i 〉 is
written as

|Eα〉 =
∑

i

Cαi

∣∣E0
i

〉
, (12)

where the components Cαi = 〈E0
i |Eα〉 give the EF. For the

sake of simplicity in discussion, we assume that the system
has the time-reversal symmetry and the elements Vij , as well
as the components Cαi are real.

Physically, the following transition amplitude is of interest:

Fij (t) = 〈
E0

j

∣∣U (t)
∣∣E0

i

〉
, (13)

where U (t) = e−iH t . Straightforward derivation shows that

Fij (t) =
∑

α

e−iEαtCαjCαi . (14)

When the time t is not long, neighboring levels Eα give similar
contributions to the phase of e−iEαt . Suppose that the average of
CαjCαi over neighboring levels can be approximately treated
as a smooth function of the energy Eα , denoted by C(Eα),
which approximately holds for most EFs in quantum chaotic
systems. Then,

Fij (t) ≈
∑

α

e−iEαtC(Eα) →
∫

dEe−iEtC(E)ρ(E), (15)

where ρ(E) indicates the density of states. Therefore, knowl-
edge about the function C(E), which is in fact a correlation
function, is useful in the study of physical quantities such as
transition probabilities.

For the above-discussed reason, we study correlation
functions as an average of CαjCαi with respect to the energy.
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FIG. 1. Averaged shapes of EFs in the four models as functions
of the energy difference ε, in the logarithmic scale. The average was
taken over 50 EFs in the middle energy region in each model. The
four models are (a) LMG model, (b) Dicke model, (c) defect XXZ

model, and (d) defect Ising model. The vertical straight lines indicate
edges of nonperturbative (NPT) regions (see the Appendix for the
definition of NPT regions).

It is known that, usually, the EF of |Eα〉 is approximately
centered at Eα (see Fig. 1 for examples of the averaged shapes
of EFs). Therefore, it is convenient to consider correlations
as functions of the energy difference between perturbed and
unperturbed states, namely, as functions of εαl ≡ E0

l − Eα .
The average, which is used in the computation of the
correlation functions, is taken over the perturbed energy Eα for
a fixed value of ε. Determination of the label l will be specified
below, when discussing specific correlation functions.

We find that correlation functions behave differently for
labels i and j coupled in different ways. Therefore, we
study correlation functions according to the ways of coupling.
Specifically, we use Sn to denote the set of those pairs (i,j ),
for each of which the two unperturbed states |E0

i 〉 and |E0
j 〉

have an “n-step” coupling, that is,

Sn = {(i,j ) : (V n)ij �= 0, (V m)ij = 0 for 0 < m < n }. (16)

We call a correlation function, which is computed for pairs
(i,j ) belonging to a given set Sn, an nth-order correlation
function.

For example, the first-order correlation function is defined
by

C1(ε) = 〈CαiCαj 〉/	(ε) for (i,j ) ∈ S1, (17)

where 	(ε) indicates the averaged shape of the EFs, 	(ε) =
〈|Cαi |2〉. Here and hereafter, for an average indicated by 〈 〉, we
take |E0

l 〉 = |E0
i 〉 for εαl discussed above. The second-order

correlation function is defined by

C2(ε) = 〈CαiCαj 〉′/	(ε) for (i,j ) ∈ S2, (18)

where the prime in 〈 〉′ indicates an average for which the labels
l in εαl satisfy VilVlj �= 0.

The average shape of the EFs, namely, 	(ε), are plotted
in Fig. 1. In both the LMG and the Dicke models, 	(ε)
has a platform in the central region, with long tails decaying

exponentially, while it is approximately exponentially local-
ized in the defect Ising model and is partially so in the defect
XXZ model. This difference is related to the fact that the
Hamiltonian matrices in the two former models have a clear
band structure, but those in the two latter models do not. In
all four models, the main bodies of the EFs lie within the
so-called nonperturbative (NPT) regions of EFs [46,59], which
are predicted by a generalized Brillouin-Wigner perturbation
theory [22]. Edges of the NPT regions are indicated by vertical
dashed lines in Fig. 1. (See the Appendix for the definition of
NPT regions of EFs.)

