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Nonreciprocal wave transmission through an extended discrete nonlinear Schrödinger dimer
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We analyze a one-dimensional extended discrete nonlinear Schrödinger (DNLS) dimer model for nonreciprocal
wave transmission. The extension corresponds to the addition of a nonlocal or intersite nonlinear response in
addition to a purely cubic local (on-site) nonlinear response, which refines the purely cubic model and aligns to
more realistic situations. We observe that a diodelike action persists in the extended case; however, the inclusion
of nonlocal response tends to reduce the diode action. We show that this extension results in achieving the diode
effect at lower incoming intensities as compared to the purely cubic case. We also report that a nearly perfect
diode action is possible in the extended case for a higher level of asymmetry between on-site potentials than its
cubic counterpart. Moreover, we vary different site-dependent parameters to probe for regimes of a better diode
effect within this extended model. We also present the corresponding stability analysis for the exact stationary
solutions to the extended DNLS equation, we discuss the bifurcation behavior in detail, and we explicitly give
the regions of stability.
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I. INTRODUCTION

Symmetry breaking usually brings about novel physical
phenomena, which can sometimes be very useful for making
certain devices. Recently, much attention has been paid toward
the search for devices that can control energy or mass flow.
A diode is one such device. It can control transport, be it
electric current or in the context of acoustics [1–3], heat flow
[4–6], or electromagnetic (EM) waves [7–10]. With regard to
waves, a nonreciprocal or asymmetric transmission is the basic
ingredient to design a wave diode. In a linear and time-reversal
symmetric system, asymmetric propagation (of waves) is not
allowed by the reciprocity theorem [11–13]. One can, however,
break the time-reversal symmetry by the application of a
magnetic field to achieve the desired effect, which also has
an acoustic analog [14].

However, in a nonlinear system such a phenomenon can
be brought about in an entirely different manner, and it seems
more appealing as it is possible in a nonlinear system to achieve
propagation control without having to apply any external
field for breaking the system’s symmetry. In fact, asymmetric
propagation can be caused by the nonlinear properties of the
material itself. The basic underlying phenomenon is that parity
symmetry is broken by the nonlinear medium itself. The first
such phenomenon was reported in [15], where the author
observed a nonreciprocal transmission of phonons through a
nonlinear layer in between two different crystals. It has been
explored much in the nonlinear optics realm. For instance, in
[16,17] a so called all-optical diode was proposed.

There have been several relevant studies concerning the
wave diode proposal. In [18–20], for example, the authors
proposed a wave diode for a nonlinear system. The system
was comprised of a one-dimensional nonlinear lattice that was
modeled by a purely cubic discrete nonlinear Schrödinger
(DNLS) equation. A specific number of lattice sites having
nonlinearity were embedded inside an infinite linear lattice. A
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non-Kerr law or saturable nonlinearity analog of the above with
two nonlinear sites (dimer) was investigated for asymmetric
propagation in [21], and nonreciprocal transmission through
nonlinear PT -symmetric oligomers was studied in [22].

In this work, we will study asymmetric wave propagation
through a one-dimensional “extended” nonlinear dimer that
is connected to linear side chains. We will use the DNLS
equation to model the system, as it is fully integrable for dimers
(much like the earlier models), and it is one of the simplest
dynamical lattice models to be analyzed theoretically. The
DNLS model has become popular in studying nonlinear optics
problems. For example, a DNLS equation can be used to model
the distribution of light solitons in AlGaAs waveguide arrays
[23]. However, as compared to some earlier works mentioned
above, our model is significantly different in that we will
use an “extended” DNLS equation to model our system. The
“extension” corresponds to a nonlocal or intersite nonlinearity.
A quantum analog of this model was studied in the context of
fast energy transfer for a nonlinear quantum lattice in [24] and
for the vibrational dynamics of a nonlinear quantum dimer
coupled to a phonon bath in [25].

We will include an intersite or nonlocal nonlinearity, and
with the inclusion of this nonlocal response the system
establishes a cooperative (local and nonlocal) nonlinear re-
sponse. We will examine how the nonreciprocal transmission
is effected under this cooperation by varying the strength of
nonlocal response and different site-dependent parameters.

