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Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal
ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level
spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the
triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution
function depending on two parameters. Comparing the behavior of our formula for the special cases of P → GUE,
P → GOE, and GOE → GUE with the results from random matrix theory, we prove that these crossovers are
described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)] have shown
that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence
on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation
energy and on a parameter connected with the cubic valence band structure and comparing the results with the
formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or
broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers,
e.g., from the P → GOE to the P → GUE crossover, are observed and discussed.

DOI: 10.1103/PhysRevE.96.052217

I. INTRODUCTION

It is now widely accepted that classical chaotic dynamics
manifests itself in the statistical quantities of the corresponding
quantum system [1–3]. All systems with a Hamiltonian leading
to global chaos in the classical dynamics can be assigned to
one of three universality classes: the orthogonal, the unitary,
or the symplectic universality class [4]. To which of these
universality classes a given system belongs is determined
by the remaining symmetries of the system. Many physical
systems are invariant under time reversal or possess at least
one remaining antiunitary symmetry. These systems show the
statistics of a Gaussian orthogonal ensemble (GOE). Only
if all antiunitary symmetries are broken does the statistics
of a Gaussian unitary ensemble (GUE) occur. The Gaussian
symplectic ensemble will not be treated here and is described,
e.g., in Ref. [4]. Until now only a few physical systems
are known showing a crossover between GOE and GUE
statistics in dependence on the system parameters: the kicked
top [5], the Anderson model [6], and magnetoexcitons in cubic
semiconductors [7,8]. While the kicked top is a time-dependent
system, which has to be treated within Floquet theory [5,9],
and the Anderson model is rather a model system for a
d-dimensional disordered lattice [6], we showed in Ref. [10]
that magnetoexcitons, i.e., excitons in magnetic fields, are a
realistic physical system perfectly suitable to study crossovers
between the Poissonian (P) level statistics, which describes the
classically integrable case, GOE statistics, and GUE statistics.

Only for the specific crossovers of P → GOE, P → GUE,
and GOE → GUE analytical formulas for the level spacing
distribution function have been derived within random matrix
theory [11]. We have recently investigated the crossovers
P → GUE and GOE → GUE for magnetoexcitons [10] and
obtained a very good agreement with these functions. How-
ever, what has not been investigated so far are arbitrary
crossovers in the triangle between all three statistics in
dependence on two of the system parameters. In this paper

we will investigate these crossovers in dependence on the
energy and one of the Luttinger parameters, which describes
the cubic warping of the valence bands in a semiconductor.
Within random matrix theory it would be, in principle,
possible to derive an analytical formula which describes
these arbitrary crossovers and with which our results for
magnetoexcitons could be compared. However, this derivation
is very challenging and beyond the scope of the present work.
On the other hand, crossovers between different symmetry
classes are not universal [12]. Hence, we propose a function
with two parameters for arbitrary crossovers and show that it
describes these crossovers reasonably well by comparing it for
the special cases of P → GOE, P → GUE, and GOE → GUE
with the analytical formulas known. We choose the two
parameters such that one describes the crossover from regular
to irregular behavior and that the other one describes the
breaking of antiunitary symmetries. Hence, by evaluating
the numerical results with the function proposed, we can
distinguish between regular and chaotic behavior as well as
between existent or broken antiunitary symmetries. Varying
one of the two control parameters allows us to observe and
discuss transitions between different crossovers, e.g., from the
P → GOE to the P → GUE crossover.

The paper is organized as follows: In Sec. II we propose the
function for arbitrary crossovers in the triangle P-GOE-GUE
and compare it with the results from random matrix theory
for specific crossovers. After a short discussion of the model
system of magneoexcitons in cubic semiconductors in Sec. III,
we present a comprehensive discussion of the numerical results
for all possible crossovers in the triangle in Sec. IV. Finally,
we give a short summary and outlook in Sec. V.

II. CROSSOVER FUNCTIONS

In this section we propose a formula for arbitrary crossovers
in the triangle of Poissonian, GOE, and GUE statistics.
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FIG. 1. The crossover function P�(s; α, λ) of Eq. (10) for different combinations of the parameters α and λ. The values of these parameters
are given according to the linear equations in each panel with x = 0.02, 0.10, 0.25, 0.5, 1.0 (from dark to bright or left to right).