IV. CORRELATION FUNCTIONS FOR Vi j

WITH HOMOGENEOUS SIGN

In this section, we discuss correlation functions for per-
turbations V , whose nonzero elements have a homogeneous
sign.

A. First-order correlation function

To find an expression for the correlation function C1(ε),
let us write the stationary Schrödinger equation, H |Eα〉 =
Eα|Eα〉, in the form

Cαi = − 1

εαi

∑
j∈gi

VijCαj , (19)

where gi indicates the set of those labels j for which Vij are
nonzero, namely,

gi = {j : Vij �= 0}. (20)

Multiplying both sides of Eq. (19) by Cαi , then taking the
average 〈 〉 one gets

〈|Cαi |2〉 = −1

ε
N〈VijCαiCαj 〉, (21)

where N = 〈∑j∈gi
1〉 is the average number of coupling to

one unperturbed state. For quantum chaotic systems, when the
fluctuations of nonzero Vij are not very strong, the average
over VijCαiCαj can be taken separately for Vij and CαiCαj ,
giving

〈VijCαiCαj 〉 � V 〈CαiCαj 〉, (22)

where V = 〈Vij 〉 for Vij �= 0. Then, Eq. (21) gives [60]

C1(ε) � − ε

V N
. (23)

An interesting feature can be seen from Eq. (23), that is,
in the case that V and N change slowly with ε, the first-order
correlation function C1 is almost linear in ε. Thus, at ε close to
0, the two components Cαi and Cαj have almost uncorrelated
signs, while, for |ε| not small, |C1| can be obviously larger than
zero and CαiCαj tend to have the same sign as [−εsgn(Vij )].

Numerical simulations have been performed in the four
models discussed previously to check the predictions given
above. In all four models, nonzero Vij have the positive sign.
In the two defect spin models, nonzero elements Vij share
the same value, and good agreement between direct numerical
simulations and the prediction of Eq. (23) has been observed
in the whole regime of ε (Fig. 2).
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FIG. 2. The first-order correlation function C1 in Eq. (17) for
(i,j ) ∈ S1, as a function of the energy difference ε, in the four models.
Solid curves indicate predictions of Eq. (23). (See Fig. 1 for the
meaning of the vertical dashed lines.)

In the two models of LMG and Dicke, nonzero elements Vij

have fluctuations, being stronger in the LMG model. In these
two models, the agreement between numerical simulations and
analytical predictions is good in the central region of the EFs,
but it is not so good in the long-tail regions with large |ε|. For
comparison, we have also computed the correlation function
for the set composed of all the pairs (i,j ) and found that it is
close to zero as predicted by the RMT, except in the long-tail
regions of the EFs in which some perturbative treatments can
be valid [8,22].

B. Second-order correlation function

To find an expression for the second-order correlation
function, let us consider a label k, for which VikVkj �= 0.
Making use of Eq. (19), one gets

|Cαk|2 = 1

ε2
αk

∑
i

|Vki |2|Cαi |2 + 1

ε2
αk

∑
i �=j

VkiVkjCαiCαj .

(24)

Taking the average 〈 〉′ on both sides of Eq. (24) and following
arguments similar to those leading to Eq. (23), one gets

	(ε) � V 2

ε2
	d (ε)N + W

ε2
N (N − 1)〈CαiCαj 〉′, (25)

where V 2 = 〈V 2
ij 〉, W = 〈VkiVkj 〉′, and 	d (ε) ≡ 〈|Cαi |2〉′.

Note that 	d (ε) is not exactly the same as 	(ε).
Writing 	d (ε) = η	(ε), we get the following expression

of C2:

C2(ε) � ε2 − V 2Nη

W N (N − 1)
, (26)

showing a quadratic dependence on ε. According to Eq. (26),
the two components Cαi and Cαj of (i,j ) ∈ S2 have a sign
correlation different from that for (i,j ) in the set S1 discussed
above. For example, for ε around 0, the average of CαiCαj of
(i,j ) ∈ S2 has a minus sign.

FIG. 3. Similar to Fig. 2, but for the correlation function C2 in
Eq. (18) with predictions given by Eq. (26).

