
PHYSICAL REVIEW E 96, 052220 (2017)

Directionality indices: Testing information transfer with surrogate correction
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Directionality indices can be used as an indicator of the asymmetry in coupling between systems and have
found particular application in relation to neurological systems. The directionality index between two systems
is a function of measures of information transfer in both directions. Here we illustrate that before inferring the
directionality of coupling it is first necessary to consider the use of appropriate tests of significance. We propose
a surrogate corrected directionality index which incorporates such testing. We also highlight the differences
between testing the significance of the directionality index itself versus testing the individual measures of
information transfer in each direction. To validate the approach we compared two different methods of estimating
coupling, both of which have previously been used to estimate directionality indices. These were the modeling-
based evolution map approach and a conditional mutual information (CMI) method for calculating dynamic
information rates. For the CMI-based approach we also compared two different methods for estimating the CMI,
an equiquantization-based estimator and a k-nearest neighbors estimator.
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I. INTRODUCTION

Measures of the connectivity between coupled systems have
garnered interest in disciplines from finance [1] to ecology [2]
and have become a key topic of research in neuroscience, with
connectivity measures being used to assess neural data from
various different modalities including electroencephalography
[3–6], functional magnetic resonance imaging [7], electro-
corticography (ECoG) [8,9], and local field potentials (LFP)
[10–12]. The research not only spans different modalities
but also focuses on different premises regarding connectivity:
causal relationships [10,12], synchronization between systems
[3–5], or the information flow [5,6,11,12] or information
transfer [12] across systems. At their heart, however, all
attempt to quantify the relationship and interdependencies
between multiple (sub)systems within the brain.

Methods for studying the relationships between coupled
systems range from simple measures of correlation and coher-
ence to more complex measures [4,13]. Many commonly used
methods are based upon Granger causality [14] such as partial
coherence [15], directed transfer functions [16], and extensions
thereof. Alternative approaches include measures of synchrony
using both phase [17] and state space [3], or measures of
directionality including information theoretic measures such
as mutual information [18], Kullback-Leibler divergence [19],
and transfer entropy [20]. Each has its strengths and limitations
depending on the scenario. For instance some methods may
give information regarding the existence of a relationship
without knowledge about the directionality (e.g., correlation-
and coherence-based measures) or may be appropriate only
for linear models (e.g., standard Granger causality-based
measures). In fact, different families of measures may present
us with slightly different information regarding the data in
question, thereby giving a more complete understanding of
the relationship [4]. Rather than focus on the individual
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connectivity measures the aim of this paper is to investigate
the use and applicability of such methods in the creation of
directionality indices, with particular focus on their use with
field potential recordings of neural systems.

A directionality index provides an indication of the asym-
metry in the coupling between two systems. It is the normalized
difference between the measures of the strength of interaction
in each direction; that is,

D1→2 = I1→2 − I2→1

I1→2 + I2→1
, (1)

where I1→2 is the measure of how the first system drives the
second and I2→1 is the same measure in the opposite direction.
The directionality index, D1→2, ranges from −1 to 1, with a
value of 1 indicating unidirectional coupling between the two
systems in the direction 1 → 2 and a value of −1 indicating
the reverse is true, unidirectional coupling in the direction
2 → 1. Hence, the accuracy of the method used to calculate the
strength of interaction in each direction will have a significant
impact on the efficacy of the directionality index to quantify
the relationship.

Numerous methods have been used to quantifying the
interactions of synchronized systems and their outcomes
compared and contrasted [3,4,21], but when considering
continuous neural systems it can be more appropriate to model
them as weakly coupled oscillators [22,23]. Changes in the
dynamics of weakly coupled systems can be observed in their
phase before either the amplitude or frequency. Analyzing
the data in terms of the phase interactions allows for small
initial changes in the dynamics between the systems to be
detected, and accurately modeled, significantly earlier than
alternative approaches. This study uses two different methods
of estimating phase interactions: a model fitting approach
that represents the coupling as a two-dimensional noisy
map, called the evolution map approach (EMA) [24], and
an information theoretic approach using conditional mutual
information (CMI) [25].

In relation to determining the directionality of coupling it
is important to have a clear perspective of what exactly is to be
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measured. In many instances the terms causality, information
flow, and information transfer are used almost interchangeably.
From an information theoretic point of view information
transfer is one of the three components of information flow (the
other two being storage and modification), and although many
methods have been used to measure the so-called “information
flow”, including those used in this study, it is not clear that they
truly measure the complete information flow [26,27]. At the
same time causal interactions can occur without information
transfer; however, information transfer cannot occur without a
causal interaction [28], hence absence of information transfer
does not prove the absence of a causal relationship. However, in
terms of neural connectivity, it may be that information transfer
is the component of information flow we are most interested
in when considering brain dynamics and the computational
processes involved [29]. Therefore, although previous work
has used the term information flow when describing the
directionality indices, we have instead more precisely termed
them measures of predictive information transfer.

In this study we compare and contrast the use of phase-
based information transfer measures EMA and CMI to assess
the directionality of coupling. Despite both methods having
previously been used to create directionality indices for use
with neurological data [8,30,31] and the results from both
methods having been shown for cardio-respiratory data [32],
no thorough comparison of the methods has been undertaken.
To demonstrate the efficacy of the approaches a simple model
of two weakly coupled oscillators is used with a number
of scenarios: unidirectional coupling, bidirectional coupling,
and discrepancies between the fundamental frequencies of the
oscillators. The different parameters of the EMA and CMI
methods are studied to assess their impact on the sensitivity
of the algorithms to detect asymmetry in the coupling. For
completeness we also consider the effect of the choice of
estimator used in the CMI calculation by comparing a marginal
equiquantization with an extension of the k-nearest neighbor
(kNN) method for mutual information from Ref. [18].