For crossovers between each two of the statistics analytical
formulas have been derived within random matrix theory in
Ref. [11]. They investigated the statistical properties of a 2 × 2
random matrix of the form

H = Hβ + λHβ ′ (1)

with a coupling parameter λ. Hβ ′ describes the perturbation
breaking the symmetry of the original system Hβ . The Poisson
process is defined by

H0 =
(

0 0
0 p

)
(2)

with a Poisson-distributed non-negative random number p.
The GOE process and the GUE process are described by a real
symmetric matrix

H1 =
(

a c

c b

)
(3)

and a complex Hermitian matrix

H2 =
(

a c0 + ic1

c0 − ic1 b

)
, (4)

respectively. A detailed evaluation of the level spacing distri-
bution yields the probability densities to find two neighboring
eigenvalues at a distance s [11]: PP→GOE(s; λ), PP→GUE(s; λ),
and PGOE→GUE(s; λ). These formulas are presented in detail in
Refs. [10,11]. It is important to note that the parameter λ can
have all values between 0 and ∞. However, already for λ ≈ 1
the crossover to the statistics of lower symmetry is almost
completed [10].

For the most general case of arbitrary crossovers between
the three processes, one would have to choose the ansatz

H = H0 + λ1H1 + λ2H2 (5)

to derive the nearest-neighbor spacing distribution
PP−GOE−GUE(s; λ1; λ2). However, as already the exact

analytical calculations of Ref. [11] are very complicated, we
here present a different approach.

We already stated in the introduction that the crossover
between different symmetry classes is not universal. Be-
sides the crossover formulas derived within random matrix
theory there are also other interpolating distributions, e.g.,
for the crossover P → GOE, which have been proposed in
the literature [13–17]. Hence, we also propose a formula for the
arbitrary crossovers based on the formulas of random matrix
theory. We define the function

P�(s; α, λ) ≡ PP−GOE−GUE(s; α; λ)

= (1 − α)PP→GOE(s; λ)

+αPP→GUE(s; λ), (6)

which is normalized

∫ ∞

0
ds P�(s; α, λ) = (1 − α) + α = 1 (7)

and fulfills the condition

∫ ∞

0
ds sP�(s; α, λ) = (1 − α) + α = 1 (8)

for the mean spacing. In Fig. 1 we show the function
P�(s; α, λ) for different values of α and λ.

It can be easily seen that this function correctly describes the
crossovers P → GOE (for α = 0) and P → GUE (for α = 1).
When setting λ � 1 and increasing α from 0 to 1 this function
should also describe the remaining crossover GOE → GUE.
Therefore, we fit the function PGOE→GUE(s; λ) from random
matrix theory to P�(s; α, 10) for given values of α using λ as
a fit parameter (cf. Refs. [10,11], where the maximum value
of λ is 10). For the optimum values λ(α), we then calculate the
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FIG. 2. The optimum values of the parameter λ when fitting
PGOE→GUE(s; λ) to P�(s; α, 10) for given values of α. With these
values the distance �2 has been calculated according to Eq. (9).

L2 distance

�2(α) =
[∫ ∞

0
ds

[
PGOE→GUE(s; λ(α)) − P�(s; α, 1)

]2
]1/2

(9)

as a measure of the fit quality [11]. The results for �2(α) and
λ(α) are shown in Fig. 2. It can be seen that the value of λ

grows monotonically for increasing values of α and that �2(α)
approaches zero for α → 0 and α → 1, which describe the
limiting cases of GOE and GUE statistics, respectively, Both
observations indicate that our function P�(s; α, 10) describes
the crossover GOE → GUE reasonably well. It is under-
standable that our function deviates from PGOE→GUE(s; λ) for
0 < α < 1. For α ≈ 0.4 the deviation is largest with �2 ≈ 0.3.
Due to these findings and the fact that crossover functions
are not universal, we are certain that the function P�(s; α, λ)
provides an adequate description of crossovers in the triangle
of Poisson, GOE, and GUE statistics.

We finally note that the value of the parameter α in Eq. (10)
is ambiguous for λ = 0 since it is

P�(s; α, 0) = (1 − α)PP(s) + αPP(s) = PP(s). (10)

Hence, when having fitted the function P�(s; α, λ) to numer-
ical results, we always present the product αλ instead of α.

In Fig. 3 we show the triangle of Poissonian, GOE, and
GUE statistics, which will be important when discussing the
numerical results. Since we plot αλ against λ, the lower left
corner corresponds to Poissonian statistics, while the lower
right corner and the upper right corner correspond to GOE
statistics and GUE statistics, respectively. The green solid line
shows the value of α = 1.

III. MAGNETOEXCITONS

Excitons in semiconductors are fundamental quasiparticles,
which are often regarded as the hydrogen analog of the solid
state. They consist of a negatively charged electron in the
conduction band and a positively charged hole in the valence
band interacting via a Coulomb interaction which is screened
by the dielectric constant. Especially for cuprous oxide (Cu2O)
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FIG. 3. The triangle of the different statistics with Poissonian
(λ = 0), GOE (α = 0, λ = 1), and GUE statistics (α = 1, λ = 1)
located at the corners. The green area shows the domain of the
function P�(s; α, λ).

an almost perfect hydrogen-like absorption series has been
observed for the yellow exciton up to a principal quantum
number of n = 25 [18]. This remarkable high-resolution
absorption experiment has opened the field of research of
giant Rydberg excitons, and stimulated a large number of
experimental and theoretical investigations [7,8,10,18–39].