The physical motivation to study such a system lies in the
idea that, as before, the nonlinear dimer is embedded into
a linear lattice, but now the medium between the two sites
(dimer) is also nonlinear. This will strengthen the nonlocal
nonlinear effect, and incoming waves will experience a
cooperative (local+nonlocal) nonlinear response from the
lattice. This is the motivation for the current work on the
extended model. This physical situation is more realistic as
it takes into account more effects. Moreover, the question of
whether asymmetric propagation of incoming waves persists
in physical situations in which there is such a cooperative
nonlinear response, and to what extent this physical model
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can exhibit a diodelike action, is still open, and the purpose
of this paper is to address that question. Following [26], we
will also analyze the stability of exact stationary solutions to
the asymmetric (different on-site potentials) extended DNLS
dimer and the corresponding bifurcation behavior in the
presence of this new intersite nonlinearity.

The paper is organized as follows: In Sec. II, we introduce
the extended DNLS model, establish the transmission formu-
las, and plot the corresponding results. In Sec. III, we supply
the exact stationary solutions and develop three corresponding
cases (symmetric, antisymmetric, and soliton). In Sec. IV, the
stability analysis of these solutions is carried out. In Sec. V,
we present the corresponding bifurcation behavior. Section VI
contains a summary and conclusion.

II. MODEL AND FORMALISM

We will use a set of discrete nonlinear Schrödinger
equations to model our system. These time-dependent DNLS
equations with a nonlocal nonlinearity are

i
dAn

dt
= VnAn − γn|An|2An − ε0(An+1 + An−1)

− εn(|An+1|2An + |An−1|2An). (1)

This set of dynamical equations is obtained from a Hamil-
tonian that is a classical version of the vibron Hamiltonian
in a quantum lattice with attractive Hubbard type interaction
between bosons, described in Refs. [24,25],

H =
∑

n

[
Vn|An|2 − γn

2
|An|4 − εn(A∗

n+1A
∗
nAn+1An)

− ε0(A∗
nAn+1 + A∗

n+1An)

]
. (2)

The dynamical set of equations in (1) have stationary
solutions of the form A(t) = φe−iωt . Using these in Eq. (1),
one arrives at

ωφn = Vnφn − φn+1 − φn−1 + γn|φn|2φn

+ εn(|φn+1|2φn + |φn−1|2φn), (3)

where ω is the spatial frequency, φn is the complex amplitude
at site n with potential Vn, and εn is the nonlocal nonlinearity.
We further assume that γn, εn, and Vn are nonvanishing only
for 1 � j � N , where j represents nonlinearity at a particular
site and N represents the total number of nonlinear sites (N =
2 for dimer). This setup assumes the dimer to be at site 1
and site 2 in a large one-dimensional lattice, therefore j runs
from 1 to 2 and n runs over the whole lattice. This will allow
free propagation outside the nonlinear region. We consider
plane-wave solutions of the form

φn =
(

IeiKn + Re−iKn n � 1

T eiKn n � N

)
, (4)

where I , R, and T represent the amplitude of the incident,
reflected, and transmitted wave, respectively. K is the wave
number. From (4), the amplitude at the interface of the
nonlinear dimer (for waves with K > 0) is φ2 = T ei2K and
φ3 = T ei3K . We are interested in examining the transmission

properties of these plane waves. For the (linear) region n > N ,
we have

ωT eiKn = −T eiK(n+1) − T eiK(n−1)

⇒ ω = −2 cos(K). (5)

The spatial frequency is ω = −2 cos(K) and 0 � K � π

for the wave impinging the lattice from the left. Note that
(4) is a solution to Eq. (3) for n �= j only when K satisfies
Eq. (5). The lattice is still mirror-symmetric with respect to
the center of the nonlinear region. To achieve the desired
diode effect by breaking the lattice’s mirror symmetry, we
must supplement the system with a translational asymmetry
together with the already present nonlinearities [18,27]. We
must therefore choose one of the three parameters such that
either Vj �= VN−j+1 or γj �= γN−j+1 or εj �= εN−j+1. The
transmission coefficient for right-moving waves is obtained
by flipping the lattice [18,19]. The encountered sites are now
relabeled as 1 → N ′,2 → (N − 1)′, . . . ,N → 1 so that to
solve for the transmission coefficient with K < 0, one simply
needs to replace Vj = VN−j+1, i.e., to replace V1 by V2 and
so on. Here K < 0 is used to denote a negative wave number
associated with a right-moving wave.