Numerical tests for the prediction in Eq. (26) are shown in
Fig. 3. Similar to the case of first-order correlation discussed
above, in the two defect spin models, good agreement has
been observed in the whole regime of ε. In the two models of
LMG and Dicke, the agreement is relatively good in the central
region of the EFs, but is not good in the long-tail regions with
large |ε|.

V. CORRELATION FUNCTIONS FOR Vi j

WITH NONHOMOGENEOUS SIGNS

In this section, we discuss the case that nonzero elements
Vij have both positive and negative signs. In this case, nonzero
Vij have quite strong fluctuations, such that Eq. (23) does not
hold.

We find that sign correlation still exists among Cαi and
Cαj , for those unperturbed states that are coupled by the
perturbation V . To see this point, let us divide the set S1

into two subsets according to the sign of Vij , denoted by
S±

1 , respectively. We use C±
1 to denote the corresponding

(first-order) correlation functions, defined by

C±
1 = 〈CαiCαj 〉±/	(ε) for (i,j ) ∈ S±

1 . (27)

Following arguments similar to those leading to Eq. (23), one
gets

V +N+C+
1 + V −N−C−

1 � −ε, (28)

where V ± and N± are defined in a way similar to V and
N discussed previously, but with respect to the sets S±

1 ,
respectively.

Let us define a correlation function weighted by the sign of
Vij , denoted by C̃1,

C̃1 = 〈sgn(Vij )CαiCαj 〉/	(ε), (i,j ) ∈ S1, (29)

Similar to Eq. (23), it is found that

C̃1(ε) � −ε
(|V |N)−1

, (30)

where |V | = 〈|Vij |〉.
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FIG. 4. Similar to Fig. 2, but for the correlation functions C±
1 in

Eq. (27) and C̃1 in Eq. (29) in modified versions of the four models,
in which 30% of the nonzero Vij are negative. The solid curves are
given by the theoretical prediction on the right hand side of Eq. (30).

For the simplicity in discussion, let us consider the specific
case that V + = −V − = |V |. Then, Eqs. (30) and (28) give

N C̃1 � N+C+
1 − N−C−

1 . (31)

Noting that N+ + N− = N , it would be reasonable to expect
that

C̃1 � C+
1 � −C−

1 . (32)

This suggests that, for pairs (i,j ) in the set S1, CαiCαj

tend to have the same sign as [−εsgn(Vij )]. Note that this
phenomenon has also been observed in the homogeneous-sign
case discussed in the previous section [see Eq. (23)].

To test whether the expectation in Eq. (32) is correct, we
have studied modified versions of the four models discussed
above, changing the signs of a percentage of randomly chosen
nonzero elements Vij to the negative one. For brevity, we call
the models thus obtained the random LMG model, and so on.
Our numerical simulations confirm the validity of Eq. (32)
in all four modified models and show that Eq. (30) works
well except in the tail regions of the EFs in the LMG and
the Dicke models (Fig. 4) [61]. The sign correlation between
Cαi and Cαj has been observed in a direct computation of the
following quantity:

Csign = 〈sgn(CαiCαj )sgn(Vij )〉ε for (i,j ) ∈ S1. (33)

As seen in Fig. 5, the sign correlation increases with increasing
|ε|.

VI. APPLICATIONS

In this section, we discuss two applications of the results
obtained in previous sections. One is for a relation between
some transition probabilities (Sec. VI A) and the other is for
expectation values of some local observables (Sec. VI B).

A. A relation between two transition probabilities

Let us consider the transition probability from an initial
state |E0

i 〉 to all those states |E0
j 〉, which are directly coupled

FIG. 5. Sign correlation between directly coupled components of
the EFs, with Csign defined in Eq. (33).

to |E0
i 〉 by the perturbation V , namely, with Vij �= 0. Denoting

this probability by Fi(t), it is written as

Fi(t) =
∑
j∈gi

|Fij (t)|2, (34)

where Fij is the transition amplitude in Eq. (13). For simplicity
in discussion, we consider a case satisfying the following
requirements: (i) nonzero elements Vij are close to each other,
(ii) the values of |Cαj | do not have large fluctuations with
respect to the label j , and (iii) the ε dependence of V and N

can be neglected.
Let us first discuss variation of Fij with j . To this end,

noting that Eα = E0
i − εαi , we write Fij as

Fij =
(∑

α

CαiCαj e
iεαi t

)
e−iE0

i t . (35)

