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Recurrence due to periodic multisoliton fission in the defocusing nonlinear Schrödinger equation
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We address the degree of universality of the Fermi-Pasta-Ulam recurrence induced by multisoliton fission from a
harmonic excitation by analyzing the case of the semiclassical defocusing nonlinear Schrödinger equation, which
models nonlinear wave propagation in a variety of physical settings. Using a suitable Wentzel-Kramers-Brillouin
approach to the solution of the associated scattering problem we accurately predict, in a fully analytical way, the
number and the features (amplitude and velocity) of solitonlike excitations emerging post-breaking, as a function
of the dispersion smallness parameter. This also permits us to predict and analyze the near-recurrences, thereby
inferring the universal character of the mechanism originally discovered for the Korteweg-deVries equation. We
show, however, that important differences exist between the two models, arising from the different scaling rules
obeyed by the soliton velocities.
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I. INTRODUCTION

The discovery by Fermi-Pasta-Ulam (FPU) that a low-
frequency excitation of nonlinear oscillator chains gives rise
to recurrence instead of equipartition, a phenomenon now
known as FPU recurrence [1,2], turned into one of the most
consequential findings of nonlinear physics [3–7], leading to
multiple research avenues that are still actively investigated
today [8–11]. The first resolution of the apparent paradox
was given ten years later by Zabusky and Kruskal (ZK) [12]
who showed that, in the continuum limit [which gives rise
to the weakly dispersive Korteweg-de Vries (KdV) equation],
the recurrence can be understood in terms of solitons [13].
Specifically, solitons fission from points of breaking (shocks)
occurring in the periodic input mode (a regime which is
substantially confirmed, e.g., for the quadratic, or so-called
α-type, FPU chain [14]). Nearly synchronous arrival of the
solitons after interaction leads to the recursion. An explicit
estimate for the KdV recurrence time was then given by Toda
[15,16]. Experimentally, the recurrence from periodic input
was reported in different systems ranging from electrical lattice
networks [17] to continuous wave systems such as ion acoustic
plasma waves [18], and gravity waves in shallow water [19],
while it could be potentially observed also for electron beams
that exhibit KdV type of breaking [20].

This result has led to the notion that a time scale exists
for which the dynamics of FPU is essentially integrable,
that is, it remains close to integrable limits, either the KdV
in the continuum approximation or the discrete Toda chain
[8,21]. Over much longer times the FPU chains eventually
thermalize, as it is now clear after decades of research on this
topic [8,9]. A crucially important remaining issue, however,
is to investigate the metastable state characterized by the
recurrences at intermediate time scales. In this context, a
natural question that has remained surprisingly unaddressed is
the degree of universality of the mechanism discovered by ZK
for other integrable models. While it is now accepted that FPU
recurrence is not necessarily a prerogative of integrable models
[11], the latter constitute a wide and extremely important class
employed to describe innumerable physical situations. Clearly,

the importance of integrable systems goes well beyond the
specific interest for FPU chains, since they often provide an
accurate description of several genuinely continuous physical
systems. In this context, breaking phenomena are a universal
feature of the weakly dispersive regime [22] (see also Ref. [23]
for a recent review) occurring for the nonlinear Schrödinger
(NLS) equation [24–33], naturally arising as the continuum
limit of the cubic β-FPU [4], the Benjamin-Ono equation
[34,35], and the Toda lattice [36–38], to name only a few.
A special role in this context is played by the defocusing or
repulsive NLS equation, since it describes wave-breaking phe-
nomena recently observed and analyzed in areas as different as
nonlinear optics [26–32], Bose-Einstein condensates [24,25],
and spin waves [33]. Furthermore, the periodic input problem
for such model was recently demonstrated to be accessible in
fiber-optics experiments, which show fission of dark “solitons”
from periodic points of breaking [29,30]. Yet, natural and
fundamental questions concerning how to predict the number
and the features of the solitons and whether recurrence should
be expected remain to date completely open in such model.

The purpose of this paper is to give an answer to these
questions and to demonstrate that soliton generation as a result
of hydrodynamiclike instabilities, and the resulting FPU-like
recurrences, are in fact a more general feature of nonlinear
wave evolution equations with small dispersion. To this end,
we show that such phenomena can be effectively treated
analytically using the scattering problem and its finite gap
formulation associated with the defocusing NLS equation.
While our results significantly broaden the universality of the
ZK mechanism of recurrence, they allow us to clarify that
the phenomenon presents, for the NLS equation, considerable
differences with respect to the case of the KdV equation.

We remark that FPU recurrences have also been referred to
in the literature in the focusing regime of the NLS equation.
These, however, are exact (instead of near) recurrences that
occur through a different kind of mechanism involving mod-
ulation instability of a strong background (a forbidden regime
for the defocusing NLS equation which is well known to be
modulationally stable). Such scenarios have been investigated
in fluids and optics only in a regime that involves few dominant
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FIG. 1. Density plot of |q(x,t)| from numerical solution of the initial value problem in Eqs. (1) and (2) with ε = 0.1, showing the fission
into solitonlike excitations as a result of breaking (hydrodynamiclike instability, see early stage t < 1) occurring in the null points of the input
cosine and the following near-recurrence at t � 15.5.

Fourier modes, i.e., far from the weakly dispersive limit that
we are interested in [39–44]. Conversely, wave packets without
background in the weakly dispersing limit of the focusing
regime are known to exhibit a different type of breaking (i.e.,
elliptic unbilic catastrophe [45]) compared with the defocusing
case. The complicated dynamics in the evolution stage beyond
the catastrophe cannot be reduced, in general, to the fission
of solitons that simply move apart with different velocities
[46,47]. Moreover, the global scenario for a periodic input
mode in the focusing regime was never addressed so far, and
will require a specific analysis that will be proposed elsewhere.