For n = 0, we have

φ0 = I + R

and for n = 1,

φ1 = IeiK + Re−iK .

With φ0 and φ1, the reflected and incident amplitudes are

R = φ0e
iK − φ1

eiK − e−iK
(6)

and

I = φ0e
−iK − φ1

e−iK − eiK
. (7)

A standard approach to determine the transmission coeffi-
cient [t(K,|T |2) = |T |2

|I |2 ] is to use the backward iterative map
[28–30]. From (3), we get

φn−1 = −φn+1 + (Vn − ω + γn|φn|2)φn

+ εn(|φn+1|2 + |φn−1|2)φn. (8)

A. Extended DNLS dimer and its bistable behavior

Let us now focus on our case of interest, i.e., the dimer (two
nonlinear sites). From (8) with n = 2, we have

φ1 = T e2iK (δ2 − eiK ),

where δ2 = (V2 − ω + γ2|T |2 + ε2|T |2).
For n = 1,

φ0 = T e2iK [δ1(δ2 − eiK ) − 1]

with δ1 = V1 − ω + γ1|T |2|(δ2 − eiK )|2 + ε1|T |2.
From (7),

|I |2 = |T |2|(δ2 − eiK )(δ1 − eiK ) − 1|2
|e−iK − eiK |2
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FIG. 1. |T |2 as a function of |I |2. Extended DNLS dimer with
(a) ε = 0.05 and (b) ε = 0.1; ε denotes asymmetry in the on-site
potential.

and

|T |2 = |I |2|e−iK − eiK |2
|(δ2 − eiK )(δ1 − eiK ) − 1|2 .

So, the transmission coefficient is

t(K,|T |2) =
∣∣∣∣ e−iK − eiK

(δ2 − eiK )(δ1 − eiK ) − 1

∣∣∣∣
2

. (9)

Now let us define

ζ2 = V1 − ω + γ1|T ′|2 + ε1|T ′|2,

ζ1 = V2 − ω + γ2|T ′|2|(ζ2 − eiK ′
)|2 + ε2|T ′|2.

By doing the same procedure of a backward iterative map,
one obtains for the right-moving wave with K ′ = −K

|I ′|2 = |T ′|2|(ζ2 − eiK ′
)(ζ1 − eiK ′

) − 1|2
|e−iK ′ − eiK ′ |2 ,

|T ′|2 = |I ′|2|e−iK ′ − eiK ′ |2
|(ζ2 − eiK ′ )(ζ1 − eiK ′ ) − 1|2

⇒ t ′(K ′,|T ′|2) =
∣∣∣∣∣ e−iK ′ − eiK ′

(ζ2 − eiK ′ )(ζ1 − eiK ′ ) − 1

∣∣∣∣∣
2

. (10)

To introduce the required asymmetry, we assume a different
on-site potential Vj = V0(1 ± ε) for the two nonlinear sites
(dimer), the two nonlinear sites are equivalent in nonlinearity
with V0(1 + ε) at site 1 and V0(1 − ε) at site 2, ε is the
extent of asymmetry, and V0 is the depth of the potential.
The solutions are determined by iterating (8) from φN =
T exp(iKN ), φN+1 = T exp[iK(N + 1)]. One must note that
for the periodic point of the map, i.e., (φ0,φ1) = (φN,φN+1),
the transmission is maximal with t = 1.

Figure 1 corresponds to the extended DNLS dimer case.
It gives a relationship between incident intensity (|I |2 along
the horizontal axis) and transmitted intensity (|T |2 along the
vertical axis) with V0 = −2.5, γ1,2 = 1, ε1,2 = 0.50, and K =
0.1. Figure 1(a) is produced with ε = 0.05 and Fig. 1(b) is for
ε = 0.1. The dashed black line corresponds to the symmetric
branch. The green line corresponds to left-moving waves with
K > 0, and the red line corresponds to right-moving waves
with K < 0. Due to asymmetry ε, the two waves with K < 0
and K > 0 have a pronounced difference in transmission,
leading to the asymmetric transmission. In Fig. 1(b), we

FIG. 2. Transmission coefficient t as a function of transmitted
intensity |T |2: Extended DNLS dimer.

increase the asymmetry in the on-site potentials and observe a
broader window (bistability window) for perfect transmission.
In contrast to [18,19], we observe that refining the DNLS
model by adding a nonlocal nonlinearity results in achieving
the diode effect at lower incoming intensities, at the cost of a
reduction in the window of complete transmission.

