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Mode locking in systems of globally coupled phase oscillators
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We investigate the dynamics of a Kuramoto-type system of globally coupled phase oscillators with equidistant
natural frequencies and a coupling strength below the synchronization threshold. It turns out that in such cases
one can observe a stable regime of sharp pulses in the mean field amplitude with a pulsation frequency given
by spacing of the natural frequencies. This resembles a process known as mode locking in lasers and relies on
the emergence of a phase relation induced by the nonlinear coupling. We discuss the role of the first and second
harmonics in the phase-interaction function for the stability of the pulsations and present various bifurcating
dynamical regimes such as periodically and chaotically modulated mode locking, transitions to phase turbulence,
and intermittency. Moreover, we study the role of the system size and show that in certain cases one can
observe type II supertransients, where the system reaches the globally stable mode-locking solution only after an
exponentially long transient of phase turbulence.
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I. INTRODUCTION

Starting from the pioneering work of Kuramoto [1], systems
of coupled phase oscillators became a fundamental paradigm
for the study of the collective dynamics in coupled oscillatory
systems. According to the classical theory [1,2], a large
system of oscillators with heterogeneous natural frequencies
under the influence of a sufficiently strong all-to-all attractive
coupling undergoes a transition from a disordered state of
phase turbulence to a stable regime of partial synchrony.

In this paper, we study the specific case of equidistant
natural frequencies [3–5], sometimes called a frequency
comb. It turns out that in this case already for a coupling
strength below the Kuramoto threshold of transition to partial
synchrony, there can appear stable states of collective order,
which are characterized by sharp pulsations in the mean field
amplitude occurring at a frequency close to the spacing of
the natural frequencies. Due to their similarity to the regime
of mode locking in lasers [6–8], we call them mode-locked
solutions (MLSs), even though there can be made no direct
connection between the physical mechanisms leading to mode
locking in laser devices and the global mean field coupling
in our Kuramoto-type model. However, the basic mechanism
of establishing a phase relation between all modes without
synchronizing them seems to be the same. Hence, the simple
phase oscillator model can serve as a fundamental paradigm
to understand in more detail the basic mechanisms of this
fundamental dynamical process. Moreover, in Ref. [9] it
has been pointed out how the phase dynamics of a specific
optical system can be related to a—but in this case more
complicated—phase-oscillator model.

The paper is organized as follows: In Sec. II the model and
its mean field formulation are introduced. The notion of MLSs
and the key quantities that can be used to characterize them
follow in Sec. III. In Sec. IV numerical schemes are introduced.
The mode-locking mechanism is discussed in detail in Sec. V.
In Sec. VI the dependence of chaotic transients that precede
MLSs is studied in dependence of the system size and the
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shape of the interaction function. In Sec. VII the parameter
space is surveyed and various types of solutions are discussed.
We summarize and discuss our findings in Sec. VIII.

II. THE KURAMOTO MODEL ON A FREQUENCY COMB

Our basic system consists of globally coupled phase
oscillators

θ̇k = ωk + K

N

n∑
j=−n

{γ sin(θj − θk)

+ (1 − γ ) sin[2(θj − θk)]}, (1)

where k ∈ {−n, . . . ,n} is the oscillator index, N = 2n + 1 is
the number of oscillators, and K the coupling strength. The
natural frequencies ωk are given as a frequency comb

ωk = k �ω (2)

with spacing �ω. In contrast to the classical Kuramoto model,
we are using an attracting phase interaction function including
both first and second harmonic terms [10], balanced by the
additional parameter γ ∈ [0,1]. Normalizing the maximal
natural frequency ωn = 1, such that ωk ∈ [−1,1], we obtain
the spacing of the natural frequencies to be �ω = 2/(N − 1).
For convenience, we assume the number of oscillators N =
2n + 1 to be odd and the frequency comb to be symmetric
with respect to ω0 = 0.