When treating excitons in magnetic fields, i.e., magnetoex-
citons, it is indispensable to account for the complete cubic
valence band structure of a semiconductor in a quantitative
theory [26]. Very recently, we have shown that this cubic
valence band structure breaks all antiunitary symmetries [7]
and that, depending on the system parameters, Poissonian,
GOE, and GUE statistics can be observed [10].

The Hamiltonian of magnetoexcitons has been discussed
thoroughly in Refs. [10,26,33]. In this paper we use the
simplified model of magnetoexcitons of Ref. [10], in which
the spins of the electron and the hole are neglected. Without the
magnetic field the Hamiltonian of the relative motion between
electron and hole reads in terms of irreducible tensors

H0 = − e2

4πε0ε

1

r
+ γ ′

1

2h̄2m0

{
δ′

3

( ∑
k=±4

[
P (2) × I (2)

](4)

k

+
√

70

5

[
P (2) × I (2)](4)

0

)
+ h̄2p2 − μ′

3
P (2) · I (2)

}

(11)

with the dielectric constant ε and the parameters γ ′
1, μ′, and

δ′, which are connected to the Luttinger parameters of the
semiconductor and describe the curvature of the uppermost
valence bands [25,40,41]. The tensor operators correspond to
the Cartesian operators of the relative momentum p and the
quasispin I = 1, which is connected with the three uppermost
valence bands. The parameter δ′ is of particular importance
since it describes the cubic warping of the valence bands
and thus the breaking of the spherical symmetry of the
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FIG. 4. Cumulative distribution function for δ′ = −0.04 and Ê =
−0.6. The numerical data (red lines points) is fitted by the cumulative
distribution function F�(s; α, λ) corresponding to the level spacing
distribution of Eq. (10). The optimum fit parameters are here α =
0.65 and λ = 0.261. Hence, the statistics is in the middle between
Poissonian, GOE, and GUE statistics.

remaining terms in the Hamiltonian. The magnetic field B can
finally be introduced in the Hamiltonian H0 via the minimal
substitution [26].

We have shown in Refs. [7,10,33] that if the magnetic field
is not oriented in one of the symmetry planes of the lattice, all
antiunitary symmetries are broken unless δ′ = 0 holds. For the
subsequent calculations we choose the orientation of B given
by the angles ϕ = π/8 and ϑ = π/6 in spherical coordinates,
which is far away from the symmetry planes (cf. Ref. [10]).

We also use the method of a constant scaled energy known
from atomic physics [42]. Within this method the coordinate r ,
momentum p, and the energy E are scaled by different powers
of γ = B/B0 with B0 = 2.3505 × 105 T/(γ ′2

1 ε2) as described
in detail in Ref. [10]. The Schrödinger equation can then be
written as a generalized eigenvalue problem

Dc = γ 1/3 Mc (12)

using the complete basis of Ref. [10]. The matrices D and
M and, hence, also the solutions of the Schrödinger equation
depend on the two parameters Ê = Eγ −2/3 and δ′. It is well
known from atomic physics that for small values of Ê the
behavior of the system is regular while it becomes chaotic for
larger values of Ê. Consequently, Ê and δ′ are the important
parameters when describing arbitrary crossovers in the triangle
of Poissonian, GOE, and GUE statistics. We investigate the
level spacing statistics of the eigenvalues of the Hamiltonian
H (δ′, Ê) depending on these two parameters in the next
section.

IV. RESULTS AND DISCUSSION

Having solved the Schrödinger equation corresponding to
the Hamiltonian H (δ′, Ê) of magnetoexcitons, we unfold the
spectra according to the descriptions in Ref. [10] to obtain
a constant mean spacing [4,43–45]. In doing so, we have
to leave out a certain number of low-lying sparse levels to

remove individual but nontypical fluctuations [43]. Since the
number of level spacings analyzed is comparatively small
and comprises about 250 to 500 exciton states, we use the
cumulative distribution function [46]

F (s) =
∫ s

0
P (x) dx, (13)

which is often more meaningful than histograms of the level
spacing probability distribution function P (s).

