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Multiplexing topologies and time scales: The gains and losses of synchrony
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Inspired by the recent interest in collective dynamics of biological neural networks immersed in the glial cell
medium, we investigate the frequency and phase order, i.e., Kuramoto type of synchronization in a multiplex
two-layer network of phase oscillators of different time scales and topologies. One of them has a long-range
connectivity, exemplified by the Erdős-Rényi random network, and supports both kinds of synchrony. The
other is a locally coupled two-dimensional lattice that can reach frequency synchronization but lacks phase
order. Drastically different layer frequencies disentangle intra- and interlayer synchronization. We find that an
indirect but sufficiently strong coupling through the regular layer can induce both phase order in the originally
nonsynchronized random layer and global order, even when an isolated regular layer does not manifest it in
principle. At the same time, the route to global synchronization is complex: an initial onset of (partial) synchrony
in the regular layer, when its intra- and interlayer coupling is increased, provokes the loss of synchrony even
in the originally synchronized random layer. Ultimately, a developed asynchronous dynamics in both layers is
abruptly taken over by the global synchrony of both kinds.
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I. INTRODUCTION

Synchronization is a fundamental nonlinear phenomenon,
deep in theoretical aspects and rich in real world manifes-
tations, from living cells to power grids [1]. Phase locking
(bounded phase difference) and frequency entrainment (co-
incidence of average frequencies) that lie in its heart can be
grasped already in the dynamics of phases, neglecting ampli-
tude effects in the weak coupling anzatz [2]. Despite a seeming
simplicity and decades of investigation, its most celebrated
variant, the Kuramoto model of coupled nonidentical phase
oscillators [3], still makes puzzles and brings new surprises,
especially for complex coupling topology [4–7].

The recent focus of attention has been taken by networks
with a pronounced modular structure, also known as multilayer
or multiplex, where layers (components) are networks them-
selves [8–14]. For example, the transport system of a country
can be better represented by a multiplex network having differ-
ent layers representing different modes of the transportation.
Another important example where the multiplex framework
is particularly useful belongs to neuroscience, where one
wants to understand the origin, coordination, and function of
brain rhythms of different time scales, produced in distinct
interacting brain areas [15,16]. In this venue, considerable
advance has been achieved in understanding phase synchro-
nization in multiplex globally coupled Kuramoto ensembles
with different frequency distributions [17–22]. Extensive
analytical and computational studies reveal a rich picture of
intra- and intercommunity synchronization regimes, including
bistability, desynchronization, and chaos.

While representing the brain as a multilayer network, the
topology of layers may be drastically different for example
due to diverse kinds of neural connectivity in brain areas [23].
Accordingly, isolated layers can exhibit cardinally different
synchronization properties. The first light on the problem
was shed in Ref. [24], where a one-dimensional (1D) array

was multiplexed by an offspring small-world layer, both with
identical frequency distributions, however. The former layer
lacks both kinds of synchronization, phase order (macro-
scopic Kuramoto order parameter) and frequency entrainment
[25–28], while the latter shows both [29,30]. As a result, it was
demonstrated that the weakly coupled 1D layer suppresses
synchronization in the small-world one and enhances with
strong intralayer coupling. At the same time, the 1D layer
displayed clusters of frequency synchronization (groups of
synchronized oscillators), instead of the network-wide syn-
chronization. Later it was shown that the nodes even in a
disconnected layer can become mutually synchronized due to
coupling to a nonsynchronized layer; that, however, requires
returning amplitude dynamics to the model [31].

Despite these advances, there are still many open questions.
In particular, the joint effect of multiplexing diverse oscillation
time scales and network topologies on synchronization is
unknown [32]. This theoretical challenge, addressed in the
present paper, is also inspired by the recent interest in
understanding neural-glial interactions in the brain [33]. Only
recently was it realized that electrically inactive glial cells
(astrocytes) surrounding neurons play a key role in modulating
neural synaptic communication by a bidirectional glutamate
(or other gliotransmitter) mediated coupling. Diffusion of
glutamate in the extracellular space dictates the local nature
of neural-glial and glial-glial cells coupling, while neural
synaptic connections can be long-range. On top of that, the
characteristic time scales of glial chemical response is seconds,
at least an order of magnitude greater than rhythmic electrical
activity in neurons.