Our findings show the necessity for the use of appropriate
surrogate data when creating a directionality index, a crucial
step in the assessment of any neural data where underlying
system dynamics may be unknown. We propose a method for
effectively adjusting the directionality index after surrogate
data testing of the results in each of the individual directions.
This ensures a more reliable indicator of the relationship
between the two systems. The paper is organized as follows:
Secs. II and III introduce the EMA and CMI estimators and
their directionality indices, respectively. Section IV describes
the systems used to test the directionality indices, the surrogate
data, and the proposed correction to the directionality indices
using the surrogate data. Results illustrating the impact of the
surrogate correction are given in Sec. V, and finally, Sec. VI
concludes the paper.

II. EVOLUTION MAP APPROACH

One simple yet effective method for measuring the direction
of the interaction between the phases of weakly coupled
oscillators is the evolution map approach (EMA) based on
the work by Rosenblum and Pikovsky [24] whereby the
relationship between the two systems is represented by a

two-dimensional noisy map. If we consider the phase model
of the continuous phase variables, φ1(t) and φ2(t), with natural
frequencies ω1 and ω2, respectively, as

φ̇1 =ω1 + ε1f1(φ1,φ2) + ξ1(t),

φ̇2 =ω2 + ε2f2(φ2,φ1) + ξ2(t),
(2)

then the coupling is described by the periodic functions f1

and f2 and the strength of coupling by the parameters ε1 and
ε2, with ξ1 and ξ2 defining the random (aperiodic) amplitude
fluctuations.

The phase increments of the time series over a constant
time interval τ can then be defined as

�τφ1(k) = φ1(tk + τ ) − φ1(tk)

= F1[φ1(tk),φ2(tk)] + η1(tk),

�τφ2(k) = φ2(tk + τ ) − φ2(tk)

= F2[φ2(tk),φ1(tk)] + η2(tk),

(3)

where F1 and F2 represent the phase dependencies between
the two oscillators. Due to the cyclic nature of the phases φ1

and φ2 a finite Fourier series

F1,2 =
∑
m,l

Am,le
imφ1+ilφ2 (4)

can be used to fit, in a least mean squares sense, the
dependencies of the increments �τφ1 and �τφ2 on the phases
φ1, φ2. Using the fitting to approximate F1 and F2 the
cross-dependences of the phase dynamics are then estimated
as

c2
1 =

∫ 2π

0

∫ 2π

0

(
∂F1

∂φ2

)
dφ1 dφ2,

c2
2 =

∫ 2π

0

∫ 2π

0

(
∂F2

∂φ1

)
dφ1 dφ2.

(5)

The directionality index is then calculated in terms of the
coefficients c1 and c2 as

D1→2 =c2 − c1

c2 + c1
. (6)

The EMA has previously been used to assess the neuronal
oscillations of rhythmical activity [33], cardio-respiratory
interactions [34], ECoG of hand movements [8], and different
frequency bands of LFP data from rats [31]. In Ref. [34] the
EMA was compared with an instantaneous period approach
and a mutual prediction approach and was found to be
generally more stable in terms of variation for a range of
noise intensities and coupling strengths, and when assessing
the difference between coupled and uncoupled systems with
common driving. An extended EMA which allows improved
performance for short noisy time series has been proposed
in Ref. [35] and semiempirically determined confidence
intervals provided. A comparison between this approach and
an alternative state space approach suggested that for weak
phase diffusion with low noise levels and short time series the
phase-based approach is superior; however, in general both
have strengths and weaknesses dependent on the time series
in question [36].
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In terms of the parameters of the algorithm, the estimator
has generally been considered to have only one parameter, the
time lag, τ , which defines the size of the phase increments.
The order of the Fourier series used to fit the dependencies
has not previously been considered as part of the estimator;
typically a model order of three has been used. In Ref. [24] it
was stated that the size of the increments τ was not important
provided it was within a range of approximately 0.5–50 periods
of oscillation; however, Ref. [34] recommends a value of τ = 1
period. In this study we consider the impact of the order of the
Fourier series on the accuracy of the least mean square fit as
well as a range of different τ .

III. CONDITIONAL MUTUAL INFORMATION

An alternative approach to the EMA is to consider the
interactions of the phases from an information theoretic point
of view rather than a model fitting one. For two coupled
systems X and Y where the time series {x(t)} and {y(t)} are
individual realizations of the systems, the mutual information
I (x(t); y(t + τ )) represents the amount of information con-
tained in X about Y in its future τ time units ahead. However,
if X and Y are not independent this measure could also contain
information about the future of Y contained in the process
itself. By conditioning the mutual on the time series y(t) to
give the conditional mutual information (CMI)

I (x(t); y(t + τ )
∣∣y(t)), (7)

we have the information contained in X about the future of
Y , not including the history of Y contained within Y itself or
their shared history. In this way the CMI can be considered an
information theoretic formulation of Granger causality and
also has an equivalence with transfer entropy [37]. For a
general review of information theoretic approaches to causality
see Ref. [38].

