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Experimental evidence of the scalar convergence towards a global strange eigenmode independent of the scalar
initial condition in chaotic mixing is provided. This convergence, underpinning the independent nature of chaotic
mixing in any passive scalar, is presented by scalar fields with different initial conditions casting statistically
similar shapes when advected by periodic unsteady flows. As the scalar patterns converge towards a global
strange eigenmode, the scalar filaments, locally aligned with the direction of maximum stretching, as described
by the Lagrangian stretching theory, stack together in an inhomogeneous pattern at distances smaller than their
asymptotic minimum widths. The scalar variance decay becomes then exponential and independent of the scalar
diffusivity or initial condition. In this work, mixing is achieved by advecting the scalar using a set of laminar flows
with unsteady periodic topology. These flows, that resemble the tendril-whorl map, are obtained by morphing
the forcing geometry in an electromagnetic free surface 2D mixing experiment. This forcing generates a velocity
field which periodically switches between two concentric hyperbolic and elliptic stagnation points. In agreement
with previous literature, the velocity fields obtained produce a chaotic mixer with two regions: a central mixing
and an external extensional area. These two regions are interconnected through two pairs of fluid conduits which
transfer clean and dyed fluid from the extensional area towards the mixing region and a homogenized mixture
from the mixing area towards the extensional region.
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I. INTRODUCTION

Mixing of a passive scalar, θ , in a domain, r, can be
described by the transport equation

∂θ (r,t)
∂t

= Pθ (r,t) := [κ� − u(r,t) · ∇]θ (r,t), (1)

where the linear advective-diffusive operator, P , depends on
the diffusivity, κ , and, through the velocity field, u, on time, t .
In a time-periodic system of period T , using a Fourier spatial
and Floquet temporal transformation, a scalar field in the wave-
number domain at time, t can be mapped into a new scalar field
at time t + T as θ̂ t+T = P̂ θ̂ t . The Frobenius-Perron operator
P̂ can be truncated for those elements associated with wave
numbers λB � √

s/κ , defined by the flow stretching rate, s

[1–3]. As in analytical examples (such as the homogeneous
baker [4] or Arnold’s cat maps [5]), the advective term in
P̂ can be ideally designed so as to transfer all the scalar
content in any wave number to a higher one, leading to a
superexponential variance decay for any finite diffusivity. In
general, however, advection disperses the scalar across a range
of length scales, some of them larger than the original one,
generating small- and large-scale persistent scalar patterns.
These patterns are defined by the eigenmodes of P̂ with the
largest eigenvalues [6–8], and, in the limit Pe � 1 (where
the Péclet number, Pe, is the ratio between advective and
diffusive transport rates), lead to an exponential variance
decay independent of the diffusivity. Such homogenization
slowdown has been attributed to two competing phenomena
acting at local and global spatial scales and respectively
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controlling the variance decay when the scalar length scale
is much smaller or similar to the flow length scale [9,10]. At
local length scales, the Lagrangian stretching theory predicts
that the long-term variance decay rate is controlled by those
scalar gradients misaligned with the direction perpendicular
to the locally fastest growing particle separation [11]: As the
exponentially elongating scalar thinnest filaments align with
the local stretching direction, they reach a minimum width,
known as Batchelor length scale, �B = 1/λB = √

κ/s, [12],
so the scalar variance decay becomes only a function of the
filament elongation.

At a global length scale, inhomogeneous advection stacks
scalar layers nonuniformly in the domain, curbing the variance
decay as the distance between layers becomes smaller than
�B . A global eigenmode, independent of the scalar, is then
distinguishable [2,3,8,13]. Since the existence of the strange
eigenmode was postulated [14], theoretical, numerical, and
experimental works have evidenced its presence, showing
how periodic flows rearrange passive scalars in temporal
recurrent patterns in close [1,15–20] or open flows [21,22].
A global strange eigenmode nevertheless implies a stronger
convergence: The eigenmodes of P̂ should exclusively de-
pend on the velocity field, and different initial conditions
should cast the same temporal recurring pattern, statisti-
cally mixing in a similar fashion. This paper evidences
how periodic flows impose on the scalar mixed recurring
temporal patterns independent of the scalar initial condi-
tion. This independence on initial conditions is explicitly
demonstrated in our experimental configuration. As expected,
variance decay under the presence of these patterns becomes
exponential.