We further observe that the intervals (bistability windows)
of maximal transmission shrink by increasing the strength of
the nonlocal nonlinearity ε. For very small values of ε (e.g., for
a value of 0.20), the diode interval broadens and approaches
the purely cubic DNLS results [18], as expected.

Figure 2 is a plot for transmission coefficient t as a function
of transmitted intensity. It is produced for ε = 0.05 and ε =
0.5; other parameters are as before.

B. Results

We introduce a rectifying factor following [18], which
determines the regions with maximum diode effect, however it
does not address the magnitude of the transmission coefficient.
It is given by

f = t(K,|T |2) − t(−K,|T |2)

t(K,|T |2) + t(−K,|T |2)
. (11)

FIG. 3. Rectifying factor as a function of |T |2 and K for a purely
(on-site) cubic DNLS dimer: For distinct and increasing asymmetry
between on-site potentials.
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FIG. 4. Rectifying factor as a function of |T |2 and K for an
extended DNLS dimer: For distinct and increasing asymmetry
between on-site potentials.

The following plots are produced for the rectifying factor
with varying asymmetry. The yellow regions indicate trans-
mission of right-moving waves (K < 0) only, and the black
regions indicate transmission of left-moving waves (K > 0)
only.

In Figs. 3 and 4, we have plotted the rectifying factor as
a function of transmitted intensity |T |2 and K . Figure 3 is a
reproduction from [18]. The purpose of reproducing it is to
make a comparison with Fig. 4, which is the rectifying factor
plot for the extended DNLS dimer case. This will allow one to
understand how this cooperative local and nonlocal nonlinear
response from the lattice affects the diode features produced
by nonreciprocal transmission. Note that Fig. 3 is for a purely
cubic DNLS dimer, which means that there is only one on-site
cubic nonlinear response from the lattice.

For fixed γ and ε, increasing asymmetry results in an
improvement in the diode action, which can be seen in both
figures. However, as mentioned above, the overall transmission
shrinks in the extended case due to an increased nonlinear
response that an incoming wave experiences from the lattice.
Furthermore, note that in Fig. 3(d), one can observe that
a nearly perfect diode action occurs for the purely cubic
case with ε = 0.4 and also that the right-moving waves
have a slightly higher contribution to the diode action as

FIG. 5. Rectifying factor as a function of |T |2 and K , extended
DNLS dimer: For asymmetry between on-site potentials set to ε =
0.7.

FIG. 6. Transmission coefficient t as a function of incident wave
intensity |I |2 for distinct (increasing) values of nonlocal nonlinear
response ε.

compared to the left-moving waves. For the extended case
with ε = 0.4 in Fig. 4(d), there is a small region corresponding
to small wave numbers that does not exhibit a perfect diode
action; however, for the region with perfect diode action, the
contribution of the right- and left-moving waves is roughly the
same.

The extended DNLS dimer shows an almost perfect
diode behavior for an increased asymmetry between on-site
potentials at ε = 0.7, as compared to its purely cubic
counterpart where this phenomenon is achieved at ε = 0.4,
and the contribution to this diode action from the left-moving
waves is higher as compared to the right-moving waves. This
is depicted in Fig. 5.

All plots in Fig. 6 are produced for a fixed value of
asymmetry, ε = 0.05. The plot in Fig. 6(a) is for the purely
cubic case with no nonlocal response; the window of maximum
transmission is visible. Subsequent plots Figs. 6(b)–6(d) are
produced for increasing nonlocal nonlinear response, and we

FIG. 7. Transmission coefficient as a function of |T |2 and K:
For increasing nonlocal nonlinear response ε in (a)–(d) and fixed
asymmetry ε = 0.05.
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FIG. 8. Transmission coefficient as a function of |T |2 and K:
For increasing asymmetry ε in (a)–(d) and fixed nonlocal nonlinear
response ε = 0.5.

have strengthened the nonlocal nonlinearity from ε = 0.3 in
Fig. 6(b) to ε = 0.7 in Fig. 6(d). One can clearly see that the
window shrinks but is displaced to lower input intensities with
increasing nonlocal nonlinear response.