In this paper we investigate synchronization in a network of
phase oscillators with multiplex topologies and time scales. To
mimic to some degree topological features of real neural-glial
interactions, we consider the following paradigmatic model:
the faster “neural” layer is a random graph [34], locally
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FIG. 1. Schematic diagram of multilayer network showing inter-
layer connections and coupling arrangements. σg , σn are coupling
among glial cells and neural cells, respectively. Interlink coupling
strength is denoted as σgn. All links in the network are bidirectional.

coupled to the slower “glial” two-dimensional (2D) lattice; see
Fig. 1. Different time scales disentangle intra- and interlayer
synchronization. When “neural” coupling is weak, and the
layer is not synchronized, multiplexing to the “glial” layer
allows for phase order and frequency entrainment in both
layers and globally, even that the isolated “glial” layer lacks
coherence for all parameters. When the “neural” layer is
originally synchronized, global (network-wide) phase order
and entrainment are obtained as expected, provided that the
“glial” lattice coupling is strong enough. Remarkably, the
pathway to synchronization is mediated by the loss (or de-
crease) of internal synchrony in both layers, triggered by partial
synchronization in the “glial” one. We find that this effect is
fundamental, being manifested even in minimal models.

II. MODEL

We take a multilayer network in which one layer represents
interactions among the glial cells and the other layer represents
those of neural cells, each layer having N × N nodes.
Coupling between glial cells and glial-neural interaction is
mediated by glutamate diffusion and has a local character.
Accordingly, we set the connections among the “glial”
oscillators to form a 2D lattice. Interlayer links are such that
each node in the “neural” layer is connected to its mirror and
all the neighbors of the mirror node (see Fig. 1). Connections
among the “neural” nodes are long-range and are modeled by
an Erdős-Rényi random network [35], conditioned that each
node has four edges on average, to match the connectivity of
the regular layer [36].

The dynamical evolution of the nodes in this multiplex
network is given by bidirectionally coupled phase oscillators

dθi

dt
= ωi +

2×N×N∑

j=1

σijAij sin(θj − θi), (1)

where θi , ωi are phase and natural frequency of the ith
oscillator, the latter taken randomly from uniform distributions
ωi ∈ [ω(g,n)

0 − 1/2; ω(g,n)
0 + 1/2]. Characteristic time scales of

neural spiking are about an order of magnitude faster than
the time scale of chemical dynamics of glial cells, hence, we
set the mean frequencies ω

(g)
0 = 1 and ω

(n)
0 = 10. Aij = {0,1}

are adjacency matrix elements, and coupling strength takes
values σi,j = {σg,σn,σng}, specific for interglial, interneural,
and glial-neural interactions, respectively. Since glial coupling

and modulation of neural activity are mediated by extracellular
glutamate, we assume that related coupling coefficients are
identical, σg = σng , unless stated otherwise [37]. We assume
open boundary conditions for both layers.

We consider two kinds and measures of synchronization.
First, global phase order in the network is measured through
the Kuramoto order parameter

ρ = |〈eiθ 〉|, (2)

where 0 � ρ � 1. ρ = 0 corresponds to the case when all
oscillators of the network are distributed uniformly over the
circle, while ρ = 1 represents the case when all oscillators are
having same phase. Phase order in neural and glial oscillators
separately is characterized by order parameters for each layer,
ρn and ρg .

Second, we calculate observed frequencies as time aver-
ages:

�j = θj (t) − θj (t0)

t − t0
, (3)

where t0 is taken large enough so that transient processes would
essentially be over. The degree of frequency synchronization
is characterized by the standard deviation of observed frequen-
cies (3) for the whole network and each separated layer, ��,
��g and ��n, respectively.

Numerical integration is implemented with a fourth-order
Runge–Kutta integration scheme with the time step �t =
0.01, transient time t0 = 1000. Initial phases θi are taken
randomly from the uniform distribution on a circle. The results
are averaged over Nr = 10 random realizations of frequencies
and neural network wiring, depending on the system size.

III. RESULTS

The results show that connecting the glial and neural
layers, in the way as described above, has a profound impact
on synchronizability of the neural layer. First, we elaborate
the case when the neural and glial layers are not coupled,
which is referred to as the isolated neural and glial layer,
respectively. It is known that random networks manifest both
phase order and frequency entrainment, while 2D lattices lack
phase order, but are capable of frequency synchronization
[25–29,38]. We identify these transitions for the particular
case under study. Addressing the size dependence there aids
to capture the effect of network topology on synchronization.
The neural layer with the random topology demonstrates
the Kuramoto-type transition to phase order at σn ∼ 0.2,
independent on the network size [Fig. 2(a)]. In contrast, the
order parameter for the glial layer of regular topology, ρg ,
progressively decays with the size of the lattice, indicating
the absence of the Kuramoto transition.