As in Refs. [9,11], there is an equivariance of the system
with respect to the transformation

σ : θk → −θ−k for all k ∈ {−n, . . . ,n}, (3)

allowing for solutions with the symmetry

φk(t) = −φ−k(t) for all k ∈ {1, . . . ,n}, (4)

where φk = θk − θ0 is the phase difference with respect to the
central mode. The distance to the symmetry-invariant subspace
can be monitored by the quantity

χ = 1

n

√√√√ n∑
k=1

(φk + φ−k)2, (5)
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to detect possible symmetry breaking.
Due to our specific choice of the interaction function, one

can rewrite (1) using the first and the second complex order
parameter [12]

ηq(t) = Rq(t)ei
q (t) = 1

N

n∑
k=−n

eiqθk (t), q ∈ {1,2} (6)

and obtain

θ̇k = ωk − K[R1γ sin(θk − 
1) + R2(1 − γ ) sin(2θk − 
2)].

(7)

The quantities Rq and 
q characterize the collective behavior
of the system. While R1(t) quantifies the degree of total phase
synchronization, R2(t) is a measure of two cluster emergence
[1,13].

III. THE NOTION OF MODE LOCKING FOR PHASE
OSCILLATORS

For a given dynamical regime of the system, we can define
the average effective frequencies

�k := lim
t→∞

1

t

∫ t

0
θ̇k(τ )dτ = lim

t→∞
θk(t) − θk(0)

t
, (8)

for k ∈ {−n, . . . ,n} and relative frequencies

�k,j := �k − �j for all k �= j. (9)

For a MLS, we require that the effective frequencies form
again a frequency comb,

�k,k+1 = �� for all k ∈ {−n, . . . ,n − 1}. (10)

The second property of MLSs is the formation of large
pulses R1 ≈ 1 in the order parameter through a self-organized
recurring phase relation among the oscillators. The formation
of the pulse is due to the fact that after each period of T =
2π/�� all oscillators meet again with nearly identical phases,
while between two consecutive pulses each oscillator behaves
independently, advancing its phase by exactly k clockwise
round trips, where k is the oscillator index. Note that this can
be achieved in a trivial way already without coupling, i.e.,
K = 0. Indeed, starting with all phases initially identical, i.e.,
θk(0) = 0 ∀k, for K = 0 the system will come back to this
configuration after a period T = 2π/�ω. However, this trivial
MLS has only neutral stability, and all other trajectories are
periodic with the same period but show less pronounced or no
pulsations.

The basic mechanism for mode locking is now that through
the mean field coupling during the peak of R1(t) all oscillators
are attracted towards the mean phase 
1(t), and in this way
the pulsation becomes stable. Note that the coupling strength
K has to remain below the synchronization threshold K < KC

in order to avoid the onset of synchrony and to maintain the
comb of effective frequencies.

In Fig. 1 we present numerically calculated solutions of
system (1)–(2) for different parameter values and initial con-
ditions. In Figs. 1(a) and 1(b) we show MLSs with and without
the second harmonic in the interaction function. It turns out that
the solution (K,γ ) = (1.25,0.7) in Fig. 1(a) is globally stable,
while the solution for (K,γ ) = (0.91,1.0), shown in Fig. 1(b),
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FIG. 1. Numerically calculated solutions of system (1)–(2). (a)–
(d) Time evolution of mean field amplitude R1(t),R2(t), and phase
velocities θ̇k(t); (e)–(g) snapshots of the phases at the time moments
indicated by vertical lines in (a) and (c). Parameter values: (a)
(K,γ ) = (1.25,0.7), (b) and (c) (K,γ ) = (0.91,1.0), (d) K = 0. The
system size is N = 21.

coexists with the state of phase turbulence shown in Fig. 1(c).
In this case, the MLS can be found only for carefully prepared
initial conditions, while the phase turbulence appears for
random initial conditions. For comparison, we show the trivial
MLS with K = 0 in Fig. 1(d), where the phase relation for
the pulses is set by the initial condition rather than developed
dynamically. Figures 1(e)–1(g) show time snapshots of the
phases at the times indicated by colored vertical lines in
Figs. 1(a) and 1(c), at the pulse, between the pulses, and in the
turbulent regime, respectively. For the stable MLSs [Figs. 1(a)
and 1(b)] the pulsation period is bigger than in the case of free
rotation with natural frequencies [Fig. 1(d)], i.e., we find

�� < �ω.