Most of the experimental work concerned with the strange
eigenmode to date has used either electromagnetic alternating
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FIG. 1. Electromagnetic tank and magnet positioning. (a) Layout of the experimental setup with magnetic field B and current j . (b) Magnet
positioning with angle γ . Reference system: r = (x,y,z).

forcing with constant magnetic topology, which relies on
inertia to produce irreversibility [16–20], or friction forces
in cavity flows [23] or eggbeaters [21,22]. This research
used electromagnetic forced flows with morphing forcing
topology. Mixing then occurred within a velocity field similar
to the tendril-whorl map (TWM) [24,25], which consists
of a periodic switch between the steady flows generated
by concentric hyperbolic or elliptic stagnation points. Such
forcing has the practical advantage that it can generate chaotic
advection in a Stokes flow. Also, the similitude with the TWM
provides a reference for the analysis of the velocity fields, as
well as an experimental demonstration of previous theoretical
results.

This paper is outlined as follows. The experimental details
are described in Sec. II. Section III presents and discusses the
results before conclusions are made in Sec. IV.

II. APPARATUS AND EXPERIMENTAL PROCEDURE

A. Laboratory apparatus

A shallow two-layer stratified solution of NaCl, of total
depth H = 6 mm, was electromagnetically forced, as con-
ceived in [26], using the setup sketched in Fig. 1(a).

The magnetic field is generated by a pair of cubic magnets
of edge 40 mm with a magnetic strength of B = 0.3 T, placed
L = 40 mm apart. The angle γ [Fig. 1(b)] defines the magnet
attitude and was switched between 0◦ and 90◦ at a speed of
π/2 rad s−1. The electric field, generated by two arrays of
20 platinum electrodes equispaced 20 mm apart, produces a
nominal current of 24 mA, with a standard deviation smaller
than 0.5%.

A central square of side 440 mm is recorded by a 2048 ×
2048-pixel camera (1 pix ≈ 0.21 mm). The brine free surface
extends up to a square of side 600 mm. The 1-mm-thick bottom
wall is in contact with the magnets and has a maximum flatness
error of 0.4 mm.

B. Velocity field acquisition

Particle image velocimetry (PIV) was employed to acquire
the velocity field, using floating particles of Pliolite DF01
(≈150 μm) and an in-house PIV software with numerical
uncertainty ε ≈ 0.05 pix frame−1 [27]. The PIV mesh is a
regular array of 222 × 222 points covering a square of about
380 mm per side. A 3 × 3 smoothing filter was applied over

the velocity fields. Virtual particles were tracked in the velocity
fields acquired using an adaptive step-size fourth-order Runge-
Kutta method [28] validated in [29]. The velocity fields at
each time step were evaluated using a third-degree polynomial
interpolation in time and space. To avoid the loss of the virtual
particles, the velocity field orbits were numerically closed
outside the PIV area and up to a square of size 600 mm,
assuming a 2D Stokes flow and employing impermeable and
nonslip boundary conditions in the domain edge and the
acquired velocity field in the PIV border [29]. The velocity
field stagnation points were found using the Poincaré index of
small orbits [30,31].

C. Scalar field acquisition

A rhodamine 6G (Rh6G) solution (1 ml) was injected
over a two-layer stratified brine of 0.5 mm of fresh water
over 5.5 mm of a solution of NaCl in water at 80 g l−1 [29],
leaving a blob of dye of around 40 mm diameter and 0.8 mm
depth. Laser-induced florescence was employed to acquire
each i scalar field, θ i(r,t). A 532-nm, 200-mJ Nd:YAG laser
expanded into a cone excited the Rh6G. A 540-nm-long pass
filter blocked the laser light while allowing the light emitted by
the Rh6G, with wavelength emission peak at 552 nm, to reach
the camera CCD. Statistical convergence analysis showed that
the 31 initial conditions positioned as in Fig. 2(a) led to an error
in the results smaller than 4% with 95% certainty. Positions
symmetric with respect to the rig center were deliberately
avoided. To consider scalar initial conditions with different
scales, and based on the linearity of the transport operator,
the combination of all the samples was used as an additional
initial condition, the combined initial condition, as presented
in Fig. 2(b).