Frequency characteristics demonstrate a different picture
[Fig. 2(b)]. There, frequency synchronization in the glial lattice
is achieved at σg ∼ 0.3, without a pronounced dependence
on the system size. For the neural random layer, frequency
synchronization is approached somewhat earlier, however, it
remains less perfect even at greater coupling.

After discussing the intrinsic properties of glial and neural
layer arising due to their own interactions, we focus on
the prime aim of our work, to investigate the impact of
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FIG. 2. Kuramoto mean-field (a) and frequency (b) synchronization in the layers of different topology in dependence on the system size,
N × N . Here σn = σg = σ and the interlayer coupling is zero, σng = 0.

multiplexing on the coherent behavior of individual layers.
In particular, next we investigate how glial layer interactions
affect the dynamical evolution and coherent evolution neurons
and vice versa.

We start with the case when the coupling in the neural
layer is below the synchronization threshold, σn = 0.1.
Numerical results demonstrate that increasing the coupling
in the glial layers and between the layers, σg = σng , leads
to the onset of both phase order and frequency entrainment
at σg = σng ∼ 1.1 (Fig. 3). Remarkably, this is the result
of multiplexing to the glial layer, while neither of the
isolated layers exhibits phase order on its own for the chosen

FIG. 3. Mean field (a) and color-coded log10 density distribution
of observed frequencies (b) vs glial coupling strength, σg = σng . Here
σn = 0.1 provides nonsynchronous oscillations in the isolated neural
layer. The other parameters are N × N = 100 × 100 and Nr = 10.

parameters, and the glial one cannot produce it for any. In this
regime, individual oscillator phases in each layer are tightly
grouped about respective mean phases, which are locked
with a nonzero phase shift. The pathway to synchronization
is surprisingly complex, because it goes through the region
where both networks internally desynchronize. There is an
interval σg = σng ∼ 0.5 . . . 1.0, where internal frequency
synchronization within the glial layer induces a noticeable
widening of the frequency distribution in the neural layer.

This paradoxical loss of synchronization is even more
pronounced when the neural network is above its internal
synchronization threshold. This could be observed if we
increase glial coupling to σn = 0.3; see Fig. 4. There one
observes a gradual decrease of the neural order parameter,
ρn, and broadening of the neural frequency distribution
for σg = σng � 0.3, once a high degree of synchrony sets
in the glial layer [that corresponds well to the onset of
frequency synchronization in the isolated glial layer; see
Fig. 2(b)]. Desynchronization develops in both layers, reaching
its maximum right before a final rapid transition to global phase
order and frequency synchronization at σg = σng ∼ 1.1.

Next we report the results of extensive calculations for sub-
network order parameters and frequency standard deviations
in the coupling strengths’ two-parameter plain, σn,σg = σng

(Fig. 5) [39]. The results confirm that even for very small σn,
multiplexing with the glial layer enables the onset of phase
order and frequency synchronization within the neural layer
and globally. Desynchronization in both layers, to a varying
degree, on the route to a global synchrony is observed in the
whole range of σn. Its starting point is associated with the
emergence of internal frequency synchronization in the glial
layer, that can break phase order and synchronization in the
neural counterpart in particular.

The first interesting effect, the onset of phase order due
to multiplexing with the glial layer, which does not support
it itself, can be relatively easily explained. Interaction with
the glial lattice, which is internally frequency synchronized
(or close to this state), helps to entrain the mirror nodes in
the neural layer to a certain frequency. In addition, in the
strong coupling limit this leads to an additional glia-mediated
neuron-neuron interaction.

The other key effect of mutual desynchronization seems
to be counterintuitive. To shed some light on the mechanism
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FIG. 4. Mean field (a) and color-coded log10 density distribution
of observed frequencies (b) vs glial coupling strength, σg = σng . Here
σn = 0.3 provides synchronous oscillations and phase order in the
isolated neural layer. The other parameters are N × N = 100 × 100
and Nr = 10.

behind this behavior, we first refer to the study of entrainment
of the globally coupled oscillators by an external periodic
driving [40]. There it was found that for the intermediate
coupling strength the internally synchronized ensemble under-
goes the breakup of frequency synchronization as the driving
amplitude increases. Moreover, the entrainment of the mean
field oscillations appears to precede that of individual systems.
While this specific feature is not readily seen in our case
(see Figs. 3 and 4), the desynchronizing effect of an external
periodic modulation seems quite general.