Figures 7 and 8 represent the plots for the transmission
coefficient as a function of |T |2 and K for 0 � K � π . The
asymmetry is fixed at ε = 0.05 in Fig. 7. The plot in Fig. 7(a) is
for the purely cubic case. We then turn on the nonlocal response
and plot for different strengths of this nonlocal nonlinear
response [ε = 0.3 in Fig. 7(b) to ε = 0.7 in Fig. 7(d)]. One
can see a shrinking transmission pattern as this nonlocal term
gets strengthened. Figure 8 is the same plot, but here we
fix the intersite strength to ε = 0.5 and vary the asymmetry.
It is interesting to note that in the top (horizontal) panel
corresponding to Figs. 8(a) and 8(b), the transmission peaks
split from two to four roughly around K = π

2 for asymmetry
values up to ε = 0.1, while this peak-splitting pattern tends
to diminish as we increase the asymmetry. Also note that the
transmission of incoming waves with larger wave numbers
(K > π

2 ) and waves with smaller wave numbers (K < π
2 ) is

approximately the same.

III. STATIONARY SOLUTIONS

A dimer has two degrees of freedom, and the corresponding
two conserved quantities render it a fully integrable system.
For a system with two sites, n = 2, the dynamical equation

∂H

∂A∗
n

= ∂An

∂t
, (12)

with H defined by Eq. (2), leads to two coupled equations with
a different on-site potential,

i
dA1

dt
= V1A1 − γ1|A1|2A1 − ε0A2 − ε1|A2|2A1, (13)

i
dA2

dt
= V2A2 − γ1|A2|2A2 − ε0A1 − ε1|A1|2A2. (14)

γ1 is the on-site (cubic) nonlinearity and ε1 is the nonlocal
(intersite) nonlinearity, as before. The norm (number) is

given by

N = |An|2. (15)

The stationary solutions are solutions of the form A1 =
φ1e

−iωt and A2 = φ2e
−iωt ; φi is time-independent. Using these

in (13) and (14) leads to a set of three equations,

ω = V1 − γ |φ1|2 − ε0
φ2

φ1
− ε1|φ2|2, (16)

ω = V2 − γ |φ2|2 − ε0
φ1

φ2
− ε1|φ1|2, (17)

N = |φ1|2 + |φ2|2. (18)

A subtraction between (16) and (17) leads to(
(γ − ε1) − ε0

φ1φ2
+ (V1 − V2)(

φ2
2 − φ2

1

)
)(

φ2
2 − φ2

1

) = 0. (19)

Equation (19) together with the definition of N gives three
different solutions.

A. Symmetric solution

The symmetric solution is

φ1 =
√

N

2
and φ2 =

√
N

2

with the corresponding equations

ω� = V1 − ε0 − N

2
(γ + ε1)

and

ω� = V2 − ε0 − N

2
(γ + ε1).

B. Antisymmetric solution

The antisymmetric solution is

φ1 =
√

N

2
and φ2 = −

√
N

2

with the corresponding equations

ω↑↓ = ε0 − N

2
(γ + ε1) + V1

and

ω↑↓ = ε0 − N

2
(γ + ε1) + V2.

C. Soliton solution

The soliton solution turns out to be slightly different. After
some computation, we get the soliton solution from Eq. (19)
in the following form:

φ1 =

√√√√√N

2

⎛
⎝1 +

√
1 − 2ε2

0 − (V1 − V2)2

N2(γ − ε1)2

⎞
⎠ (20)
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and

φ2 =

√√√√√N

2

⎛
⎝1 −

√
1 − 2ε2

0 − (V1 − V2)2

N2(γ − ε1)2

⎞
⎠ (21)

with the corresponding equations

ω↑. = V1 − γN and ω↑. = V2 − ε1N.