Motivated by the above discussion, here we consider the
following dimensionless periodic initial value problem for the
defocusing NLS equation,

iεqt + ε2qxx − 2|q|2q = 0, (1)

with initial conditions

q(x,0) = cos x, − π � x � π. (2)

The variables x and t are typically space and time, respectively
(e.g., see Refs. [48,49]), though in nonlinear fiber optics they
have the reversed role of retarded time and propagation dis-
tance [29,30,50], and ε quantifies the smallness of dispersion
[29] (in quantum-mechanical settings ε is also proportional to
Planck’s constant h̄ [24]) compared to the strength of nonlinear
effects. Without loss of generality [taking advantage of the
scaling invariances of Eq. (1)], we have normalized the period
Xp of the cosine initial value to 2π .

The nonlinearity in Eq. (1) induces conversion towards
high-frequency modes, i.e., odd harmonics ±m/Xp, m =
3,5, . . . of the m = 1 input frequencies, a phenomenon com-
monly known in nonlinear optics as multiple four-wave mixing
(mFWM) [30,51,52]. In the regime of interest here, ε � 1,
mFWM becomes very efficient and causes strong steepening
of the cosine fronts, until breaking (hydrodynamic instability
[29]) occurs followed by fission into solitonlike excitations,
as shown by the numerical simulation in Fig. 1. Marked
differences with the corresponding phenomena in the KdV
equation [12,19] are the degenerate mechanism for breaking
that occurs at the null (vacuum) points (cf. Refs. [28,31],
where similar mechanism is analyzed in detail for dark-type
input on a constant background) and the fission into pairs
with opposite velocities, which reflect the bidirectional (NLS)
versus unidirectional (KdV) dispersive hydrodynamic nature
of such models [23]. Nevertheless, even in the NLS equation,
solitons eventually give rise to a near-recurrence as shown in

Fig. 1. Our goal, here, is to provide a quantitative description of
this phenomenon, including analytical estimates of the number
of fissioning solitons and their velocities as a function of ε, and
then use these results to characterize the recurrent behavior.

The outline of this work is the following. In Sec. II we
characterize the spectrum of the NLS Eq. (1) in the small
dispersion limit with initial conditions Eq. (2) using a suitable
WKB expansion. In Sec. III we study the properties of the
effective solitons arising from the corresponding spectrum.
In Sec. IV we discuss the recurrence of initial conditions.
Section V offers a few concluding remarks. The details of the
calculations are given in the Appendix.

II. NLS SPECTRUM IN THE SMALL DISPERSION LIMIT

A. Scattering problem and monodromy matrix

Since the NLS Eq. (1) is completely integrable, the
initial value problem can be solved via the inverse scattering
transform (IST). In particular, the relevant formalism here
is the IST with periodic boundary conditions, or finite-gap
theory [53–56]. According to the periodic IST, the nonlinear
excitations embedded in the initial datum are encoded in the
spectrum of the scattering problem associated with the NLS
Eq. (1), i.e., the well-known Zakharov-Shabat (ZS) system
with cosine potential,

εφx = (−ikσ3 + cos x σ1) φ, (3)

where φ(x,k) = (φ1,φ2)T is the vector eigenfunction, and σ1

and σ3 are the first and third Pauli matrices, respectively. Since
the scattering problem Eq. (3) is self-adjoint, all eigenvalues
k are real. Applying the change of variables v = φ1 + φ2

and ṽ = φ1 − φ2, Eq. (3) can be reduced to the second-order
ordinary differential equation,

−ε2vxx + (cos2 x − ε sin x) v = λ v, (4)

which is the time-independent Schrödinger equation with an
ε-dependent potential and eigenvalue λ = k2 � 0. Since the
potential is periodic, Bloch-Floquet theory can be used to show
that Eq. (4) admits bounded solutions if and only if

−2 � trM � 2, (5)

where M(λ) is the monodromy matrix of the problem, defined
as M = Y−1(−π )Y (π ), and Y (x) is any fundamental matrix
solution of Eq. (4). The values of λ for which Eq. (5) is
satisfied comprise the spectrum of Eq. (4). Note that, to each
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nonzero value of λ, there correspond two values k = ±√
λ in

the original scattering problem, Eq. (3).

B. Wentzel-Kramers-Brillouin (WKB) analysis

Since no solutions in closed form are available for Eq. (4),
we apply the WKB method (e.g., see Ref. [57]) to obtain
asymptotic expansions for the solutions of Eq. (4) and therefore
for trM in the dispersionless limit, similarly to the approach
developed in Refs. [19,58]. It is convenient to introduce the
shorthand notation,

Q(x) = λ − cos2 x. (6)

For λ > 1, no turning points are present, and straightforward
calculations (see Appendix 1 for details) yield

trM = 2 cos(S0(λ)/ε), λ > 1, (7a)

where S0(λ) = ∫ π

−π

√
Q(x) dx. On the other hand, for

0 < λ < 1 four turning points are present, and the WKB
analysis is considerably more complicated. In this case, the
main difficulty comes from the fact that one must first construct
asymptotic solutions in each of the regions away from the
turning points and near each turning points, and then match
the solutions in the transition regions around the turning points,
obtaining so-called connection formulas that allow one to
continue the asymptotic expressions for the eigenfunctions
over the whole spatial domain. These expressions can then
be used to finally construct the monodromy matrix. Omitting
the details for brevity (see Appendix 2 for details), we find
the following expression for the trace of the monodromy
matrix:

trM = 2 − 4 sin2(S1(λ)/ε) cosh2[S2,ε(λ)/ε], 0 < λ < 1,

(7b)

where S2,ε(λ) = S2(λ) + ε log 2,

S1(λ) =
∫ π−c

c

√
Q(x) dx, (8a)

S2(λ) =
∫ c

−c

√
|Q(x)| dx, (8b)

and c = arccos(
√

λ).
In the following, we conveniently refer to the half trace

1
2 trM , which, according to Eqs. (7), turns out to be bounded
by the unit value, i.e., 1

2 trM � 1, for all λ � 0. In particular,
Eq. (7a) shows that the range 1 < λ < ∞ forms one infinitely
long band. Conversely, Eq. (7b) shows that the range 0 � λ <

1 is divided into alternating bands and gaps corresponding to
the values of λ for which −1 � 1

2 trM � 1 (bands) or 1
2 trM <

−1 (gaps), respectively. The bands and gaps are separated by
a sequence of band edges λn for n = 0,1,2 . . . , which are the
values of λ such that 1

2 trM = −1. Note that the value λ = 0 is
always part of the spectrum (this can be seen by noting that for
k = 0 the scattering problem decouples in the variables v and
ṽ and can be solved exactly to get 1

2 trM = 1, which coincides
with the limiting value of Eq. (7b) as k → 0).