In order to pursue this observation further, we consider a
minimal model of two coupled phase oscillators subject to
external driving (mimicking an internally synchronized peer
layer), which in the rotating frame with the driving frequency
follows

φ̇1 = ω1 + sin(φ2 − φ1) − d sin φ1,

φ̇2 = ω2 + sin(φ1 − φ2) − d sin φ2, (4)

where the coupling strength between the two is normalized to
unity, and d is the external driving strength (and frequency is
0, formally). It is straightforward to see that in the absence
of external driving and d = 0, the oscillators are mutually
synchronized, φ̇1 = φ̇2 = (ω1 + ω2)/2, if |ω1 − ω2| � 2. In
another limiting case, ω1 = ω2, the oscillators are synchro-
nized to the external driving, φ̇1 = φ̇2 = 0, if |ω1,2| � d.
Next, if one of the natural frequencies, ω1, for example, is
large, |ω1| � |ω2| and |ω1| � |1, expectedly, the other can be
entrained by external driving alone, if d � |ω2|, such that its
observed average frequency �2 = 0.

FIG. 5. Two-parameter diagrams for the color-coded subnetwork order parameters, ρg and ρn (a), (b) and frequency standard deviations,
��g and ��n (c), (d). Here N × N = 100 × 100.
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FIG. 6. Bifurcation diagram for a minimal model: mutual syn-
chronization (“MS,” white), nonsynchronized (“NS,” blue), one of
the oscillators externally synchronized (“ES,” yellow), and both
synchronized externally and mutually (“EMS,” red). Here d = 1.0.
Dashed lines mark mutual synchronization region, |ω2 − ω1| < 2, in
the absence of external signal, d = 0.

Simple analytics, however, does not answer whether
external driving can desynchronize the otherwise mutually
synchronous oscillators, and we resort to numerics. For that
the averaged observed frequencies, �1,2, are calculated (3)
and compared mutually and to 0. Figure 6 shows a typical
two-parameter bifurcation diagram for the system (4), where
the external driving strength is set to d = 1 without loss
of generality. Here, among the variety of synchronization
regimes, we observe the regions under consideration to be
within |ω1 − ω2| � 2 (dashed lines): There any kind of
synchronization is absent (“NS”), or one of the oscillators
gets externally synchronized at the expense of synchronization
with its peer (“ES”). We thus conclude that the intermediate
desynchronization effect in the multiplex network has a basic
nature.

IV. CONCLUSIONS

Motivated by the challenges of collective dynamics of
neuro-glial cell ensembles, we studied the effect of multi-
plexing the two networks of phase oscillators with different
topology, characteristic time scales, and kinds of synchro-
nization. One of them, the Erdős-Rényi random network,
modeling the long-range neural connectivity, manifests a
Kuramoto-type transition to mean-field synchronization. The
other, a two-dimensional lattice, modeling local coupling in
glia due to diffusion of extracellular calcium, exhibits a weaker,
frequency synchronization only and lacks phase order.

In summary, we demonstrated a profound effect of mul-
tiplexing on intra- and interlayer synchronizability. When
neural coupling is weak, and the layer is not synchronized,
multiplexing to the glial layer allows for the phase order
and frequency synchronization in both layers and globally,
even when the isolated glial layer does not support the phase
order at all. As expected, when the neural layer is originally
synchronized, global synchronization and phase order are also
obtained, provided that the glial coupling is strong enough.
Remarkably, the pathway to synchronization is mediated by
the loss (or decrease) of internal synchrony in both layers, fol-
lowing partial synchronization in the glial layer. Analysis of the
simple model has shown that this effect is a manifestation of the
fundamental phenomenon, present even in minimal models.

Our results open the gate to many other interesting
research questions to be investigated, from broad questions
of synchronization in multiplex networks with the other
different topologies, extending the topology of multiplexing
itself, to generalizing these effects to chaotic synchronization.
Implementation of biologically realistic models of neurons and
glial cells, models of synaptic coupling, glutamate diffusion,
and synaptic modulation, as well as addressing the other,
excitable regimes of cells, seems to be the next application-
driven step in this research direction.
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