To investigate the directionality of coupling requires infor-
mation about how the dynamics of one system influences the
other, for this purpose coarse-grained information rates can be
used. Coarse-grained information rates provide measures of
the regularity and predictability of systems. They are inversely
proportional to coarse-grained entropy rates (measures of
chaoticity or complexity), which can be used to classify states
of chaotic systems in the same way as the Kolmogorov-Sinai
entropy can [5]. Coarse-grained information rates are defined
in terms of the mutual information norm and have been shown
to be more robust to noise and less computationally complex
than alternatives such as Lyapunov exponents. To calculate the
coarse-grained information rate the average of the CMI over a
range of values of τ is taken to give

i(X,Y |Y ) = 1

τmax

τmax∑
τ=1

I (x; yτ |y), (8)

where x = x(t), y = y(t) and yτ = y(t + τ ) and τmax is
usually defined in terms of the maximum value of τ for which
the information between y and yτ is nonzero.

To calculate the directionality index from the instanta-
neous phases as in (3) and in line with the approach from
Ref. [25] we consider the phases in terms of their phase

increments:

�τφ1 =φ1(t + τ ) − φ1(t),

�τφ2 =φ2(t + τ ) − φ2(t).
(9)

Replacing the time series with the phases in (8) gives the
information rates in each direction as

i(1 → 2) = 1

τmax

τmax∑
τ=1

I (φ1; �τφ2|φ2),

i(2 → 1) = 1

τmax

τmax∑
τ=1

I (φ2; �τφ1|φ1),

(10)

finally a directionality index is constructed in the same manner
as for the EMA:

D1→2 = i(1 → 2) − i(2 → 1)

i(1 → 2) + i(2 → 1)
. (11)

The problem of estimating CMI can be defined in terms of
estimating a series of entropies and then computing the CMI.
The CMI can be defined in terms of entropies as

I (X; Y |Z) = H (X,Z) + H (Y,Z) − H (Z) − H (X,Y,Z).

(12)

Estimation of the entropies requires accurate calculation of
the probability density functions of the data. For this purpose
we compare two different methods, one nonparametric and
one parametric. The nonparametric method is based upon
equiquantization and the parametric on k-nearest neighbors
(kNN). Although a number of alternative estimation methods
exist (see Ref. [38]) these methods have been selected because
they have previously been shown to provide reliable estimates
of CMI [39].

The nonparametric equiquantization method is a binning
method based upon dividing the sample space into a set number
of equiprobable bins. The data are first sorted by magnitude and
then partitioned such that all the bins contain approximately
the same number of data points. The equiquantization method
was previously shown to provide robust estimates of CMI
with relatively small variance albeit at the expense of having
a higher bias [39].

The parametric kNN method is an extension of the
approach from Ref. [18] for estimating mutual information.
The kNN method has previously been applied to the estimation
of CMI for state space reconstructions [40] and also to
phase data where it was shown to provide accurate results
with a relatively low bias albeit with some sensitivity to
the choice of the number of neighbors [39]. However, the
kNN algorithm for estimating mutual information provides
two different approaches, one based upon estimating the k

neighbors from a square neighborhood and the other using
a rectangular neighborhood. As the rectangular version has
been shown to be better suited to higher dimensional data
[18], which in terms of neurological data with recordings
from multiple electrodes may well be an issue, we have
opted to extend the rectangular version to the estimation of
CMI details. Following a similar approach to the extension
of the mutual information estimator to the estimation of
transfer entropy in Ref. [41] we get an estimator of the CMI

052220-3



BETH JELFS AND ROSA H. M. CHAN PHYSICAL REVIEW E 96, 052220 (2017)

given by

I (X; Y |Z) = H (X,Z) + H (Y,Z) − H (Z) − H (X,Y,Z)

= ψ(k) − dx + dy + dz − 1

k

+
〈
− ψ(nxz) − ψ(nyz) + ψ(nz)

+ dx + dz − 1

nxz

+ dy + dz − 1

nyz

− dz − 1

nz

〉
,

(13)

where < . . . > denotes the average over i ∈ [1, . . . ,N] and
over all realizations. Details of the derivation of this estimator
are given in the Appendix.

IV. NUMERICAL EXPERIMENTS

Numerical experiments were performed for a number of
different scenarios with data generated from a coupled pair of
Rössler systems [42]. The Rössler model has previously been
used in the study of the interactions of coupled oscillators
and to test the effectiveness of both the EMA and CMI
directionality indices [24,25].

In each of the scenarios described below we investigated
the impact of the parameters on the accuracy of the methods.
For all three methods the time lag defining the size of the
phase increments was addressed by adjusting the value of τ

in the EMA and the value of τmax for which the estimates
are averaged across for the CMI methods. For the EMA we
also varied the model order of the Fourier series used to fit
the data dependencies. Similarly for the CMI algorithms we
varied the number of quantizations used in the probability
density function estimates, or number of neighbors for the
kNN version. The effect of the coupling strength was not
considered as both the EMA and CMI methods of detecting
phase-based directionality are known to fail in the presence of
synchronization; see Refs. [24,25].

A. Systems

The coupled Rössler model is described by [43,44]

ẋ1,2 = − ω1,2y1,2 − z1,2 + ε1,2(x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 + 0.15y1,2,

ż1,2 = 0.2 + z1,2(x1,2 − 10), (14)

where ω1,2 are the fundamental frequencies of the oscillators
and ε describes the strength of the coupling. To cover a
number of scenarios we generate systems based on six different
sets of parameters, listed in Table I. For every system 100
random initializations were generated, each with 10 000 data
points and approximately 20 samples per period. The resulting
500 periods of oscillation have previously been shown to be
sufficient for accurate estimation using the EMA [24] with
the CMI requiring less data [39]. Instantaneous phases of
the systems were generated from the analytic signals of ẋ1,2

obtained via the Hilbert transform. Of the systems outlined in
Table I, the first three all had unidirectional coupling between
the oscillators.

TABLE I. Parameters of the Rössler systems.