The MLSs [Fig. 1(a), Figs. 1(b), and 1(d)] all carry the
symmetry (4). The regime of phase turbulence for (K,γ ) =
(0.91,1), shown in Fig. 1(c), has already been reported in
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FIG. 2. Lyapunov spectra of the turbulent solutions at (K,γ ) =
(0.91,1) for different system sizes N ∈ {21,31,41} show extensive
chaos. The time span of the computation is 2 × 105 units.

Ref. [3] where it is reported as the typical behavior of the
system below synchronization, characterized by extensively
chaotic Lyapunov spectra as shown in Fig. 2. Deep math-
ematical results on the stability of this state for random
natural frequencies have been obtained only recently; see
Refs. [11,14]. MLSs in the Kuramoto model right below the
synchronization threshold have been reported in Ref. [15] only
for very small system size N = 5. Note that the fluctuations
between two pulses in Fig. 2(b) are considerably smaller
compared to the fluctuations in the turbulent regime [Fig. 2(c)].
In Ref. [16] the mathematical framework for subharmonic
locking of several oscillators in a more general setting has
been elaborated.

IV. NUMERICAL METHODS

For all simulations we use a fourth order Runge-Kutta
method with a step size of h = 0.01. Since simulations of
a flow on TN are usually performed on the universal cover
RN one has to regularly project back to the unit circle
interval in order to avoid digit cancellation in long simulations.
To investigate MLSs we use Poincaré events given by the
condition

θk − θk+1 = 0 (11)

for some k ∈ {−n, . . . ,n − 1} and record the return times Tν

between successive Poincaré events. The Poincaré condition
is typically met once per pulse for a MLS, however, not
necessarily close to the pulse itself. In parameter scans, where
system parameters are changed adiabatically, we take care of
possible numerical trapping in invariant subspaces induced
by symmetry by adding small perturbations to the initial state
after each adaption of the parameters. Lyapunov exponents are
computed via a continuous Gram-Schmidt orthonormalization
procedure as has been described in Ref. [17].

V. THE ROLE OF FIRST AND SECOND HARMONICS IN
THE INTERACTION FUNCTION

As mentioned before, there is a fundamental difference
between the case γ = 1 of only the first harmonic in the
interaction function and the case of a second harmonic added to
the interaction function. For γ = 1, almost all initial conditions
lead to the turbulent state and only specifically chosen initial
conditions lead to a MLS; cf. Fig. 1. The presented solution
has been obtained by choosing a fully synchronized solution
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FIG. 3. Interaction between two oscillators with phase difference
φ given by f (φ) = γ sin(φ) + (1 − γ ) sin(2φ) for three different
values of γ . For 2/3 � γ � 1 the interaction is everywhere attractive,
while for γ < 2/3 it becomes repulsive for |φ| ≈ π , attracting distant
oscillators to an antiphase position.

found for K > KC as initial condition. Moreover, for γ = 1
the MLS is extremely fragile and sensitive to perturbations.

In contrast to that for suitably chosen γ the MLS solution
is globally stable. In Sec. VI we present numerical results
showing that for values of γ in a range around 0.7 MLSs appear
starting from any random initial condition. It turns out that the
mode-locking mechanism is most efficient for γ ≈ 2/3, where
the interaction of oscillators with a phase difference |θj − θk|π
is particularly weak; cf. Fig. 3. Note that for γ < 2/3 there
appears already a repulsive interaction of distant oscillators,
forcing them towards an antiphase position and in this way
inhibiting the mode-locking mechanism.

Another feature of the MLSs is the appearance of pulses in
the second order parameter R2(t). They appear at the position
of the pulse in the mean field R1(t) and additionally in the
middle between two such pulses. Note that for the trivial case
of K = 0 and θk(0) for all k [see Fig. 1(d)] we get R2(T/2) = 1.
During such intermediate pulses in R2(t) the second harmonic
term in (7) dominates, and the oscillators are attracted to the
two antiphase positions 
2(t) and 
2(t) + π . It turns out that
this process has a substantial impact on the stability of the
MLS.