At the low Rh6G concentration, c ≈ 2 × 10−5 M, em-
ployed, the dye fluorescence is proportional to c and the
exciting laser intensity, I0 [32]. The spatial inhomogeneity
in I0 was calibrated by acquiring the light emitted by
several depths of a homogeneous concentration of Rh6G
and fitting, for every pixel, a linear regression between the
light intensity and the depth of reference Rh6G [33]. This is
equivalent to a 2D concentration field which, except for errors
associated with vertical velocity gradients and gravity currents
induced by the dye injection, follows a 2D advection-diffusion
process [33].
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FIG. 2. Scalar initial conditions. (a) Centers of the scalar blob initial positions, labeled with their numbers, over magnets, with “blob 05”
presented as an example. (b) Combined initial condition.

To reduce the effect of noise, the scalar variance and mean
gradient squared were computed as the spatial average of
the cross product between two pictures 100 ms apart [33].
The scalar fields presented are the average of such two
consecutive pictures. These averaged scalar fields are also
employed in the concentration correlations between samples.

Operators 〈η〉 and η respectively indicate spatial and
intersample average of the variable η. The operator 〈η,ζ 〉
expresses the correlation (Pearson’s coefficient) between the
variables η and ζ , defined as 〈η,ζ 〉 = 〈η′ζ ′〉/

√
〈η′2〉〈ζ ′2〉,

where η′ = η − 〈η〉.

III. RESULTS

A. Description of the velocity field

The flows obtained with the magnet angles γ = 90◦ and
γ = 0◦ are steady [30]: The root mean square (rms) of their
velocity temporal standard deviation is smaller than 5% of

their velocity rms, Urms, measured in a central circular area
of 100 mm radius. The velocity fields employed, uγ , are
presented in Fig. 3, for which ReH = UrmsH/ν ≈ 30, ReL =
UrmsL/ν ≈ 200, and PeL = UrmsL/κ ≈ 2 × 106, where ν ≈
1 mm2 s−1 is the water viscosity and κ ≈ 10−4 mm2 s−1 is the
diffusivity of Rh6G in water [34].

The flow in Fig. 3(a), u90◦ , presents a main central elliptic
stagnation point (ESP) and two other weaker ESPs around
±(75,15) mm. The flow in Fig. 3(b), u0◦ , presents a main
central hyperbolic stagnation point (HSP) and four other ESPs
around (±30, ± 30) mm.

In both cases, a scalar sized with the magnet length and
randomly released within 100 mm of the magnet center, as
shown in Fig. 2(a), has a turnover time between 30 and 80 s,
with a probability larger than 95% [29]. Based on this, the
periods, T , of the magnet switching, 50, 100, and 200 s, were
selected as twice the time for each steady velocity field to either
never complete a turnover time (25 s), complete a turnover

FIG. 3. Steady velocity fields obtained using (a) γ = 90◦ and (b) γ = 0◦. × = HPS and ◦ = ESP.
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FIG. 4. Velocity field statistics of the flows considered: (a) Urms in a central domain of radius 100 mm and (b) velocity correlation with the
steady flows presented in Fig. 3(b). The magnets are switched from γ = 90◦ to γ = 0◦ at t/T = 0 and from γ = 90◦ to γ = 0◦ at t/T = 0.5.

time for about half of the initial conditions (50 s), or always
complete a turnover time (100 s).

The evolution of the velocity fields obtained by periodic
magnetic switching is summarized in Fig. 4 through the
velocity root mean squared, Urms, and the velocity correlation,
〈u,uγ 〉, with the steady velocity fields, uγ , presented in Fig. 3.

At low ReH , the transient of the velocity field deficit scales
with the exponential of the fluid kinematic viscosity and the
square of the fluid thickness, which, for this setup, has a typical
time scale between 30 and 40 s. Therefore, as presented,
the 50-s-period flow never reaches a steady state, neither in
intensity nor in direction, whereas, for the 200-s-period flow,
the transient represents a small part of the cycle.

After the magnet switch from γ = 90◦ to γ = 0◦, the
central ESP splits into two ESPs and one HSP [35]. The
HSP remains in the rig center, while the two new ESPs
respectively travel towards the positions ±(30,30) mm and
the two secondary lateral ESPs of the flow travel towards
the positions ±(−30,30) mm. This process is reversed for the

magnet switch from from γ = 0◦ to γ = 90◦, as summarized
in Figs. 5 and 6.