System Coupling Direction ω1 ω2 ε1 ε2

1 Unidirectional 1 → 2 0.85 1.15 0 0.05
2 Unidirectional 1 → 2 0.5 2.515 0 0.1
3 Unidirectional 2 → 1 0.5 2.515 0.1 0
4 Bidirectional 1 → 2 0.85 1.15 0.01 0.02
5 Bidirectional 2 → 1 0.85 1.15 0.01 0.005
6 Bidirectional Equivalent 0.85 1.15 0.01 0.01

(1) The first system is a straightforward unidirectional
coupling of two roughly equivalent oscillators with the
coupling from oscillator 1 to oscillator 2.

(2) The second system has an imbalance in the ratio of the
frequencies of the two oscillators of approximately
1:5; the coupling in the system remains from
oscillator 1 to oscillator 2, meaning the coupling is
from the slower oscillator to the faster.

(3) The third system is the same system as system 2 but
with the direction of the coupling reversed so that
the direction of coupling is now from oscillator 2, with
the faster frequency of oscillation, to oscillator 1,
with the slower frequency of oscillation.

The last three systems all have oscillators of roughly equivalent
frequency but this time with bidirectional coupling.

(4) The coupling in system 4 is in both directions but with
stronger coupling in the direction of oscillator 1 to
oscillator 2.

(5) For the next system the coupling strengths are lower
than those in system 4 and with the direction of the
stronger coupling reversed so as to be in the direction
of oscillator 2 to oscillator 1.

(6) The coupling strengths in the final system are
equivalent in both directions.

All the systems have previously been used to investigate the
performance of the CMI methods. Systems 1–3 have been
used to assess the effect of the size of the bins for the CMI,
the number of neighbors for a variant of the CMI-kNN and
the number of data samples for both [39], whereas systems
4–6 have been used to asses the effects of the data length,
quantization, and length of the lag for the CMI directionality
index [25].

B. Surrogate data

To test the significance of the results obtained from all three
approaches, a surrogate data method was used. Surrogate data
time series have the same statistical properties as the original
data but with all dependencies destroyed [45,46]. In this case
surrogate data were generated using an iterative amplitude
adjusted FFT (iAFFT) to preserve both the amplitude and
frequency distributions of the data [47]. For each pair of time
series in the original data, the data of the driving system were
left unaltered and surrogates of the driven system were created.

Having obtained a set of surrogate data with the same
properties as the original data but with no causal relationship,
the directionality results for the surrogates are obtained and
a distribution of the values created. From these results a
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FIG. 1. Comparison of surrogate data regions for D and I1→2

and I2→1.

range of values which the surrogate data are expected to take
can be defined. Identifying whether the directionality results
of the original data fall outside the expected range of the
surrogate data gives a determination of whether the results
are significant or whether by using these results we may be
incorrectly inferring a causal relationship. Setting an interval
of ±2 standard deviations around the mean of the surrogate
data gives an assumption that 95% of the surrogate data should
fall within this range, and hence we can infer confidence that
any results falling outside of this region correctly identify the
direction of the causal relationship.

However, how best to determine the surrogate data range
for the directionality indices needs to be considered. Surrogate
data testing of directionality indices can be approached in
two different manners. One is to test the directionality index
itself against the directionality indices generated using the
surrogate data. The second approach is to test each measure of
the coupling against the surrogate data before calculating the
directionality index. A number of surrogate data generation
approaches have been considered when testing the statistical
validity of CMI results, including Fourier transform–based
surrogate data generation methods [39,48]. While neither
Ref. [39] or [48] created directionality indices, both tested the
significance of the individual measures of coupling generated
using the CMI method. Alternatively, Ref. [25] took the
approach of testing directly on the directionality indices
created from the surrogate data. To the best of our knowledge
nobody has yet tested the EMA method against surrogate data
to check the statistical validity of the results.

Figure 1 shows a range of values of I1→2 and I2→1 with
specified means, μ1 and μ2, and standard deviations σ1

and σ2. The shaded regions indicate the areas covered by
μ1,2 ± σ1,2, which in this case relates to the area within which
approximately 68% of the surrogate data can be expected
to fall. Using the same example values of I1→2 and I2→1

directionality indices D1→2 were calculated and a mean μD

and standard deviation σD of the indices estimated. Plotting the
values of μD ± σD as functions of I1→2 and I2→1 it can be seen
that there are areas covered by the regions I1→2 = μ1 ± σ1

and I2→1 = μ2 ± σ2 which are not covered by the region

D = μD ± σD . This includes regions (where either I1→2 is
close to μ1 − σ1 and I2→1 is close to μ2 + σ2 or I1→2 is close
to μ1 + σ1 and I2→1 is close to μ2 − σ2) where data which
would fall inside the range of the surrogate data for both I1→2

and I2→1 are outside of the range of the surrogate data if
testing against the values of D1→2. This holds true for all
multiples of σ . Therefore, it is necessary rather than testing
against the directionality indices created from the surrogate
data to first test each individual direction before calculating
the directionality indices.

Here we propose an adjustment to how the directionality
index is created based upon the results of the tests for statistical
significance. First, I1→2 and I2→1 are tested against the
surrogate data. If the result can be considered to be more
significant than just the result of any bias in the estimator, then
it is left as it is, otherwise it is set to 0. The corrected directional
results for I1→2 are given by

I1→2corr =
⎧⎨
⎩

I1→2 if I1→2 > μ1 + σ1,

I1→2 if I1→2 < μ1 − σ1,

0 otherwise,
(15)

where μ1 and σ1 are the mean and standard deviation of
the estimates of I1→2 from the surrogate data, and the same
correction is performed for I2→1. Using these corrected values
the directionality index can be estimated as in (1). In this
case the corrected value would result in values of 1 and −1
indicating unidirectional couplings as before, a value of 0 for
equivalent bidirectional coupling and an undefined result when
there is no coupling present.