Please also note that we have obtained the soliton solutions
(20) and (21) in the limit (γ − ε1) 	 ε0.

D. Interpretation

The symmetric and antisymmetric solutions simply rep-
resent the solution for the coupled oscillator. But we should
explain the soliton solution as it appears to be quite different. It
exists for γ > 2(V1−ω−ε0)

N
− ε1, which accounts for the strength

of on-site nonlinearity for the soliton solution, and ε1 >
2(V2−ω−ε0)

N
− γ and ε1 > 2(V2−ω+ε0)

N
− γ , which account for

the strength of nonlocal nonlinearity. Note that by increasing
the nonlinearity such that (γ − ε1) > ε0, then φ1 → √

N and
φ2 → 0, and all the energy will be localized on just one
oscillator, hence the term “soliton.”

IV. STABILITY ANALYSIS

To analyze the stability of stationary solutions, one needs
to perturb the amplitude

i
dAn

dt
= VnAn − γ |An|2An − ε0(An+1 + An−1)

− ε1|An+1|2An,

A1 = φ1 + δ1(t),

and

A2 = φ2 + δ2(t).

We have added the perturbation δ(t) in a frame rotating
with the stationary solution. δ1,2 are complex-valued and
time-dependent. This leads to an evolution equation for the
perturbations in the form of a (stability) matrix,

d

dt

(
Re(δ(t))

Im(δ(t))

)
=

(
0 B

A 0

)(
Re(δ(t))

Im(δ(t))

)
, (22)

where

A =
(

ω−V1+γ |φ1|2+ε1|φ2|2 ε0

ε0 ω − V2 + γ |φ2|2 + ε1|φ1|2
)

(23)

and

B =
(

V1−ω−3γ |φ1|2−ε1|φ2|2 −ε0−2ε1φ1φ2

−ε0−2ε1φ1φ2 V2−ω−3γ |φ2|2−ε1|φ1|2
)

.

(24)

The eigenvalues of the stability matrix are computed by using

det[AB − λ2I ] = 0

and they are given as follows:

For the symmetric branch,

λ = 0

and
λ = −4ε2

0 − 2ε0ε1N + 2ε0Nγ. (25)

For the antisymmetric branch,

λ = 0

and
λ = −4ε2

0 + 2ε0ε1N − 2ε0Nγ. (26)

For the soliton branch,

λ1 = λ2 = −ε2
0 . (27)

The symmetric solution is stable for

0 < γ <
2(V1 − ω − ε0)

N
− ε1

and

0 < ε1 <
2(V2 − ω − ε0)

N
− γ.

The antisymmetric solution is stable for

γ >
2(ε0 + V1 − ω)

N
− ε1

and

0 < ε1 <
2(ε0 + V2 − ω)

N
− γ.

The soliton solution is stable for

γ >
2(V1 − ω − ε0)

N
− ε1,

ε1 >
2(V2 − ω − ε0)

N
− γ,

and

ε1 >
2(ε0 + V2 − ω)

N
− γ.

V. BIFURCATION DIAGRAMS

Figures 9, 11, 13, and 15 are the plots between γ and W (=
V0 − ω). Figures 10, 12, 14, and 16 are the plots between ε1

and W . We have defined V1 = V0(1 + ε) and V2 = V0(1 − ε),
as before. A similar stability analysis for exact stationary
solutions was done in [26] for the purely cubic case. In these
figures, the red line represents the antisymmetric (↑↓) branch,
green represents the symmetric (�) branch, and blue is the
soliton (↑ .) branch. The unstable solutions lie on the dashed
lines. Increasing nonlocal (intersite) nonlinearity causes a shift
in the bifurcation point, thereby reducing the effect of local
(on-site) nonlinearity. This makes the symmetric solution more
stable, but the antisymmetric solution is then stable only for
0 < γ < 2(ε0+V1−ω)

N
− ε1. Increasing local nonlinearity also

makes the solution more stable, but in this case the effect
of nonlocal nonlinearity is reduced by a factor of −γ . In fact,
one can see that an increase in at least one of the nonlinearity
parameters (γ,ε1) causes the bifurcation point to shift toward
increasing stability. However, for fixed γ and ε1, increas-
ing asymmetry ε (even at very high strengths) does not have a
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FIG. 9. Stationary solutions in the W -γ plane for ε = 0.05 with
nonlocal response ε1 twice as strong as the coupling ε0 between
adjacent sites: Extended DNLS dimer.