Figure 5 presents the position of the HSP and ESP during
one forcing cycle. The position of the stagnation points defines
the topology of the velocity fields. As observed, the evolution
of the flow topology during one cycle in the 50-s-period
configuration is similar to those of the other two cases. Figure 6
presents the temporal evolution of the flow stagnation points.
This figure highlights how the topological transients (i.e., the
position of the stagnation points) are less relevant than the
geometrical transients (i.e., the flow velocity and correlation
with the baseline flows): In all three cases, a central HSP
alternates in time with a central ESP, as intended to simulate
the TWM. Since a quantitative comparison between the mixing
properties of the three configurations is not intended, the
geometrical difference between the cases should not affect
the discussion.

A summary of the stirring properties of the flows is
presented in Fig. 7, obtained by virtually tracking during one
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FIG. 5. Stagnation points of the velocity fields in one cycle using (a) T = 50 s, (b) T = 100 s, and (c) T = 200 s. Elliptic (0 − T/2, ;
T/2 − T , ) and hyperbolic (0 − T/2, ; T/2 − T , ) stagnation points and the direction that they follow (0 − T/2, ; T/2 − T , )
during one forcing cycle.
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FIG. 6. Stagnation points in one cycle of the unsteady velocity fields. (a) Temporal evolution of x (a) and y (b) position of the elliptic
(ESP) and hyperbolic (HSP) stagnation points. The magnets are switched from γ = 90◦ to γ = 0◦ at t/T = 0 and from γ = 90◦ to γ = 0◦ at
t/T = 0.5.

forcing period 128 × 128 particles covering the rig. This figure
shows the period-1 Poincaré maps plotted over color maps
presenting the average increment during one forcing period
of the distance between one particle and its eight adjoining
neighbors and normalized with the total distance traveled by
that particle. This last measure is qualitatively similar to the
finite time Lyapunov exponents [11] and quantifies the impact
on the particle path of small variations on the initial conditions.
Two squares demarcate the camera viewing area (CAM) and
the limits of the PIV mesh considered (outside which the flow
was simulated, not measured).

As observed, the central part of the flows presented in Fig. 7
contains a mixing area where particles quickly move away
from their neighbors. In agreement with [25], this mixing area
increases its size with the flow period. In the three cases, the
fluid in an intermediate extensional area leaves and reenters
into the mixing region through two pairs of conduits, similar to
those observed in the TWM around the outer period-1 periodic

points [25]. These conduits connect the extensional and mixing
regions and form a unique inhomogeneous chaotic area. The
dashed circles in Fig. 7, whose radii are summarized in Table I,
delimit mixing and extensional regions for each configuration.
Delimiting this chaotic area there is a mixing barrier separating
the outer recirculating flow. The chaotic area appears to shrink
for larger forcing periods.

B. Scalar statistics

Most of the stretching and folding happens in the mixing
area, continuously fed with clean and dyed fluid coming from
the extensional region, towards which a more homogeneous
mixture is expelled. This is equivalent to a highly inhomo-
geneous baker map, whose major region suffers only a mild
stretching while all the stirring is confined to a smaller area,
still being fully chaotic. For time scales much shorter than
the recirculation period in the extensional region, TS , the map,
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FIG. 7. Poincaré maps and relative particle dispersion, obtained as the increment on the average distance between one particle and its
eight neighbors during one forcing period, normalized with the distance traveled by that particle (fields obtained tracking a 128 × 128 grid
of particles) for forcing periods (a) 50 s, (b) 100 s, and (c) 200 s. The camera (CAM) and PIV areas are highlighted. The dash-dotted circles
delimit mixing and extensional regions for each configuration.
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nevertheless, behaves as an open baker map [21]. If evidence
of a global strange eigenmode is to be found for t � TS , this
central region should be identified, since the evolution of the
extensional region is much slower than one period and would
only spuriously increase the spatial correlation, regardless of
the existence of recurrent patterns.

Figure 8 presents an overview of the stirring generated by
the flows on the scalar. For each flow configuration (T = 50 s,
T = 100 s, and T = 200 s), snapshots of the patterns arrived
at by one arbitrary initial position and the combined initial
condition are presented at times t/T : 0, 1, 2, 3, and 4. In
all cases, the domain presented is the central square of side
440 mm, labeled as CAM in Fig. 7. The conduits connecting
the extensional and mixing regions observed in the Poincaré
maps can be identified in the scalar patterns, especially for
the combined initial condition, as those channels feeding the
mixing region with clean fluid and expelling mixed dye to the
extensional region.