According to Eq. (23), CαiCαj are on average proportional to
−ε	(ε), hence, the main contribution to Fij should come from
those perturbed states |Eα〉 for which |εαi	(εαi)| are large. For
these perturbed states, as discussed previously, CαiCαj tend to
have the same sign as (−εαiVij ). Noting the homogeneousness
of the sign of nonzero Vij and the smallness of the fluctuation
of |Cαj | with j , it is seen that, on average, Fij do not have large
fluctuation with j for j ∈ gi .

Then, we get the following approximation for these labels j :

Fij (t) � 1

N

∑
j ′∈gi

Fij ′ , (36)

and, as a result, the following expression of Fi(t):

Fi(t) � N

∣∣∣∣∣∣ 1

N

∑
j ′∈gi

Fij

∣∣∣∣∣∣
2

= 1

N

∣∣∣∣∣∣
∑

α

∑
j∈gi

CαiCαj e
iεαi t

∣∣∣∣∣∣
2

. (37)

Due to the assumed small fluctuation of nonzero
Vij , Fi(t) can be further written as Fi(t) �
1
N

| 1
V

∑
α

∑
j∈gi

VijCαjCαie
iεαi t |2. Finally, making use of
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FIG. 6. Variation of the transition probability Fi in Eq. (34) (solid
squares). Solid curves indicate predictions of Eq. (38). The times are
given in units of τ = 10−3τH , where τH = 1/d is the Heisenberg time
with d the averaged level spacing. The results are for (a) Dicke model
and (b) defect XXZ model.

Eq. (19), one gets the following expression,:

Fi(t) � 1

N

∣∣∣∣∣ 1

V

∑
α

εαi |Cαi |2eiεαi t

∣∣∣∣∣
2

� 1

N (V )2

∣∣∣∂si(t)

∂t

∣∣∣2
, (38)

where si(t) is defined by

si(t) = 〈
E0

i

∣∣e−i(H−E0
i )t

∣∣E0
i

〉
. (39)

It is easy to see that, apart from a phase factor, si(t) gives the
survival probability amplitude for the initial state.

To test numerically the prediction of Eq. (38), we consider
the Dicke model and the defect XXZ model. (The LMG
model and the defect Ising model do not meet the requirements
discussed above.) Numerical simulations show that Eq. (38)
works well in the Dicke model and works approximately in the
defect XXZ model (see Fig. 6 for two examples). Examples
for the survival probabilities in these two models are shown in
Fig. 7.

B. Expectation values of some local observables

In another application, we consider the expectation values
of si

x and of si
xs

i+1
x in the defect Ising model, i.e., 〈Eα|si

x |Eα〉
and 〈Eα|si

xs
i+1
x |Eα〉. Due to the fact that si

x is a part of the
perturbation V [see Eqs. (9) and (10)], V = λ

∑N
i=1 si

x , these
expectation values can be related to the first- and second-order
correlation functions given previously.

First, the quantity 〈Eα|si
x |Eα〉 can be expressed as〈

Eα

∣∣si
x

∣∣Eα

〉 =
∑
k,l

Cαk

(
si
x

)
kl
Cαl. (40)

FIG. 7. Variations of the survival probability |s(t)|2 under the
same initial conditions as those for Fig. 6.

For each given label k, there is only one label l, denoted by lk ,
for which (si

x)kl �= 0; and for these labels (si
x)kl = 0.5. Then,

one gets

〈
Eα

∣∣si
x

∣∣Eα

〉 = 1

2

∑
k

CαkCαlk � 1

2

∑
k

C1(εαk)	(εαk). (41)

FIG. 8. Expectation values of two local operators for eigenstates
|Eα〉 in the Defect Ising model, with spin number N = 14. Top:
Expectation values of s1

x (solid circles). The solid curve indicates
predictions of Eq. (42). Bottom: Expectations values of s1

x s
2
x , with

predictions given in Eq. (44). In the numerical simulations, each
solid circle was obtained by taking average over 128 neighboring
EFs.
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Substituting the expression of C1(ε) in Eq. (23) into Eq. (41),
we get