FIG. 10. Stationary solutions in the W -ε1 plane for ε = 0.05 with
local cubic response γ four times as strong as the coupling ε0 between
adjacent sites. Extended DNLS dimer.

FIG. 11. Stationary solutions in the W -γ plane for ε = 0.05 and
with ε1 = 4ε0. Extended DNLS dimer.

FIG. 12. Stationary solutions in the W -ε1 plane for ε = 0.05 and
with γ = 8ε0. Extended DNLS dimer.

FIG. 13. Stationary solutions in the W -γ plane for ε = 3 and with
ε1 = 2ε0. Extended DNLS dimer.

FIG. 14. Stationary solutions in the W -ε1 plane for ε = 3 and
with γ = 4ε0. Extended DNLS dimer.

FIG. 15. Stationary solutions in the W -γ plane for ε = 10 and
with ε1 = 2ε0. Extended DNLS dimer.

FIG. 16. Stationary solutions in the W -ε1 plane for ε = 10 and
with γ = 4ε0. Extended DNLS dimer.
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significant effect on the shift of the bifurcation point, as can
be seen in Figs. 13–16. Asymmetry ε is held fixed at ε = 0.05
for the first four plots (Figs. 9–12), is strengthened to ε = 3
for the plots in Figs. 13 and 14, and is further strengthened to
ε = 10 for the plots in Figs. 15 and 16.

VI. SUMMARY AND CONCLUSION

We have discussed asymmetric propagation through an
extended DNLS dimer. The important extension corresponds
to a nonlocal (intersite) nonlinear response in addition to a
purely cubic local (on-site) response. How this cooperative
(local+nonlocal) nonlinearity embedded in the lattice effects
the transmission of incoming waves and its effects on the
diode action brought about by the nonreciprocal transmission
is addressed. In short, we have presented a wave diode
proposal for an extended DNLS dimer in view of earlier
studies on the cubic DNLS model [18,19]. We assumed a
lattice where the medium between the two nonlinear sites
(dimer) is also nonlinear, which motivated the extension in the
already existing proposal for the purely cubic DNLS model.
We observed that the window of maximal transmission shrinks,
as compared to the cubic case; however, maximal transmission
takes place at lower input intensities. We also showed that this
interval can be broadened by increasing the asymmetry in the
on-site potentials, but the overall transmission is reduced with
increasing asymmetry, as can be seen in Fig. 8, also noticed in
[18] for the cubic case.

We obtained the transmission coefficients for a wave
impinging the lattice from left and right. The rectifying factor
is defined in order to determine the regions where diode action
takes place and its efficiency in that region. We presented a
series of plots by varying different site-dependent parameters
to better understand the wave transmission phenomenon.
Different plots for the transmission coefficients and rectifying

factor were presented to signify the diode effect. We found
that in the extended DNLS case, an almost perfect diode
action takes place at a higher level of asymmetry (ε = 0.7)
as compared to the cubic DNLS case (ε = 0.4). Moreover,
there is a higher contribution from left-moving waves for a
perfect diode action as compared to right-moving waves. This
trend is exactly the opposite in the purely cubic case. The
transmission pattern is also found to be symmetric between
incoming waves with larger and smaller wave numbers.

We also investigated the stability of exact stationary
solutions to this extended (asymmetric) DNLS dimer, and
we plotted the corresponding bifurcation diagrams to analyze
the bifurcation behavior. We noticed that the inclusion of the
nonlocal (intersite) nonlinearity reduces the effect of local
(cubic) nonlinearity, which effects the bifurcation behavior,
i.e., increasing the strength of the nonlocal nonlinearity shifts
the bifurcation point thus rendering the corresponding solution
branch more stable and hence dominating the effect of local
nonlinearity.

It will be interesting to study the corresponding case when
one saturates this cooperative nonlinear response. This can
allow an even finer tuning for the diode action because of the
presence of an extra system parameter, “saturation.” The work
in this direction is in progress, and we hope to report our results
soon.
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