The central mixing areas in these flows, elongated in a
diagonal as presented in Fig. 7, are again approximately
delimited by the circumferences in Fig. 8: Outside the larger
circumference there is no mixing region, whereas inside
the smaller circumference there is only a mixing region.
To find these limits, use was made of the expected high
correlation between scalar patterns one forcing period apart
within the mixing area, resulting from the recurrent patterns
observed in chaotic mixing [15–22]. On the contrary, the
correlation between patterns half a period apart is expected
to be low in the mixing region, but high in the extensional
area. A circular region of radius 220 mm centered in the
rig was divided into 16 complementing concentric hoops of
width 220 mm/16 = 13.75 mm. In each hoop, the spatial
correlation (Pearson’s coefficient) between scalar fields one
period, C

θi

T = 〈θ i(r,t),θ i(r,t + T )〉, and half a period, C
θi

T /2,
apart were compared for each scalar field, θ i , and for the
combined initial condition, θ i .

Figure 9 presents the difference between the correlation
one period and half a period apart for the combined initial

condition (Cθi

T − C
θi

T /2) and the average of that difference for

the rest of initial conditions (Cθi

T − C
θi

T /2), averaged in time
over the next-to-last cycle. In both cases, these values increase
within the mixing region and drop as the hoops cover the
extensional region. Negative values are reached when the
hoops contain mostly an extensional region. The vertical lines
in Fig. 9 show the radii selected as the limits between mixing,
mixing-extensional, and extensional regions, summarized in
Table I. These limits are consistent with the results presented
in Fig. 7, in which the mixing area is characterized by a fast
relative dispersion, and can also be visually verified in Fig. 8:
At t = 1T any initial condition will have spread all over the
mixing region without entering the extensional area. Then, the
outer limit should just cover all the dyed region, whereas the
inner limit should be the largest not containing fresh fluid.

Along with the limits between mixing and extensional
regions, Table I presents the temporal average over the next-

to-last cycle of C
θi

T , C
θi

T /2, C
θi

T , and C
θi

T /2 calculated within a
disk of size equal to each inner ring (only the mixing region).
Correlations were performed at several length scales, L, by

TABLE I. Region sizes. Radii delimiting the mixing and exten-
sional regions and temporal average in the next-to-last cycle of the

average of one period and half a period correlation samples, C
θi

T and

C
θi

T /2, or one period and half a period correlation of the combined

initial position, C
θi

T and C
θi

T /2, in a disk of radius equal to each inner
ring (only covering mixing region in each case).

Inner ring Outer ring Mixing region (r < Rinner ring)

(mm) (mm) C
θi

T C
θi

T /2 C
θi

T C
θi

T /2

T = 50 s 55 137.5 0.58 0.04 0.97 0.04
T = 100 s 68.75 151.25 0.49 0.02 0.95 0.03
T = 200 s 151.25 165 0.45 0.05 0.88 0.06

successively considering the average concentration in groups
of 2n × 2n pixels (1 pix ≈ 0.21 mm), varying n from 0 to 6.

The temporal evolution of C
θi

T and C
θi

T and its sensitivity to
different length scales are presented in Fig. 10.

As shown in Fig. 10(a) both C
θi

T and C
θi

T start at a value near
0 and increase until, within 5 to 10 cycles, they oscillate with
the flow period around a saturation limit, presented in Table I.
In the T = 200 s case the experiment was interrupted before

saturation. Noticeably, saturation for C
θi

T in all configurations

happens at higher values than for C
θi

T : While C
θi

T average final
values of the saturated cases are beyond 0.95, in line with

previous literature [16], the cases C
θi

T only reach values up to

almost 0.6. This maximum correlation observed in C
θi

T was
attributed to two factors: low signal-to-noise ratio (SNR) and
long-term strong inhomogeneities in the extensional region.
On one hand, due to the small amount of dye used in each
experiment, the signal of individual samples seems to be near
the noise floor of the acquisition system. As more experiments,
n, are averaged in a system with δ-correlated noise, the SNR
increases as

√
n, with a total increase of around 5.5 for the

entire set. On the other hand, strong inhomogeneities in the
extensional region prevail for a time TS � T and affect the
balance of scalar intensity within the mixing area. Both of

these factors contributing to reduce C
θi

T are palliated when the

combined initial condition is considered in C
θi

T . The degree
of spatial coherence in the scalar shapes required to reach

the values achieved by C
θi

T in this apparatus is highlighted by

comparison with both C
θi

T /2 and C
θi

T /2 presented in Table I.
Figure 10(b) presents the temporal average over the next-to-

last cycle of C
θi

T and C
θi

T , against the minimum length scale, L,
employed. In all cases, the correlations nearly reach a flat slope
at the minimum length scale considered, 1 pix ≈ 0.21 mm,
which should be around the minimum scalar length scale
of these regimes, �B , reached as the scalar filaments align
with the local stretching direction. As a result, further camera
resolutions should not significantly reduce the correlations or
modify the results presented.