As an example, in Fig. 2 (left panel) we show the
dependence of 1

2 trM on the spectral parameter λ for ε = 0.15.
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FIG. 2. Left panel: Half trace of the monodromy matrix 1
2 trM as a

function of the eigenvalue λ with ε = 0.15, comparing the asymptotic
expressions Eqs. (7) (dashed red) with the results from numerical
integration of the scattering problem Eq. (4) (solid blue). Right panel:
the number Nm of distinct soliton pairs as a function of ε. Red curve:
full WKB prediction, Eq. (12). Gray curve: linear approximation,
Eq. (13a). Blue squares: the value obtained from numerical integration
of Eq. (3). Orange stars: same from direct numerical integration of
Eq. (1). Also shown for comparison (dashed magenta) is the total
number of excitations Ne.

Note that, since trM exhibits exponentially large oscillations,
to capture the whole behavior in a single plot we plot the
quantity f (trM/2) instead of 1

2 trM itself, as in Ref. [59],
with f (	) defined as f (	) = 	 for |	| � 1 and f (	) =
sgn(	) (1 + log10 |	|) for |	| > 1. In such figure we compare
the above WKB asymptotic expressions for 1

2 trM in Eq. (7)
with the values obtained from direct numerical integration
of Eq. (4). As can be seen from the figure, the difference
between the asymptotic expressions and the numerical values
is negligible for our purposes.

III. EFFECTIVE SOLITONS

A. Asymptotic properties of the spectrum

Equation (7b) implies that, for 0 � λ < 1, each band is
clustered around a maximum of 1

2 trM , at which 1
2 trM(λ) = 1,

and that the nth maximum λ = zn is given by the solution of

S1(zn) = nπε. (9)

Since λ = k2, each spectral band of the scattering problem
Eq. (4) corresponds to a symmetric pair of nonlinear excita-
tions of the NLS Eq. (1) except for the first spectral band,
centered around k = 0, which generates just one nonlinear
excitation. Hence, the number Ne of nonlinear excitations of
the problem is related to the total number Nb of spectral bands
in the range 0 � λ < 1 by Ne = 2Nb − 1. Since S1(1) = 2,
Eq. (9) then yields Nb = �2/(πε)� + 1 and therefore Ne =
2�2/(πε)� + 1. It was conjectured in Refs. [29,30] that these
excitations display solitonlike behavior. For a fixed value
of ε, however, only some of the excitations in the problem
resemble the dark solitons of the defocusing NLS equation.
Note, however, that counting the number of excitations from
direct numerical simulations of the NLS equation presents
two major challenges. The first one is that not all excitations
might be identifiable in the output. The second one is that it is
highly nontrivial to distinguish which ones among all visible
excitations are of solitonic or nonsolitonic type. To distinguish
solitonlike excitations from nonsolitonic ones, one must look
at the the relative width Wn = wn/(wn + gn) of the nth band,
where wn (gn) is the width of nth band (adjacent gap). By
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expanding the expression for trM in Eq. (7b), we find (see
Appendix 2 for details)

Wn = 2

π
exp(−S2(zn)/ε) + O(εe−S2(zn)/ε). (10)

The proper solitonic limit of each excitation is obtained
when the relative bandwidth Wn tends to zero. Of course,
since the bandwidths are always greater than zero, one
never has true solitons in the periodic problem. (This is at
variance, for instance, with what happens when one considers
the dark potential q(x,t = 0) = tanh x on the infinite line,
which is reflectionless for integer 1/ε, containing a number
Ns = 2/ε − 1 of discrete eigenvalues that correspond to true
solitons, as shown in Ref. [60].) Nonetheless, excitations
asscociated to bands with very narrow relative bandwidths
(Wn � 1) become closer and closer approximations of the dark
solitons of the defocusing NLS equation. Correspondingly,
given a fixed threshold κ � 1, similarly to Refs. [19,58] we
define a nonlinear excitation of the periodic problem to be an
effective soliton if the band to which it is associated is such that
Wn < κ . Using Eq. (10) and solving this inequality, we then
see that the solitonic bands are confined to the range [0,λs),
where λs is defined by

S2(λs) = ε log[2/(πκ)]. (11)

Denoting by Nm the total number of maxima in [0,λs), we
have that Nm is also the number of distinct soliton pairs (in
which any two symmetric gray solitons are counted as one,
like the lone black soliton). In light of the above discussion,
from Eq. (9) we then have

Nm = �S1(λs)/(πε) + 1�. (12)

The total number of solitons present in the problem is then
simply Ns = 2Nm − 1. As shown in Fig. 2 (right panel), the
above WKB estimate for the total number of soliton pairs is
in excellent agreement with results from numerical integration
of Eq. (3) and also in good agreement with direct numerical
simulations of Eq. (1) (again with the caveat regarding the
difficulty of counting numerically the number of excitations in
case of small dispersion).