V. RESULTS

A. Unidirectional coupling

As an initial test, directionality indices using both the
original and the surrogate corrected formulation of D1→2,
were calculated for 100 different initializations of the unidi-
rectionally coupled equivalent Rössler oscillators described as
system 1 in Sec. IV A. The average value of D1→2 obtained for
a range of different parameters of the three test algorithms are
illustrated in Fig. 2. For the EMA algorithm the model order
of the Fourier series ranged from 1 to 10. For the CMI and
CMI-kNN the quantization or k-nearest neighbors took values
of 2, 4, 8, 16, 32, and 64. The mutual information between the
data and lagged versions of itself were calculated and a lag
value of 120 was determined to be the point where the mutual
information became approximately zero. Hence, the maximum
lag τmax the CMI was averaged across to obtain the information
rates were selected to be from 10 to 120 in steps of 10. Due
to the difference in the setup of the EMA a finer graining in
the lag value, τ , was selected for small values of the lag, with
initial steps of one for lags 1 to 20 after which larger steps of
10 were tested for 30 to 120.

As can be seen from Fig. 2 the majority of parameter settings
gave a correct indication of the direction of coupling, albeit
with smaller values for the original formulations [Fig. 2(a),
2(c), 2(e)]. Figures 2(a) and 2(b) show that on the whole the
EMA values were lower than the comparable results from
other methods and that the smaller model orders of the original
EMA gave incorrect indications of the direction of coupling.
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FIG. 2. Directionality indices averaged over 100 initializations for system 1: Rössler oscillators with unidirectional coupling from oscillator
1 to oscillator 2 (positive directionality indices) using a range of parameters of the different estimation methods. The left-hand plots display the
original directionality indices, while the right-hand plots are the recalibrated directionality indices. Top row: EMA; middle row: CMI; bottom
row: CMI-kNN.

The only setting of the recalibrated directionality indices to
give incorrect results was for the very small value of k = 2
for CMI-kNN [Fig. 2(f)] which became unreliable results as
the value of the maximum lag increases due to the limited
accuracy of the probability distribution estimated from only
two neighbors.

Closer analysis of the distribution of the results reveals a
noticeable difference between the EMA and CMI approaches.
Table II shows the parameters of the algorithms which gave

the most successful results across all lags. For each algorithm
the percentage of correct directionality indices for both the
original and recalibrated versions is shown, along with the
percentages of the results which are outside the range obtained
from 100 different surrogates for each instance. For the
original indices the percentage of the indices themselves
outside of the range of the surrogate generated indices is
given, whereas for the recalibrated indices the percentage of
the measures in each direction is given. The results illustrate
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TABLE II. Comparison of most successful parameters of the algorithms for a range of different lags of the EMA and maximum lag of the
CMI algorithms for system 1: Rössler systems with unidirectional coupling from oscillator 1 to oscillator 2.

% Correct % Outside surrogates

Algorithm Parameters Original Recalibrated Original D1→2 1 → 2 2 → 1

EMA Order = 9 [73,93] [8,33] [9,33] [9,33] [9,33]
CMI q = 16 100 100 [85,100] 100 [5,7]
CMI-kNN k = 32 100 100 [82,99] 100 [7,8]

that there are parameters of both CMI estimators which result
in 100% correct directionality indices. The differences in
the formulation of the original and the recalibrated indices
mean that while results in the correct direction must be by
default outside of the range of the surrogates in at least one
direction for the recalibrated version, this is not the case for
the original formulation. This can be seen for the CMI-kNN
where although the results may all be in the correct direction
when considering the original formulation there is a slightly
lower maximum of 99% of results outside of the range of the
surrogate data. However, these results fall within the range of
what may be expected due to chance, unlike the EMA. The best
combination achieved with the original EMA was 93% and
occurred for a model order of 9 at lag τ = 10. The recalibrated
version gave 33% correct also at an order of 9 but with a lag of
τ = 90. In both cases the number of these results which were
outside of the range of the surrogates was only 33%.

Based on the results from the first system, while all the
methods gave correct results, the EMA did not provide results
which were consistently statistically valid. Comparing the
CMI methods, the original directionality indices proved to
have greater sensitivity to the parameters of the algorithms.
Table II shows only the results from the best performing
parameters of the algorithms; however, for the recalibrated
directionality indices similar results were also obtained for
the CMI algorithm with q = 4 and q = 16 and for the kNN
version for k = 16 and k = 64. In contrast the performance
of the original CMI algorithms deteriorated with any change

in the values of q and k and showed greater variability in
the significance of the results dependent on the maximum lag
chosen.

Table II illustrates that for the CMI methods when using
the corrected directionality indices it is possible to obtain a
correct indication of the direction of coupling based on the
results from only one direction. In this case only the coupling
in the direction 1 → 2 consistently gave results outside of the
range of the surrogates with a maximum of 8% of results in
the opposite direction outside of the range of the surrogates.
In contrast, Table III shows the results of the directionality
tests for coupling between oscillators of different frequencies
as described in Sec. IV A, systems 2 and 3. In this case for
the CMI algorithm, with q = 4, when the coupling was from
the fast to slow oscillator (direction 2 → 1) there were at least
40% of the results in the direction 1 → 2 which were outside of
the range of the surrogates. However, this has no impact on the
recalibrated directionality indices with 100% in the correct di-
rection with a value on average of −0.99. Comparing this with
the results of the original directionality index where, although
the directionality indices were again all in the correct direction
with similar average values, the results indicated that none of
these values were outside of the range of the surrogate data.