〈Eα|si
x |Eα〉 � − 1

λN

∑
k

εαk	(εαk). (42)

Similarly, 〈Eα|si
xs

i+1
x |Eα〉 can be written as

〈Eα|si
xs

i+1
x |Eα〉 =

∑
k,m,l

Cαk(si
x)km(si+1

x )mlCαl

= 1

4

∑
m

Cαkm
Cαlm � 1

4

∑
m

	(εαm)C2(εαm),

(43)

where km and lm indicate those values of k and l for which Vkm

and Vml are not equal to zero. Substituting the expression of
C2(ε) in Eq. (26) into Eq. (43), after some algebra, we get

〈Eα|si
xs

i+1
x |Eα〉 �

∑
m 	(εαm)ε2

αm

λ2N (N − 1)
− 0.25

N − 1
. (44)

We have tested the predictions in Eqs. (42) and (44) numer-
ically. As shown in Fig. 8, the numerical simulations are in
good agreement with the analytical predictions.

VII. CONCLUSIONS

In summary, in this paper, we have studied correlation
functions with respect to the energy difference between
perturbed and unperturbed states, in quantum chaotic systems
whose Hamiltonian matrices have a sparse structure in the un-
perturbed bases. Analytical expressions have been derived for
some correlation functions and have been tested in numerical
simulations performed in four models. Applications are give
for transition probabilities, as well as expectation values of
some local observables. It should be reasonable to expect that
more applications may be found in future investigations.
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APPENDIX: GENERALIZED BRILLOUIN-WIGNER
PERTURBATION THEORY (GBWPT)

In this Appendix, we recall the definition of (NPT) regions
of EFs [59]. Consider a Hamiltonian of the form

H = H0 + V, (A1)

where H0 is an unperturbed Hamiltonian and V represents a
generic perturbation. Eigenstates of H and H0 are denoted by
|α〉 and |k〉, respectively,

H |α〉 = Eα|α〉, H0|k〉 = E0
k |k〉, (A2)

with labels α and k in energy order.
As shown in a generalized Brillouin-Wigner perturbation

theory [22], for each perturbed state |α〉, the set of unperturbed
states |k〉 is divided into two substates, denoted by Sα and Sα .
The related projection operators,

PSα
=

∑
|k〉∈Sα

|k〉〈k|, QSα
=

∑
|k〉∈Sα

|k〉〈k| = 1 − PSα
, (A3)

divide the perturbed state into two parts, |αs〉 ≡ PSα
|α〉

and |αs〉 ≡ QSα
|α〉. If this division satisfies the following

condition:

lim
n→∞〈φ|(T †

α )nT n
α |φ〉 = 0 ∀|φ〉, (A4)

where

Tα = 1

Eα − H0
QSα

λV, (A5)

then, making use of the part |αs〉, the other part |αs〉 can be
expanded in a convergent perturbation expansion, i.e.,

|αs〉 = Tα|αs〉 + T 2
α |αs〉 + · · · + T n

α |αs〉 + · · · . (A6)

Writing Sα in the form

Sα = {|k〉 : k1 � k � k2}, (A7)

the smallest set Sα that satisfies the condition (A4) is called
the nonperturbative (NPT) region of the state |α〉.

[1] Quantum Chaos: Between Order and Disorder, edited by
G. Casati and B. V. Chirikov (Cambridge University Press,
Cambridge, England, 1994).

[2] F. Haake, Quantum Signatures of Chaos, 3rd ed. (Springer-
Verlag, Berlin, 2010).

[3] A. D. Mirlin, Phys. Rep. 326, 259 (2000).
[4] M. V. Berry, J. Phys. A: Math. Gen. 10, 2083 (1977).
[5] V. Buch, R. B. Gerber, and M. A. Ratner, J. Chem. Phys. 76,

5397 (1982).
[6] D. C. Meredith, S. E. Koonin, and M. R. Zirnbauer, Phys. Rev. A

37, 3499 (1988).
[7] M. Srednicki, Phys. Rev. E 54, 954 (1996); J. Phys. A: Math.