We can also derive fully explicit approximations for the
number of soliton pairs as a function of ε by considering
either a linear or quadratic expansion of S1(λ) near λ = 0 and
a linear expansion of S2(λ) near λ = 1 (see Appendix 2 for
details), thus obtaining

Nm,linear =
⌊

1

2ε
− 1

π
log

2

πκ
+ 1

⌋
, (13a)

Nm,quadratic =
⌊

4
√

2 + 1

8
√

2ε
− 2

√
2 + 1

2
√

2π
log

2

πκ
+ 1

⌋
, (13b)

respectively. Corresponding approximations for Ns follow
accordingly. The values of Nm,linear are shown in Fig. 2; those
of Nm,quadratic are almost indistinguishable from the “exact”
count given by Eq. (12). Note that in both cases the leading
order term is independent of the specific value chosen for the
threshold κ .
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FIG. 3. Absolute value of the soliton velocity |Vn| (left panel) and
amplitude An (right panel) for the soliton set associated to a given
index n. Red circles, asymptotic values; blue dots, direct numerical
simulations of Eqs. (1) and (2). Here, ε = 0.06, resulting in Ns = 15
and q∞ = 0.898.

B. Amplitudes and velocities of the effective solitons

Recall that the single dark-soliton solution of the defocusing
NLS equation associated with a discrete eigenvalue k = ko is
such that

|q(x,t)|2
= k2

o + (
q2

∞ − k2
o

)
tanh2

[√
q2∞ − k2

o(x − xo − 2kot)
]
, (14)

where q∞ = limx→±∞ |q(x,t)| is the background amplitude.
Also recall that, to each solitonic band centered at λ = zn 	= 0,
with zn defined by Eq. (9), there corresponds a pair of dark
solitons with discrete eigenvalues k±n = ±√

zn. The band
centered at z0 = 0, instead, corresponds to a single black
soliton. We then obtain the velocity and the amplitude of
the nth set of solitons as Vn = ±2

√
zn and An = q2

∞ − zn,
respectively, n = 0,1,2, . . . Finally, recall that, in the infinite
line problem, the continuous spectrum is k ∈ (−∞, − q∞) ∪
(q∞,∞). Identifying the beginning of the continuous spectrum
with the first nonsolitonic band, we therefore have q∞ =√

zNm+1. Figure 3 shows a comparison between the above
WKB estimates for the soliton velocities and amplitudes and
the values obtained from direct numerical simulations of the
NLS equation.

IV. RECURRENCE OF INITIAL CONDITIONS

Similarly to the KdV equation, the evolution ruled by the
defocusing NLS equation is expected to nearly recover the
cosine initial value when the solitons simultaneously return
to their initial location after traveling an integer number of
periods.

Figure 4 shows the solution at the (numerically determined)
recurrence time for ε = 0.3 and ε = 0.08. The numerically
determined dependence of the recurrence time on ε is also
shown in Fig. 5. Next we show how one can use the above
WKB results to obtain an estimate of the recurrence time,
where we neglect the small shifts due to soliton collisions.

Since our purpose is also to study the differences between
recurrences in the KdV and the NLS equations, let us briefly
consider first the case of the KdV, which we write as

ut + 6uux + ε2uxxx = 0. (15)

An estimate for the recurrence time in Eq. (15) can be obtained
from the WKB analysis developed in Refs. [19,58]. Adopting
the same notation of such references, we recall that, in this
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FIG. 4. Near-recurrence of initial condition for ε = 0.3 (left
panel) and ε = 0.08 (right panel), comparing the initial value Eq. (2)
(solid black) and q(x,t) at the near-recurrence time (dashed red).

case, the solitonic bands correspond to nonlinear excitations
that are close to bright KdV solitons of the form

un(x,t) = u0 + Ansech2[
√

An/2(x − Vnt)/ε], (16)

where An is the amplitude of the nth soliton from the
background level u0, and Vn = 6u0 + 2An is the correspond-
ing velocity. The amplitude can be calculated as [58,59]
An = 2(λref − λn) for n = 1,2, . . . N , where N is the number
of the solitonic bands and λref = −u0 corresponds to the
(N + 1)th band, or first nonsolitonic band. According to the
analysis in Ref. [58] and adopting a linear approximation
for the eigenvalues, we find that the amplitudes and hence
the velocities scale linearly with the soliton order n, with
increment 	A = An − An+1 = 2

√
2ε, and hence 	V = Vn −

Vn+1 = 4
√

2ε. Clearly, this means that after a time TKdV such
that 	V TKdV = 2π , all the solitons recur, each having traveled
an integer multiple of the period (recall that 2π is the period
of the cosine, and note that, obviously, any contribution to
the velocity that is common to all solitons does not affect the
recurrence time). From this condition we then immediately
find

TKdV = π

2
√

2 ε
. (17)

Remarkably, the estimate in Eq. (17) coincides with an earlier
one by Toda [15,16] (once one performs the trivial rescalings of
the spatial and temporal variables so as to obtain the same form
of the KdV equation). We note, however, that Toda’s estimate
was obtained using a quadratic (parabolic) approximation for
the cosine potential, which amounts to approximating the
eigenvalues with those of an harmonic oscillator. Importantly,
numerical results (not shown) based on the integration of
the KdV equation confirm the scaling of the recurrence time
with ε−1 from Eq. (17), while the recurrence times from the
numerics turn out to be slightly overestimated by the formula,
possibly due to the soliton-soliton interactions, which are
neglected in both our and Toda’s approaches.

Returning back to the defocusing NLS equation, the time
needed for the nth soliton pair to travel a distance equal to a
whole period is Tn = 2π/|Vn|, with Vn = ±2

√
zn as before.

By employing again a linear expansion of S1(λ) around λ = 0
[see Eq. (A16a) in Appendix], we obtain the explicit expression
Vn = ±2

√
2nε, which in turn yields

Tn = π√
2nε

. (18)

10-1 100

100

re
cu

rr
en

ce
 s

tr
en

gt
h

10-1 100

101

re
cu

rr
en

ce
 ti

m
e

FIG. 5. Left panel: recurrence time as a function of ε, as computed
from direct numerical simulations of Eqs. (1) and (2) (black circles),
along with a linear fit of the numerical data (red line) and the analytical
prediction trecur = tR1 (dashed blue line). Right panel: Figure of merit
of recurrence strength [Eq. (19)], as computed from direct numerical
simulations (black circles), and its linear fit for ε < 0.3 (red line).