The numerical results are then fitted by the cumulative
distribution function F�(s; α, λ) corresponding to the level
spacing distribution of Eq. (10). This is shown exemplarily
in Fig. 4. As can be seen, the agreement between the
results and the function F�(s; α, λ) is reasonable. Note that
this is generally true for all parameter sets. We evaluate
numerical spectra for δ′ = −0.02, − 0.04, . . . , − 0.16 and
Ê = −0.4, − 0.5, . . . , − 0.9.

The results for the fit parameters α and λ are shown in
Figs. 5 and 6. The two figures show the change in the fit
parameters when keeping one of the two values δ′ and Ê fixed
and varying the other one.

Let us start with Fig. 5 and the evaluation for fixed values
of the parameter δ′. In the limit δ′ → 0 the influence of
the cubic valence band structure vanishes and the system
becomes hydrogen-like. It is well known that the hydrogen
atom shows Poissonian statistics for small values of Ê and
that a crossover to GOE statistics occurs when increasing the
scaled energy [43]. Hence, we expect for very small values of
|δ′| an almost horizontal line in the figures at small values of
αλ. This can be seen in Fig. 5 for δ′ = −0.02 and even better
for δ′ = −0.04.

Here we already want to state that due to the comparatively
small number of exciton states, which can be used in the nu-
merical evaluation, the numerical data show some fluctuations
as can be seen, e.g., for larger values of s in Fig. 4. Furthermore,
when varying the parameters α and λ only slightly, the shape
of the function P�(s; α, λ) or F�(s; α, λ) hardly changes (cf.
also Fig. 1). Consequently, due to these facts the results shown
in Figs. 5 and 6 also show some fluctuations. However, one
can nevertheless see the general behavior, when changing the
δ′ and Ê.

When increasing |δ′| the cubic valence band structure
becomes important and all antiunitary symmetries are broken.
Hence, we see from Fig. 5 that the points are shifted towards
higher values of αλ indicating that the line statistics becomes
more and more GUE-like. We also observe that the line for
fixed values of δ′ tends to change its shape from an almost
horizontal line to a more diagonal line. The crossover for
fixed values of δ′ and increasing Ê becomes more and more
P → GUE-like as expected.

Let us now turn to Fig. 6. We already observed in Ref. [10]
that the parameter δ′ does not only break the remaining
antiunitary symmetry of the hydrogen atom in external fields
but also increases the chaotic behavior. When keeping the
scaled energy Ê fixed at a very small value Ê = −0.9 and
increasing δ′, the statistics does not remain Poisson-like
but the value of λ already increases. Since α furthermore
remains constant with α = 1, this indicates the crossover from
Poissonian to GUE statistics. On the other hand, it is known
from the hydrogen atom in external fields that when increasing
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FIG. 5. Resulting values for the parameters αλ and λ when
fitting the function F�(s; α, λ) corresponding to the level spacing
distribution of Eq. (10) to the cumulative distribution function of the
magnetoexciton. Here we show the behavior of the two fit parameters
when keeping the value δ′ fixed (see label in the panels) and increasing
the scaled energy Ê (color scale).

Ê the behavior of the system becomes more and more chaotic,
as well. For large values of Ê the system stays completely in
the chaotic regime independent of the value of δ′. This can be
seen in Fig. 6 for Ê = −0.4, where the value of λ is always
larger than 0.4. For Ê � −0.4 the statistics is GOE-like in the
hydrogen-like case with δ′ → 0. When increasing the value
of |δ′| it becomes more and more GUE-like as expected from
the results of Ref. [7,10]. Hence, we observe the crossover
GOE → GUE as an almost vertical line in the lower right panel
of Fig. 6. For the intermediate values −0.9 � Ê � −0.4 of the
scaled energy we observe the transition from the P → GUE
crossover to the GOE → GUE crossover as a change in the
line shape from a diagonal to a more and more vertical line.

V. SUMMARY AND OUTLOOK

We have proposed a nearest-neighbor spacing distribution
function, which allows us to investigate arbitrary crossovers
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FIG. 6. Same results as in Fig. 5 but shown for fixed values of the
scaled energy Ê (see label in the panels) and decreasing values of δ′

(color scale).

in the triangle of Poissonian, GOE, and GUE statistics.
Comparing the behavior of this function for the special cases of
P → GOE, P → GUE, and GOE → GUE with the analytical
formulas from random matrix theory, we could show that
our function allows for a reasonable description of these
crossovers. As excitons in external magnetic fields show all
these statistics in dependence on the system parameters, they
are ideally suited to investigate arbitrary crossovers between
the three statistics. Evaluating numerical spectra for different
values of the parameter δ′ and the scaled energy Ê we
could observe transitions from the P → GOE crossover to the
P → GUE crossover when increasing δ′ or from the P → GUE
crossover to the GOE → GUE crossover when increasing Ê.
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