The values of the order of the EMA algorithm and the pa-
rameters q and k of the CMI algorithms given in Table III were
chosen as they provided the largest number of results, in the
opposite direction to coupling, that were outside of the range
of the surrogates and particularly highlight the differences

TABLE III. Example results for systems 2 and 3 with coupling between oscillators of different frequencies for EMA with order = 3, CMI
with q = 4, and CMI-kNN with k = 16 across a range of lags or maximum lag as appropriate. System 2 with coupling from the slower to faster
oscillator (oscillator 1 to oscillator 2) results in a positive directionality index, system 3 with coupling from the faster to slower in a negative
directionality index.

Avg D1→2 % Correct % Outside surrogates

Original Recalibrated Original Recalibrated Orig D1→2 1 → 2 2 → 1

EMA
Slow to fast [0.06,0.41] [−0.65, − 0.08] [66,91] [0,5] [10,22] [10,22] [10,22]
Fast to slow [−0.18,0.70] [−0.63,0.00] [0,83] [0,1] [0,5] [0,5] [0,5]

CMI
Slow to fast [0.88,0.94] [1.00,1.00] 100 100 100 100 [1,3]
Fast to slow [−0.99, − 0.98] [−0.99, − 0.99] 100 100 0 [43,49] 100

CMI-kNN
Slow to fast [0.94,0.97] [0.99,1.00] 100 100 0 100 [1,2]
Fast to slow [−1.00, − 1.00] [−1.00, − 1.00] 100 100 [0,1] [15,21] 100
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FIG. 3. Information transfer using EMA, order = 3 for coupled Rössler systems with a frequency ratio of 1:5. Plots on the left are coupling
from fast to slow (positive directionality index) and on the right from slow to fast (negative directionality index). Top row shows the average
recalibrated coupling in each direction. Blue (crosses) solid line: average recalibrated coupling in the direction 1 → 2; dashed line: average
coupling from surrogates in the direction from 1 → 2; shaded area: 95% range of the surrogate data. Red (squares) lines in the direction
2 → 1. Bottom row shows the average original directionality indices. Solid line: average original directionality index; dashed line: average
directionality index from the surrogates; shaded area: 95% range of the surrogate data.

between the proposed recalibrated estimator and the original
estimator. Figure 3 shows the ranges of the surrogate data and
average values of the coupling along with the corresponding
original directionality indices and their surrogates for a range
of different lag values for the EMA algorithm with order = 3.
The EMA algorithm displayed a wide range of variability
both in the original and the recalibrated versions with a higher
percentage of correctly identified directions of coupling from
the original directionality index; however, the percentage of
results outside of the range of the surrogates was the same
for both versions and lower than for either of the CMI
algorithms.

Figures 4 and 5 show the same information for the CMI
with q = and CMI-kNN with k = 16 respectively. Unlike the
CMI estimator the CMI-kNN estimator has lower percentages
of results outside of the range of the surrogates, for the
opposite direction to the coupling. In these scenarios there
were a maximum of 21% of the results in the direction
opposite to the coupling that were outside the range of the
surrogates, but again 100% of directionality indices were in
the correct direction with average values close to 1 or −1. As
with the CMI algorithm the original CMI-kNN directionality
indices gave similar results to the recalibrated but with a

maximum of 1% of the results being outside of the range of the
coupling.

B. Bidirectional coupling

As a final test of the effectiveness of the new corrected
directionality indices we analyzed three systems with bidirec-
tional coupling as described in systems 4–6 in Sec. IV A. As
the directionality indices produce continuous values from −1
to 1, to distinguish between directionality in each direction
and equivalent coupling, which should give a value of close
to zero, thresholds were set at −0.25 and 0.25. Table IV
shows the percentage of the test data sets across the range
of maximum lag values tested, which are determined to have
coupling in each direction (values either over 0.25 or below
−0.25) or equivalent coupling (between −0.25 and 0.25).
For the proposed directionality indices only we also show
the percentage which are identified as having no coupling;
the original directionality indices assume that the systems are
coupled and provide only an indication of the direction of that
coupling.

As with the unidirectional coupling the EMA algorithm
had a wide range of results with no consistently correct

052220-8



DIRECTIONALITY INDICES: TESTING INFORMATION . . . PHYSICAL REVIEW E 96, 052220 (2017)

FIG. 4. Information transfer using CMI, q = 4 for coupled Rössler systems with a frequency ratio of 1:5. Plots on the left are coupling
from fast to slow (positive directionality index) and on the right from slow to fast (negative directionality index). Top row shows the average
recalibrated coupling in each direction. Blue (crosses) solid line: average recalibrated information in the direction 1 → 2; dashed line: average
information from surrogates in the direction from 1 → 2; shaded area: 95% range of the surrogate data. Red (squares) lines in the direction
2 → 1. Bottom row shows the average original directionality indices. Solid line: average original directionality index; dashed line: average
directionality index from the surrogates; shaded area: 95% range of the surrogate data.

indication of the direction of coupling. For all three systems
and both formulations the maximum percentage of results
outside of the range of the surrogate data was 68%. The original
formulation of the directionality index was most likely to say
the bidirectional coupling was equivalent coupling (based on
our selected thresholds). The recalibrated directionality index
was more likely to give a result of no coupling.