A closer view of the mixing region in the first quadrant is
presented in Fig. 11 for the flow switching periods, T , 50, 100,
and 200 s; for four initial conditions in each case (columns)
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t/T0 1 2 3 4

FIG. 8. Snapshots of the scalar patterns produced by the flows with T : (a), (b) 50 s; (c), (d) 100 s; and (e), (f) 200 s at t/T ∈ [0,4]. One
arbitrary (a), (c), (e) and the combined initial condition (b), (d), (f) are presented. Extensional and mixing areas delimited. Palette ranges from
0 to max(θ ).
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FIG. 9. Sizing of mixing area. Temporal average over the next-to-last cycle of the difference between the scalar correlation one period and

half a period apart in different hoops. (a) Correlation of the sample average, C
θi

T − C
θi

T /2. (b) Average of the sample correlation, C
θi

T − C
θi

T /2. In
both graphs, vertical colored lines delimit the largest hoop fully embedded in the mixing area (solid lines) and the smallest hoop not containing
any mixing area (dashed lines).

and two time instances (rows). In each configuration the size
of the domain displayed is equal to the radius of the outer ring,
summarized in Table I. This figure presents visual evidence of
the scalar field convergence at times several periods apart and
for different configurations at the same time. The large-scale
scalar patterns are constant and consist of an increasing number
of packed attenuated scalar layers with the number of cycles.
In spite of the temporal and intersample recurrent shape cast
by clean and dyed fluid, the distribution of the concentration
varies among the different snapshots. This effect, contributing

to reducing C
θi

T , is due to the long time scale of the extensional
region, TS , feeding the mixing area: Any inhomogeneity in
the extensional region persists in the mixing area until it is
completely homogenized by it at t � TS .

The convergence of the scalar patterns is quantified through
the average of the correlation between samples, presented
in Fig. 12. To obtain that average, at each time step, each

sample, i, was correlated with the rest, obtaining a total number
of independent correlations to an average of

(31
2

) = 465.
Figure 12 also presents the average of the correlation of
each sample with the combined initial condition, presented
in Fig. 2(b), obtained by virtue of the linearity of the transport
operator. As in the one period correlation case, the correlations
were performed in each case in a disk with a radius equal to
the inner ring summarized in Table I and presented in Figs. 7
to 11, therefore containing only a mixing region, and using
several length scales, L.

Figure 12(a) presents the average correlation between
the 465 pairs of samples (referred to hereafter as simple
correlation) and the average correlation of the 31 different
samples with the combined initial condition (referred to
hereafter as combined correlation) as a function of t/T and
for the minimum length scale considered, 1 pix ≈ 0.21 mm.
This average correlation, which also contains the oscillatory
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FIG. 10. Correlations between samples one period apart using the average of simple initial conditions, C
θi

T , and the combined initial

condition, C
θi

T , presented against (a) the number of cycles and (b) the length scale, L, of the correlation.
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FIG. 11. Scalar patterns in the mixing area produced by flows with T : (a)–(d) 50 s; (e)–(h) 100 s; and (i)–(l) 200 s to different initial
conditions at times t/T . Extensional and mixing areas delimited. Domains adjusted in each case to the outer ring in Table I. Palette ranges
from 0 to max(θ ).
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FIG. 12. Average of correlations intersample (simp) and with a combined initial condition (comb) presented against (a) the number of
cycles and (b) the length scale of the correlation.