Gen. 29, 5817 (1996).

[8] V. V. Flambaum, G. F. Gribakin, and F. M. Izrailev, Phys. Rev. E
53, 5729 (1996).

[9] P. O’Connor, J. Gehlen, and E. J. Heller, Phys. Rev. Lett. 58,
1296 (1987).

[10] S. Hortikar and M. Srednicki, Phys. Rev. E 57, 7313
(1998).

[11] A. Bäcker and R. Schubert, J. Phys. A: Math. Gen. 35, 539
(2002).

[12] J. D. Urbina and K. Richter, J. Phys. A: Math. Gen. 36, L495
(2003); Phys. Rev. E 70, 015201 (2004); Phys. Rev. Lett. 97,
214101 (2006).

[13] E. J. Heller, Phys. Rev. Lett. 53, 1515 (1984); L. Kaplan and
E. J. Heller, Ann. Phys. (N.Y.) 264, 171 (1998).

052221-7

https://doi.org/10.1016/S0370-1573(99)00091-5
https://doi.org/10.1016/S0370-1573(99)00091-5
https://doi.org/10.1016/S0370-1573(99)00091-5
https://doi.org/10.1016/S0370-1573(99)00091-5
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1088/0305-4470/10/12/016
https://doi.org/10.1063/1.442886
https://doi.org/10.1063/1.442886
https://doi.org/10.1063/1.442886
https://doi.org/10.1063/1.442886
https://doi.org/10.1103/PhysRevA.37.3499
https://doi.org/10.1103/PhysRevA.37.3499
https://doi.org/10.1103/PhysRevA.37.3499
https://doi.org/10.1103/PhysRevA.37.3499
https://doi.org/10.1103/PhysRevE.54.954
https://doi.org/10.1103/PhysRevE.54.954
https://doi.org/10.1103/PhysRevE.54.954
https://doi.org/10.1103/PhysRevE.54.954
https://doi.org/10.1088/0305-4470/29/18/013
https://doi.org/10.1088/0305-4470/29/18/013
https://doi.org/10.1088/0305-4470/29/18/013
https://doi.org/10.1088/0305-4470/29/18/013
https://doi.org/10.1103/PhysRevE.53.5729
https://doi.org/10.1103/PhysRevE.53.5729
https://doi.org/10.1103/PhysRevE.53.5729
https://doi.org/10.1103/PhysRevE.53.5729
https://doi.org/10.1103/PhysRevLett.58.1296
https://doi.org/10.1103/PhysRevLett.58.1296
https://doi.org/10.1103/PhysRevLett.58.1296
https://doi.org/10.1103/PhysRevLett.58.1296
https://doi.org/10.1103/PhysRevE.57.7313
https://doi.org/10.1103/PhysRevE.57.7313
https://doi.org/10.1103/PhysRevE.57.7313
https://doi.org/10.1103/PhysRevE.57.7313
https://doi.org/10.1088/0305-4470/35/3/307
https://doi.org/10.1088/0305-4470/35/3/307
https://doi.org/10.1088/0305-4470/35/3/307
https://doi.org/10.1088/0305-4470/35/3/307
https://doi.org/10.1088/0305-4470/36/38/102
https://doi.org/10.1088/0305-4470/36/38/102
https://doi.org/10.1088/0305-4470/36/38/102
https://doi.org/10.1088/0305-4470/36/38/102
https://doi.org/10.1103/PhysRevE.70.015201
https://doi.org/10.1103/PhysRevE.70.015201
https://doi.org/10.1103/PhysRevE.70.015201
https://doi.org/10.1103/PhysRevE.70.015201
https://doi.org/10.1103/PhysRevLett.97.214101
https://doi.org/10.1103/PhysRevLett.97.214101
https://doi.org/10.1103/PhysRevLett.97.214101
https://doi.org/10.1103/PhysRevLett.97.214101
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1103/PhysRevLett.53.1515
https://doi.org/10.1006/aphy.1997.5773
https://doi.org/10.1006/aphy.1997.5773
https://doi.org/10.1006/aphy.1997.5773
https://doi.org/10.1006/aphy.1997.5773


JIAOZI WANG AND WEN-GE WANG PHYSICAL REVIEW E 96, 052221 (2017)

[14] W. E. Bies, L. Kaplan, M. R. Haggerty, and E. J. Heller, Phys.
Rev. E 63, 066214 (2001).