This result shows that the key difference between the NLS and
KdV equations is that, for the latter, Vn is linearly proportional
to the soliton index n (in the WKB limit), whereas the above
results show that for the NLS solitons Vn depends on the
square root of n. This difference is reflected in the travel
time Tn. Therefore, while in the KdV equation all solitons
simultaneously return to their initial position at the recurrence
time, this is not true in the NLS equation, and the situation is
more complicated in this case.

More precisely, neglecting the interaction-induced position
shifts, for any fixed integer m > 0, all soliton pairs with
indices n = m,4m,9m . . . ,l2m, . . . (with l any fixed positive
integer) will return to their initial position, which is also the
position of the stationary black soliton, at integer multiples
of the recurrence time tRm = π/

√
2mε. The value of tR1 as a

function of ε, shown in Fig. 5, is in good agreement with
the numerically determined recurrence times. Importantly,
note that the recurrence time for the NLS equation scales
like ε−1/2, whereas the recurrence time for the KdV equation
scales like ε−1.

To further characterize the degree of the recurrence, we
introduce the following figure of merit:

R = 1 − ‖|q(x,t)| − | cos x|‖/‖ cos x‖, (19)

where ‖f ‖2 = ∫ 2π

0 |f (x)|2 dx quantifies the energy contained
in a periodic signal. (Note that ‖ cos x‖2 = π .) The value of
R is a measure of the strength of the recurrence. A perfect
recurrence corresponds to R = 1. The numerically determined
dependence of R on ε is reported in Fig. 5, showing a strong
deterioration for decreasing ε, whereas near-perfect recurrence
is achieved for relatively large values of ε. The latter fact
is straightforwardly explained from Eq. (12), which implies
that, for ε > 0.163, there is only one soliton pair besides the
stationary black soliton. In this regime, the initial condition
is recovered almost exactly at multiples of tR = π/(

√
2ε), as

also illustrated in Fig. 4 (left panel), consistently with earlier
experiments [61,62] (see also Ref. [29]). However, for ε <

0.163, multiple soliton pairs come into play, and the recurrence
becomes progressively worse for decreasing ε, as illustrated
for ε = 0.08 in Fig. 4 (right panel). Importantly, a similar
calculation for the KdV equation also shows a recurrence
degradation with decreasing ε. However, the scaling law in the
two models is different. Specifically, R scales proportionally

052213-5



GUO DENG, SITAI LI, GINO BIONDINI, AND STEFANO TRILLO PHYSICAL REVIEW E 96, 052213 (2017)

to ε for the KdV, and as ε1/4 for the NLS (see Fig. 4, right
panel). No analytical results are available in either model
which explain this dependence.

V. CONCLUSIONS

In summary, we have shown that, in systems governed by
the weakly dispersive defocusing NLS equation, the fission
of solitons from a periodic wave and their recurrence can be
described in a fully analytical fashion. The result demonstrates
that the phenomenon of near-recurrence discovered by ZK
is observable in other integrable systems, though important
differences arise due to the different scaling of the soliton
velocities with their order. We believe that our approach
can be easily extended to other integrable systems (e.g.,
such as the Benjamin-Ono equation) to produce a critical
assessment on the general degree of universality of the
recurrence phenomenon originally discussed by ZK for the
KdV equation. We also expect our results to be experimentally
verifiable in fiber optics (in the context of mFWM dynamics)
and possibly in other settings (Bose-Einstein condensates, spin
waves, oscillator chains).

The results of this work also open up the interesting question
of whether a similar approach can also be used to study the
small dispersion limit of the focusing NLS equation with
periodic boundary conditions. Of course, the focusing case is
expected to be more challenging than the defocusing one. From
a mathematical point of view, this is because the corresponding
spectral problem is no longer self-adjoint, which means that
the spectral bands are not restriced to the real axis, and which
puts into question whether one can effectively make use of
the WKB method. Physically, the problem is also expected to
give rise to more complex phenomena because of the presence
of modulational instability, which becomes more and more
severe in the dispersionless limit (i.e., as ε → 0).
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APPENDIX

Here we provide the details on the analytical calculation of
the monodromy matrix and the relative bandwidths.

1. The WKB expansion and the range λ > 1

a. The WKB expansion.

Recall that the scattering problem is given by Eq. (4). We
look for an asymptotic expansion for the solution v of Eq. (4)
in the form

v(x) = [A(x) + O(ε)] eiS(x)/ε, (A1)

as ε → 0. Substituting Eq. (A1) into Eq. (4), one obtains, at
the first two orders in the expansion, the eikonal equation and

the transport equation, i.e.,

S2
x = Q(x), (A2a)

2iSxAx + iSxxA + sin x A = 0, (A2b)

respectively. These equations are readily integrated to obtain

S±(x) = ±
∫ √

Q(x) dx, (A3a)

A±(x) =
√√

Q(x) ∓ i cos x
/

4
√

Q(x), (A3b)

up to arbitrary additive and multiplicative constants, respec-
tively, where Q(x) = λ − cos2 x was defined in Eq. (6), and
A± corresponds to the plus/minus sign in S±(x), respectively.

Observe that, for λ > 1, Q(x) > 0 for all x ∈ R. Con-
versely, for 0 < λ < 1 the range x ∈ [−π,π ] divides into three
subdomains:

(i) Q(x) < 0 for x ∈ [−π, − c2)
⋃

(−c1,c1)
⋃

(c2,π ],
(ii) Q(x) > 0 for x ∈ (−c2, − c1)

⋃
(c1,c2),

(iii) Q(x) = 0 for x = ±c1, ± c2,
where c1 = arccos(

√
λ) and c2 = π − c1 (with c = c1). We

then need to study the WKB solutions in these two ranges of
λ separately.

b. Trace of the monodromy matrix for λ > 1.