For systems 4 and 5 the coupling in both cases was
bidirectional but with different strengths and with the pre-
dominant direction of coupling in opposite directions from
1 → 2 for system 4 and from 2 → 1 for system 5. From
Table IV we can see the recalibrated directionality indices
calculated using the CMI algorithm successfully identified
the directions of weak bidirectional coupling. There were
only a small number of results below the thresholds to
be considered equivalent coupling. In the same scenarios
the original directionality index identified the coupling as
equivalent coupling in all cases. For all situations and both
formulations of the directionality indices 100% of the results
were outside of the range of the surrogate data.

If we compare the results of the CMI-kNN algorithm in
Table IV, again the original formulation of the directionality

index was most likely to indicate that the coupling was
equivalent, although this time with a lower percentage of
results outside of the range of the surrogates. This pattern
was continued for the recalibrated directionality index where,
in the situations where the results were outside of the range of
the surrogate data, the direction would most likely be correct.
However, again there was a higher probability when using this
algorithm that neither of the measures of information transfer
would be outside of the range of the surrogate data. Hence, the
directionality index would indicate that there was no coupling.
These results illustrate that even for a correctly calculated
directionality index the choice of algorithm used to create the
estimator remains still important.

The final system, system 6, with equivalent coupling,
was correctly identified using the original formulation of the
directionality index 100% of the time for the CMI algorithm
and at least 99% of the time for the CMI-kNN. It should be
noted, however, this formulation identified all bidirectional
coupling as equivalent. Comparing the two algorithms again
the CMI-kNN had a lower percentage of the results which
were outside of the range of the surrogate data and could be
considered significant. Using either algorithm the recalibrated

052220-9



BETH JELFS AND ROSA H. M. CHAN PHYSICAL REVIEW E 96, 052220 (2017)

FIG. 5. Information transfer using CMI-kNN, k = 16 for coupled Rössler systems with a frequency ratio of 1:5. Plots on the left are
coupling from fast to slow (positive directionality index) and on the right from slow to fast (negative directionality index). Top row shows
the average recalibrated coupling in each direction. Blue (crosses) solid line: average recalibrated information in the direction 1 → 2; dashed
line: average information from surrogates in the direction from 1 → 2; shaded area: 95% range of the surrogate data. Red (squares) lines in the
direction 2 → 1. Bottom row shows the average original directionality indices. Solid line: average original directionality index; dashed line:
average directionality index from the surrogates; shaded area: 95% range of the surrogate data.

index did not manage to reliably identify the equivalent
coupling with both estimators more often identifying the
equivalent coupling as a larger coupling in the direction 1 → 2.

This may of course be related to a bias in the estimators rather
than a direct limitation in the calculation of the directionality
indices.

TABLE IV. Example results of coupling between oscillators with bidirectional coupling, systems 4–6, for EMA order = 3, CMI q = 64,
and CMI-kNN k = 8. For each of the three scenarios: weak coupling stronger from 1 → 2, very weak coupling stronger from 2 → 1, and
equivalent coupling the percentages identified as in the direction 1 to 2, direction 2 to 1, equivalent coupling, or no coupling along with the
percentages outside of the range of the surrogate data are provided.

% 1 → 2 % 2 → 1 % Equivalent % No coupling % Outside surrogates

Orig. Recal. Orig. Recal. Orig. Recal. Orig. Recal. Orig. D1→2 1 → 2 2 → 1

EMA
Weak 1 → 2 [11,35] [11,35] [3,14] [0,1] [56,77] [0,28] N/A [44,88] [12,56] [12,56] [12,56]
Very weak 2 → 1 [23,45] 0 [0,16] [0,16] [42,74] [30,60] N/A [33,68] [32,67] [32,67] [32,67]
Equivalent [25,41] [13,41] [1,10] 0 [49,71] [0,34] N/A [37,87] [13,68] [13,68] [13,68]

CMI
Weak 1 → 2 0 [89,92] 0 0 100 [8,11] N/A 0 100 100 [8,11]
Very weak 2 → 1 0 0 0 [82,85] 100 [15,18] N/A 0 100 [15,18] 100
Equivalent 0 [83,90] 0 0 100 [10,17] N/A 0 100 100 [10,17]

CMI-kNN
Weak 1 → 2 [0,9] [8,63] 0 [5,10] [91,100] [1,4] N/A [26,80] [6,37] [12,65] [9,14]
Very weak 2 → 1 [0,1] [0,8] 0 [64,80] [99,100] [12,34] N/A [0,16] [56,100] [19,36] [77,100]
Equivalent [0,10] [37,90] 0 [1,5] [99,100] [4,13] N/A [2,56] [14,77] [42,96] [7,14]
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VI. CONCLUSION

We have studied the use of directionality indices as a
method of demonstrating the asymmetry in coupling between
systems. Our results indicate that it is necessary to consider
using appropriate tests of the significance of any results before
inferring directionality of coupling. We propose a corrected
directionality index which uses surrogate data testing to ensure
valid results. This is achieved by factoring in differences
between the results obtained when using the surrogate data
to test the individual measures of coupling versus testing the
directionality index directly. We have compared our proposed
recalibrated directionality index with results from the original
directionality index to show that the our proposed correction
gives results which are more consistently significant for the
tested systems and methods.