[15] H. Schanz, Phys. Rev. Lett. 94, 134101 (2005).
[16] I. V. Gornyi and A. D. Mirlin, Phys. Rev. E 65, 025202

(2002).
[17] L. Kaplan, Phys. Rev. E 71, 056212 (2005).
[18] V. I. Falko and K. B. Efetov, Phys. Rev. Lett. 77, 912 (1996).
[19] M. Horvat and T. Prosen, J. Phys. A 36, 4015 (2003).
[20] Y. Alhassid and C. H. Lewenkopf, Phys. Rev. Lett. 75, 3922

(1995).
[21] V. N. Prigodin, Phys. Rev. Lett. 74, 1566 (1995).
[22] W.-G. Wang, F. M. Izrailev, and G. Casati, Phys. Rev. E 57, 323

(1998).
[23] S. Gnutzmann, J. P. Keating, and F. Piotet, Ann. Phys. 325, 2595

(2010).
[24] A. T. Ngo, E. H. Kim, and S. E. Ulloa, Phys. Rev. B 84, 155457

(2011).
[25] R. Höhmann, U. Kuhl, H. J. Stockmann, J. D. Urbina, and M. R.

Dennis, Phys. Rev. E 79, 016203 (2009).
[26] A. M. Smith and L. Kaplan, Phys. Rev. E 80, 035205 (2009);

82, 016214 (2010).
[27] Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000).
[28] J. P. Bird, R. Akis, D. K. Ferry, D. Vasileska, J. Cooper, Y.

Aoyagi, and T. Sugano, Phys. Rev. Lett. 82, 4691 (1999).
[29] G. Hackenbroich, C. Viviescas, B. Elattari, and F. Haake, Phys.

Rev. Lett. 86, 5262 (2001).
[30] H. E. Türeci, H. G. L. Schwefel, Ph. Jacquod, and A. Douglas

Stone, Prog. Opt. 47, 75 (2005).
[31] K. Schaadt, T. Guhr, C. Ellegaard, and M. Oxborrow, Phys.

Rev. E 68, 036205 (2003).
[32] U. Dörr, H. J. Stockmann, M. Barth, and U. Kuhl, Phys. Rev.

Lett. 80, 1030 (1998).
[33] J.-H. Yeh, J. A. Hart, E. Bradshaw, T. M. Antonsen, E. Ott, and

S. M. Anlage, Phys. Rev. E 81, 025201(R) (2010); 82, 041114
(2010).

[34] M.-J. Lee, T. M. Antonsen, and E. Ott, Phys. Rev. E 87, 062906
(2013).

[35] C. C. Chen, Y. T. Yu, R. C. C. Chen, Y. J. Huang, K. W. Su,
Y. F. Chen, and K. F. Huang, Phys. Rev. Lett. 102, 044101
(2009).

[36] V. Zelevinsky, B. A. Brown, N. Frazier, and M. Horoi, Phys.
Rep. 276, 85 (1996).

[37] Y. L. Bolotin, V. Y. Gonchar, and V. N. Tarasov, Phys. Atom.
Nuclei 58, 1499 (1995).

[38] H. Olofsson, S. Aberg, O. Bohigas, and P. Leboeuf, Phys. Rev.
Lett. 96, 042502 (2006).

[39] J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
[40] M. Srednicki, Phys. Rev. E 50, 888 (1994).
[41] M. Rigol, V. Dunjko, and M. Olshanii, Nature (London) 452,

854 (2008).
[42] A. Altland and F. Haake, Phys. Rev. Lett. 108, 073601 (2012).
[43] L. F. Santos, F. Borgonovi, and F. M. Izrailev, Phys. Rev. Lett.

108, 094102 (2012).
[44] S. Müller, S. Heusler, P. Braun, F. Haake, and A. Altland, Phys.

Rev. Lett. 93, 014103 (2004), and references therein.
[45] T. Gorin, T. Prosen, T. H. Seligman, and M. Žnidarič, Phys. Rep.
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