For any value of λ in this range, Q(x) is positive.
Two linearly independent solutions are given, in the WKB
approximation, by

v±(x) = A±(x) eiS±(x)/ε, (A4)

with A±(x) and S±(x) given by Eq. (A3). We can write a
corresponding fundamental matrix solution of the first-order
system associated with Eq. (4) as a Wronskian:

Y (x) = Wr(v−,v+). (A5)

Since Q(x) 	= 0 in this case, such a fundamental matrix
solution is valid over the whole range x ∈ [−π,π ]. Therefore,
the mondoromy matrix can be obtained simply as

M = Y−1(−π )Y (π ). (A6)

Straightforward calculations then show that the trace of M is
given by Eq. (7a).

2. Trace of the monodromy matrix for 0 < λ < 1

a. WKB solutions for 0 < λ < 1.

For all values of λ in this range, there are four turning points,
namely ±c1, ± c2. Correspondingly we need to discuss the
behavior of the eigenfunctions in the following nine subregions
of the fundamental period x ∈ [−π,π ]:

(a) Region 1, x ∈ [−π, − c2);
(b) First transition region, comprised by a neighborhood

of x = −c2;
(c) Region 2, x ∈ (−c2, − c1);
(d) Second transition region, comprised by a neighborhood

of x = −c1;
(e) Region 3, x ∈ (−c1,c1);
(f) Third transition region, comprised by a neighborhood

of x = c1;
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First Second Third Fourth

FIG. 6. The subregions of the fundamental domain x ∈ [−π,π ]
for the WKB analysis in the range 0 < λ < 1.

(g) Region 4, x ∈ (c1,c2);
(h) Fourth transition region, comprised by a neighborhood

of x = c2;
(i) Region 5, x ∈ (c2,π ].
The various subregions are illustrated in Fig. 6. Next, we

discuss the WKB solution of the scattering problem in the
various subregions.

(a) In region 1, x ∈ [−π, − c2), the WKB approximation
for the general solution of the scattering problem Eq. (4) is

v1(x) = a+
1 v1+(x) + a−

1 v1−(x), (A7)

where

v1±(x) = A± exp

(
∓

∫ x

−c2

√
|Q(x)|dx/ε

)
, (A8)

and

A± = [±|Q(x)|1/2 − q]1/2
/|Q(x)|1/4. (A9)

(b) In the first transition region, x ∈ (−c2 − δ, − c2 + δ) with
δ > 0, Eq. (4) becomes

ε2vxx + (2k
√

1 − k2(x + c2) − ε
√

1 − k2)v = 0,

an asymptotic expansion for v in the first transition region is
given by (e.g., see [58])

v1→2(x) = c−
1 Ai[ξ (x)] + c+

1 Bi[ξ (x)],

where

ξ (x) = −a1/3(x + c2 − ε/2k)/ε2/3, a = 2k
√

1 − k2.

(c) In region 2, x ∈ (−c2, − c1), the WKB approximation to
the general solution has two equivalent expressions

v2(x) = a+
2 A+(x) exp

(
i

∫ x

−c2

√
|Q(x)|dx/ε

)

+ a−
2 A−(x) exp

(
−i

∫ x

−c2

√
|Q(x)|dx/ε

)
, (A10a)

v2(x) = ā+
2 A+(x) exp

(
i

∫ x

−c1

√
|Q(x)|dx/ε

)

+ ā−
2 A−(x) exp

(
−i

∫ x

−c1

√
|Q(x)|dx/ε

)
, (A10b)

with A± given by Eq. (A3).
(d) In the second transition region, i.e., x ∈ (−c1 − δ,

−c1 + δ), Eq. (4) becomes

ε2vxx − (2k
√

1 − k2(x + c1) + ε
√

1 − k2)v = 0.

An asymptotic expansion for v in the second transition region
is given by

v2→3(x) = c−
2 Ai[η(x)] + c+

2 Bi[η(x)],

where η(x) = a1/3(x + c1 + ε/2k)/ε2/3.
(e) In region 3, x ∈ (−c1,c1), the general solution in the

WKB approximation also has two equivalent expressions

v3(x) = a+
3 A+(x) exp

(
−

∫ x

−c1

√
|Q(x)|dx/ε

)

+ a−
3 A−(x) exp

(∫ x

−c1

√
|Q(x)|dx/ε

)
, (A11a)

v3(x) = ā+
3 A+(x) exp

(
−

∫ x

c1

√
|Q(x)|dx/ε

)

+ ā−
3 A−(x) exp

(∫ x

c1

√
|Q(x)|dx/ε

)
, (A11b)

where A± = [ ∓ |Q(x)|1/2 + q]1/2
/|Q(x)|1/4.

(f) In the third transition region, x ∈ (c1 − δ,c1 + δ), Eq. (4)
becomes

ε2vxx + (2k
√

1 − k2(x − c1) + ε
√

1 − k2)v = 0.

An asymptotic expansion for v in the third transition region is
given by

v3→4(x) = c−
3 Ai[z(x)] + c+

3 Bi[z(x)],

where z(x) = −a1/3(x − c1 + ε/2k)/ε2/3.
(g) In Region 4, x ∈ (c1,c2), the WKB approximation to

the general solution again has two equivalent expressions

v4(x) = a+
4 A+(x) exp

(
i

∫ x

c1

√
|Q(x)|dx/ε

)

+ a−
4 A−(x) exp

(
−i

∫ x

c1

√
|Q(x)|dx/ε

)
, (A12a)

v4(x) = ā+
4 A+(x) exp

(
i

∫ x

c2

√
|Q(x)|dx/ε

)

+ ā−
4 A−(x) exp

(
−i

∫ x

c2

√
|Q(x)|dx/ε

)
, (A12b)

with A± given by Eq. (A3).
(h) In the fourth transition region, x ∈ (c2 − δ,c2 + δ),

Eq. (4) becomes

ε2vxx − (2k
√

1 − k2(x − c2) − ε
√

1 − k2)v = 0,

an asymptotic expansion for v in the fourth transition region
is given by

v4→5(x) = c−
4 Ai[γ (x)] + c+

4 Bi[γ (x)],

where γ (x) = a1/3(x − c2 − ε/2k)/ε2/3.
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(i) In region 5, x ∈ (c2,π ], the general solution in the WKB
approximation is

v5(x) = a+
5 A+(x) exp

(
−

∫ x

c2

√
|Q(x)|dx/ε

)

+ a−
5 A−(x) exp

(∫ x

c2

√
|Q(x)|dx/ε

)
,

with A± given by Eq. (A9).

b. Connection formulas for 0 < λ < 1.