imprint of the cyclic forcing, is initially approximately 0 for the
simple correlation and nearly 0 for the combined correlation
cases T = 50 s and T = 100 s. The combined correlation in
the case T = 200 s has an initial value of just under 0.2.
The initial divergence from 0 of the combined correlation is
due to the inhomogeneous distribution of initial conditions,
which results in a higher correlation the larger is the area
considered. For all cases the correlation increases with t/T ,
as the scalar patterns of the initial conditions align with
the global strange eigenmode. After an initial transient, the
average correlation seems to saturate at about 0.4 for the simple
correlation and just above 0.6 for the combined correlation,
for the flow periods T = 50 s and T = 100 s. The number of
cycles completed for this saturation seems to decrease with
T . Based on these observations, the case T = 200 s seems
about to reach saturation. In the simple intersample average
correlation, the maximum value obtained is around 80% of

that value reached by C
θi

T when C
θi

T ∼ 1. Again, a low SNR
and, especially, a more accused effect of the discrepancies

of the inhomogeneities between different initial conditions in
the extensional region feeding the mixing area at t/TS � 1,
were identified as the main reason for this mild correlation.
Such inhomogeneity discrepancies in the extensional region
between different initial conditions, and their impact on scalar
distribution in the mixing region, can be qualitatively observed
in Fig. 11. Still, the simple correlation presents a large scalar

coherence in comparison with C
θi

T /2 and C
θi

T /2. The combined
correlation which, by increasing the SNR and homogeneity of
the extensional region in one of the fields, saturates at a larger
value, demonstrates how the scalar pattern convergence is also
independent on the scalar initial length scale. Figure 12(b)
shows how the correlations presented in Fig. 12(a) nearly reach
a flat slope at the minimum length scale considered and the
resolution of the camera employed is sufficient to account for
the minimum scalar length scales reached in the experiment.

A summary of the temporal evolution of the mixing
statistics is presented in Fig. 13. Data are plotted until the
dye in one of the samples leaves the camera area (CAM).
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FIG. 13. Scalar statistics. (a) Temporal evolution of scalar variance and (b) mean gradient squared corrected with instantaneous scalar
variance for the scalar advected by the unsteady flows.
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Figure 13(a) presents the average variance decay. As
expected for chaotic flows under the presence of the strange
eigenmode, this variance decay is exponential, 〈θ ′2〉 ∝ e−st ,
for the three configurations. In such a regime, a constant
ratio between variance and mean gradient squared should be
expected, according to

d〈θ ′2〉
dt

= −2κ〈 |∇θ |2 〉. (2)

Equation (2) was obtained by integrating Eq. (1) in a
divergence-free flow using impermeable boundary conditions.
The ratio between variance and mean gradient squared is
presented in Fig. 13 (b) normalized with s/2κ . As observed,
this ratio initially decreases and, coinciding with the variance
exponential regime, reaches a plateau. As the variance keeps
diminishing, the plateau slightly deviates from a constant
value, likely due to the noise floor in the scalar measurements.
Based on Eq. (2), the plateaus for all the forcing configurations
presented in Fig. 13(b) should be equal to 1. However, even if
the value of these plateaus are similar throughout the three
flows, they are about 30 times larger than expected. This
discrepancy is attributed to 3D effects, such as vertical velocity
gradients, which increase the effective 2D diffusivity observed
in the scalar [33,36]. If an effective diffusivity based on
this corrected value, κeff ≈ 30κ , was defined [33], the Péclet
number characterizing these 2D experiments would still be
Pe2D

L = UrmsL/κeff ≈ 105 � 1, as required in order to observe
the strange eigenmode.

IV. CONCLUSIONS

The convergence towards a common scalar shape, indepen-
dent of the scalar initial condition, of a scalar mixed by chaotic
advection, was qualitatively and quantitatively evidenced. This
is a cornerstone of the eigenmode description of chaotic mixing
[2,3,8,13,14], which is based on the existence of a unique mode
shape in each chaotic flow. Such a mode, strictly defined by
the velocity field, is expected to govern the long-term scalar
mixing statistics of any scalar used, regardless of its initial
condition or scalar diffusivity. Evidence of a minimum length
scale in the scalar patterns was also provided.

The flows employed for this experiment were inspired by
the tendril-whorl map [24,25], which consists of a periodic
switching between two concentric hyperbolic and elliptic stag-
nation points. The flows obtained exhibited the key kinematic
features predicted in the theoretical analysis of the tendril-
whorl map [25]. Among these features, the most remarkable
were the clear separation between an external extensional and
an internal mixing region, which increased in size with the
flow period, and the characteristic conduits between these two,
making a unique inhomogeneous chaotic zone. Some of those
kinematic features imprinted characteristic shapes identifiable
in the scalar patterns.

As expected in a chaotic mixer, the long-term variance
decay of the scalar became exponential. The ratio between
variance decay and mean gradient square was affected by 3D
effects modifying the 2D diffusivity observed in the scalar, as
explained in [33].
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