We compared two different methods of estimating cou-
pling in order to generate the directionality indices: the
modeling-based EMA and a CMI approach to calculating
dynamic information rates. These methods were selected as
both have previously been used to calculate directionality
indices. For the CMI-based approach we also compared
two different methods for estimating the CMI. Our results
show that although the EMA has previously been used in
conjunction with directionality indices, using surrogate data
testing and our corrected directionality index the results of
this approach are not consistently statistically valid. When
comparing the two CMI-based estimators it was found that
for unidirectional coupling there was little difference between
the two approaches. However, when analyzing bidirectional
coupling the differences in the CMI estimators became more
apparent with the quantization-based approach proving more
effective until the coupling became very weak. For very weak
bidirectional coupling the kNN-based approach proved more
sensitive to detecting this coupling than the quantization-based
approach. In terms of equivalent bidirectional coupling both
methods failed to correctly identify this coupling, indicating a
possible bias in the estimators. It should be noted that these are
only two possible methods for calculating information transfer,
and the proposed corrected directionality index could be
applied to any unidirectional estimator of information transfer.

We have also extended the k-nearest neighbors method
described in Ref. [18] based on the approach in Ref. [41] to give
a more precise estimator for higher dimensions. In the example
systems used here, in order to provide a direct comparison
between the EMA and the quantization estimator, the systems
were only one-dimensional. In this case the estimator reduced
to the rectangular estimator from Ref. [18] adapted for CMI.
Having addressed the use of the directionality index as a
method for describing the relationship between systems it
would be of interest to test the proposed extension of the CMI
approach on multidimensional neural data.
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APPENDIX: EXTENSION OF kNN ESTIMATOR FOR CMI

Following a similar approach to the extension of the mutual
information estimator for application to transfer entropy [41]
we first consider the calculation of the Shannon entropy based
on the Kozachenko-Leonenko estimator [18]. If we have N

realizations xi of random variable X with density function
μ(x) the Shannon entropy can be given as

H (X) = −
∫

dxμ(x) log μ(x), (A1)

which for an unbiased estimator ̂log μ(x) becomes

Ĥ (X) = − 1

N

N∑
i=1

̂log μ(xi). (A2)

If ε(i)/2 is the distance between any point xi and its kth nearest
neighbor, then pi and vi are the mass and volume, respectively,
of the hyperball with radius ε(i)/2 centered on the point xi .
Assuming the density μ(x) is constant within the entire ball
then

pi(ε) ≈ cdε
dμ(xi), (A3)

where d is the dimension of x and cd is the volume of the d-
dimensional unit ball. It can also be shown that the expectation
value of log pi(ε) can be given as [18]

E[log pi] = ψ(k) − ψ(N ), (A4)

where ψ is the digamma function. Combining (A3) and (A4)
gives

ψ(k) − ψ(N ) � E[log(cdε
dμ(xi))]

= E[log μ(xi)] + E[log(cdε
d )]

= − H (X) + E[log vi], (A5)

hence, giving

Ĥ (X) = ψ(N ) − ψ(k) + 1

N

N∑
i=1

log vi. (A6)

The CMI calculated by the sum of entropies as defined in
(12) requires estimates of the entropy in both the joint and
marginal spaces. However, using the same value of k across
all spaces can result in problems occurring because the biases
in the estimates do not cancel due to calculating over different
scales. In Ref. [18] it was noted that the entropy estimator
(A6) would hold for any value of k. Therefore, rather than
calculating the entropies in both the joint and marginal spaces
based on the same k, they could be calculated based on the same
distance ε. The number of points, nx[i], within this region is
defined as the points within the lines x = xi ± ε(i)/2, and the
corresponding estimator becomes

Ĥ (X) = ψ(N ) + 1

N

N∑
i=1

(
log vi − ψ(nx[i])

)
. (A7)

However, defining the spaces in this way results in a hypercube
where the length of the sides, ε, are defined as twice the
distance to the kth nearest neighbor in the joint space,
which means the estimates in the marginal spaces are truly
accurate only for one variable. To overcome this the authors in
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Ref. [18] propose a second mutual information estimator using
hyperrectangles to define separate ε for each variable. For m

variables, if qi(εx1 ,...εxm
) is the mass of the hyperrectangle

of size εx1 × εx2 × , . . . ,εxm
centered at (x1,i ,x2,i , . . . ,xm,i),

then E[log qi] = ψ(k) − (m − 1)/k − ψ(N ). In Ref. [41] the
authors extended this principle from the estimation of mutual
information of multivariate data to the estimation of entropy of
multidimensional data. For data of dimension d the expectation
of log qi(ε1,...,εd ) becomes

E[log qi] = ψ(k) − (d − 1)/k − ψ(N ), (A8)

and the entropy estimator

Ĥ (X) = ψ(N ) − ψ(k) + d − 1

k
− 1

N

N∑
i=1

log vi, (A9)

where vi is now the volume of the minimum volume hyper-
rectangle centered at xi .

If we consider the CMI of three multidimensional random
variables X, Y , and Z, then based on (A9) the entropy estimator
in the joint space is given by

Ĥ (X,Y,Z) = ψ(N ) − ψ(k) + dx + dy + dz − 1

k

+ 1

N

N∑
i=1

log vi. (A10)

In the marginal spaces (X,Z), (Y,Z), and Z using the same
dimensions of the minimal hyperrectangle as for the joint space
and estimators based on an arbitrary number of points as in
(A7), then we have

Ĥ (X,Z) = ψ(N ) + 1

N

N∑
i=1

(
log vi − ψ

(
nxz[i]

)

+ dx + dz − 1

nxz[i]

)
, (A11)

Ĥ (Y,Z) = ψ(N ) + 1

N

N∑
i=1

(
log vi − ψ

(
nyz[i]

)

+ dy + dz − 1

nyz[i]

)
, (A12)

Ĥ (Z) = ψ(N ) + 1

N

N∑
i=1

(
log vi − ψ

(
nz[i]

)

+ dz − 1

nz[i]

)
, (A13)

resulting in the estimator of the CMI as given in (13).
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