Having computed WKB expressions for the solution
of the scattering problem in the various subdomains for
0 < λ < 1, we now need to match the solutions across different
subregions. First we match v1(x) with v1→2(x). Explicitly,

v1(x) = 1
4
√

a|x + c2|
(
a+

1
4
√

λe
2
3

√
a|x+c2|3/2/ε

+ a−
1

4
√

λe− 2
3

√
a|x+c2|3/2/ε

)
[1 + O(|x + c2|)],

x → −c2,

v1→2(x) = 1
4
√

π2ξ

(
1

2
c−

1 e− 2
3 ξ 3/2 + c+

1 e
2
3 ξ 3/2

)

× [1 + O(1/ξ 3/2)], ξ → ∞.

Requiring that these two expansions match, we obtain the
connection formula(

c−
1

c+
1

)
= C1

(
a−

1
a+

1

)
, C1 =

4
√

π2λ

(aε)1/6

(
2 0
0 1

)
.

To match v2(x) with v1→2(x), note that

v2(x) = 1
4
√

a(x + c2)

(
a+

2
4
√

λeiπ/4e
2
3 i

√
a(x+c2)3/2/ε

+ a−
2

4
√

λe−iπ/4e− 2
3 i

√
a(x+c2)3/2/ε

)
[1 + O(x + c2)],

x → −c2,

v1→2(x) = 1
4
√

π2|ξ |

[
c−

1 sin

(
2

3
|ξ |3/2 + π

4

)

+ c+
1 cos

(
2

3
|ξ |3/2 + π

4

)]
[1 + O(1/|ξ |3/2)],

ξ → −∞,

implying(
a+

2
a−

2

)
= C2

(
c−

1
c+

1

)
, C2 = (aε)1/6

2 4
√

π2λ

(−i 1
i 1

)
.

Note also that ā±
2 in Eq. (A10b) relates to a±

2 in Eq. (A10a)
by (

ā+
2

ā−
2

)
= C3

(
a+

2
a−

2

)
, C3 = eiσ3 S1(λ)/ε,

with

S1(λ) =
∫ c2

c1

√
Q(x)dx. (A13)

A plot of S1(λ) is shown in Fig. 7.

0 0.5 1
0

0.5

1

1.5

2

S
1

0 0.5 1
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1

1.5

2

S
2

FIG. 7. Left: S1(λ) as a function of λ (red curve). The gray (black)
curve shows the linear (quadratic) approximation of S1(λ) about
λ = −1. Right: S2(λ) as a function of λ (red curve). The gray curve
shows the linear approximation of S2(λ) about λ = 1.

Next we match v2(x) with v2→3(x). Note that

v2(x) = 1
4
√

a|x + c1|
(
ā−

2
4
√

λeiπ/4e
2
3 i

√
a|x+c1|3/2/ε

+ ā+
2

4
√

λe−iπ/4e− 2
3 i

√
a|x+c1|3/2/ε

)
[1 + O(x + c1)],

x → −c1,

v2→3(x) = 1
4
√

π2|η|

[
c−

2 sin

(
2

3
|η|3/2 + π

4

)

+ c+
2 cos

(
2

3
|η|3/2 + π

4

)]
[1 + O(1/|η|3/2)],

η → −∞.

Requiring that these two expansions match, we obtain the
connection formula(

c+
2

c−
2

)
= C4

(
ā+

2
ā−

2

)
, C4 =

4
√

π2λ

(aε)1/6

(
1 1

−i i

)
.

Next, we match v3(x) with v2→3(x). Note that

v3(x) = 1
4
√

a(x + c1)

(
a−

3
4
√

λe
2
3

√
a(x+c1)3/2/ε

+ a+
3

4
√

λe− 2
3

√
a(x+c1)3/2/ε

)
[1 + O(x + c1)],

x → −c1,

v2→3(x) = 1
4
√

π2η

(
1

2
c−

2 e− 2
3 η3/2 + c+

2 e
2
3 η3/2

)

× [1 + O(1/η3/2)], η → ∞.

Matching these expansions, we obtain
(

a−
3

a+
3

)
= C5

(
c+

2
c−

2

)
, C5 = (aε)1/6

4
√

π2λ

(
1 0
0 1

2

)
.

Note that ā±
3 in Eq. (A11b) relates to a±

3 in Eq. (A11a) by
(

ā−
3

ā+
3

)
= C6

(
a−

3
a+

3

)
, C6 = eσ3S2(λ)/ε,

with

S2(λ) =
∫ c3

c2

√
|Q(x)|dx. (A14)

A plot of S2(λ) is shown in Fig. 7.
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To match v3(x) with v3→4(x), note that

v3(x) = 1
4
√

a|x − c1|
(
ā+

3
4
√

λe
2
3

√
a|x−c1|3/2/ε

+ ā−
3

4
√

λe− 2
3

√
a|x−c1|3/2/ε

)
[1 + O(|x − c1|)],

x → c1,

v3→4(x) = 1
4
√

π2z

(
1

2
c−

3 e− 2
3 z3/2 + c+

3 e
2
3 z3/2

)

×[1 + O(1/z3/2)], z → ∞.

Requiring that these two expansions match, we obtain the
connection formula

(
c−

3

c+
3

)
= C1

(
ā−

3

ā+
3

)
.

Next we match v4(x) with v3→4(x), note that

v4(x) = 1
4
√

a(x − c1)

(
a+

4
4
√

λe−iπ/4e
2
3 i

√
a(x−c1)|3/2/ε

+ a−
4

4
√

λeiπ/4e− 2
3 i

√
a(x−c1)3/2/ε

)
[1 + O(x − c1)],

x → c1,

v3→4(x) = 1
4
√

π2|z|

[
c−

3 sin

(
2

3
|z|3/2 + π

4

)

+ c+
3 cos

(
2

3
|z|3/2 + π

4

)]
[1 + O(1/|z|3/2)],

z → −∞.

Matching these expansions, we obtain

(
a+

4
a−

4

)
= C7

(
c−

3
c+

3

)
, C7 = (aε)1/6

2 4
√

π2λ

(
1 i

1 −i

)
.

Note also that ā±
4 in Eq. (A12b) relates to a±

4 in Eq. (A12a)
by (

ā+
4

ā−
4

)
= C3

(
a+

4
a−

4

)
.

Then we match v4(x) with v4→5(x). Note that

v4(x) = 1
4
√

a|x − c2|
(
ā−

4
4
√

λe−iπ/4e
2
3 i

√
a|x−c2|3/2/ε

+ ā+
4

4
√

λeiπ/4e− 2
3 i

√
a|x−c2|3/2/ε

)
[1 + O(x − c2)],

x → c2,

v4→5(x) = 1
4
√

π2|γ |

[
c−

4 sin

(
2

3
|γ |3/2 + π

4

)

+ c+
4 cos

(
2

3
|γ |3/2 + π

4

)]
[1 + O(1/|γ |3/2)],

γ → −∞.

Requiring that these two expansions match, we obtain the
connection formula(

c+
4

c−
4

)
= C8

(
ā+

4
ā−

4

)
, C8 =

4
√

π2λ

(aε)1/6

(
i −i

1 1

)
.

Finally, we math v5(x) with v4→5(x). Note that

v5(x) = 1
4
√

a(x − c2)

(
a−

5
4
√

λe
2
3

√
a(x−c2)3/2/ε

+ a+
5

4
√

λe− 2
3

√
a(x−c2)3/2/ε

)
[1 + O(x − c2)],

x → c2,

v4→5(x) = 1
4
√

π2γ

(
1

2
c−

4 e− 2
3 γ 3/2 + c+

4 e
2
3 γ 3/2

)

× [1 + O(1/γ 3/2)], γ → ∞.

Matching these expansions, we obtain(
a−

5
a+

5

)
= C5

(
c+

4
c−

4

)
.

c. Trace of the monodromy matrix for 0 < λ < 1.

We now are finally ready to use the results of the previous
section to compute the monodromy matrix for 0 < λ < 1. In
the subregion x ∈ (−π,c1), we choose the fundamental matrix
solution Y (x) as in Eq. (A5), with v±(x) = v1±(x) given by
Eq. (A8). The value of this fundamental matrix solution at
x = −π is thus

Y (−π ) =
(

A−(−π )e−S2(λ)/2ε A+(−π )eS2(λ)/2ε

1
ε

√|Q(−π )|A−(−π )e−S2(λ)/2ε − 1
ε

√|Q(−π )|A+(−π )eS2(λ)/2ε

)
,

with A± given by Eq. (A9). Based on the above discussion, the value of the continuation of the above fundamental matrix solution
at x = π is given by

Y (π ) =
(

A−(π )eS2(λ)/2ε A+(π )e−S2(λ)/2ε

1
ε

√|Q(π )|A−(π )eS2(λ)/2ε − 1
ε

√|Q(π )|A+(π )e−S2(λ)/2ε

)
C,

where C is the connection matrix given by

C = C5C8C3C7C1C6C5C4C3C2C1. (A15)

Now recall that, as before, we can obtain the monodromy matrix via Eq. (A6). Tedious but straightforward algebra then shows
that the trace of the monodromy matrix is given by Eq. (7b), with S1(λ) and S2(λ) given by Eq. (A13) and Eq. (A14), as before.
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3. Calculation of relative bandwidth

a. Approximated expressions for S1(λ) and S2(λ).

The functions S1(λ) and S2(λ) characterize the oscillating
and the envelope part of the analytical expression of the
trace of the monodromy matrix in Eq. (7b). These are crucial
quantities since S1(λ) determines the location of the bands
through Eq. (9) and in turn the amplitudes and velocities
of the relative solitonlike excitations, whereas the solitonic
character of the band is fixed by the condition Eq. (11), which
depends on S2(λ). To obtain explicit estimates of the number of
solitons along with their features (amplitudes and velocities)
as a function of ε, it is worth to introduce appropriate
Taylor expansions. Specifically, the Taylor expansions of
S1(λ) around λ = 0 and of S2(λ) around λ = 1 are needed.
Using known properties of elliptic integrals [63], one can
verify that these expansions are given by the following
expressions:

S1(λ) = πλ/2 +
√

2πλ2/16 + O(λ3), (A16a)

S2(λ) = −π (λ − 1)/2 + O(λ − 1)2, (A16b)

respectively.

b. Relative bandwidth.

Here we give some details on the characterization of the
bands. For n � 1, the width of the nth spectral band, which is
approximately centered at zn, is given by wn = λ2n − λ2n−1,
while for n = 0, the bandwidth is given by w0 = λ0. The width
of the nth spectral gap is given by gn = λ2n+1 − λ2n. We first
consider the Taylor expansion of trM around zn (the location
of the nth maximum), evaluated at λ = λ2n−1 and λ = λ2n,
and we obtain the nth bandwidth as

wn = 2ε

|S ′
1(zn)| exp(−S2(zn)/ε) + O(εe−2S2(zn)/ε).

Next we use the difference zn+1 − zn to approximate wn +
gn. To do so, we first show the difference between these two
quantities is given by

(wn + gn) − (zn+1 − zn) = O(εe−S2(zn+1)/ε).

We then expand S1(λ) around zn, evaluate at λ = zn+1, and
obtain

zn+1 − zn = πε/S ′
1(zn) + O(ε2).

Combining all the above results, we finally obtain the asymp-
totic expression for the nth relative bandwidth in Eq. (10).
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