In order to understand the impact of the pulses in the mean
fields R1(t) and R2(t) for the stability of the MLS, we present
now a time-resolved computation of the attraction along the
mode-locked periodic orbit. For stable periodic orbits both the
leading Floquet exponent, giving the averaged rate of attraction
(repulsion) of nearby trajectories, and the averaged rate of
expansion (contraction) of phase space volume are negative.
In the case of stable MLS the time-resolved quantities show
most of the time a slight repulsion and of nearby trajectories
and an expansion of phase space volume that, however, overall
is compensated by strong attraction an contraction of phase
space volume during the short pulses in the mean fields. In
Fig. 4 we compare the instantaneous stability along the MLS
both for the case (K,γ ) = (0.91,1.0), where the MLS coexists
with phase turbulence, and for the globally stable case at
(K,γ ) = (1.25,0.7). Together with the time traces of the order
parameters we show the instantaneous expansion rate of the
phase space volume

�(t) =
N∑

i=1

λi(t) (12)
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FIG. 4. Time traces of order parameters R1,2 (upper rows)
together with normalized expansion rate of phase space volume
�(t)/N and maximal instantaneous eigenvalue max λi(t). (a) MLS
with first harmonic interaction (K,γ ) = (0.91,1.0) [here only R1(t)
is relevant]; (b) MLS with second harmonic interaction (K,γ ) =
(1.25,0.7).

given for each time t as the sum of the eigenvalues λi(t) of
the Jacobian along the MLS and the maximal instantaneous
eigenvalue max λi(t). One can see in panel (a) that for γ = 1
there is a uniform level of volume expansion between the
pulses and only at the mode-locked pulse the expansion rate
and eventually all instantaneous eigenvalues become negative.
This is different for the case with second harmonic interaction,
shown in panel (b). While in the first part of the interpulse
interval the stability properties are similar to the case of
γ = 1, there appears another episode of volume contraction
and instantaneous stability at the pulse in R2(t), and after this
event the uniform level of volume expansion starts to disappear.
In both cases, the stability of the MLS originates from a strong
contraction during the pulse events, while over a large part
of the period there is a volume expansion, inducing locally a
growth of generic perturbations from the MLS. In the case with
second harmonic interaction the contraction acts also during
the pulse in R2(t) and in this way enhances substantially the
stability and of the whole periodic orbit. In a similar way,
additional higher harmonics could possibly have a further
positive impact on the stability.

VI. CHAOTIC SUPERTRANSIENTS

Also for values of γ where the MLS are globally stable, they
can be difficult to find in numerical simulations, because using
random initial conditions the average transient time before the
system reaches a MLS increases drastically with the system
size. Figure 5 shows in a logarithmic plot the average transient
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FIG. 5. Logarithmic plot of the average transient time from
random initial conditions to the stable MLS, varying the system size
N . Averages are taken for N � 53 over 300 realizations of initial
conditions. For larger N , their number had to be restricted to 50.
Parameters: (K,γ ) = (1.2, 0.7).

time 〈τtr〉 from random initial conditions to the stable MLS
varying the system size N . At the chosen parameters (K,γ ) =
(1.2,0.7) all random initial data were found to converge to the
MLS. Remarkably, we find that the average time spent on a
chaotic transient, similar to the regime of phase turbulence
observed for γ = 1, scales exponentially with the system size

〈τtr〉 ∝ eκN , (13)

with the coefficient κ ≈ 0.11. The transients can be classified
as type II chaotic supertransients [18,19], i.e., the transition
from incoherence to the MLS is abrupt rather than gradual.
Qualitatively, this scaling behavior can be explained by inter-
preting the nonlinear regime of phase turbulence as a random
process, taking the phase configurations eventually into a
certain small neighborhood of a MLS, where the linear stability
dominates the nonlinear processes. The exponential scaling
is then given by the average time that a random trajectory
needs to reach a specific volume in TN , growing exponentially
with N as well. The parameter γ in the interaction function
has a substantial influence on the transient times. In Fig. 6
the average transient time in dependence of γ is shown for
different system sizes N and coupling strengths K . Each point
represents the average over 200 different initial conditions.
The computations were stopped in the case of large periods
as in modulated solutions and also when a transient exceeded
106 time units. Results are shown only for parameters where
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FIG. 6. Average transient times in logarithmic plot for vary-
ing γ . Coupling strength K = 1.2, 1.25, 1.3, panels (a), (b), (c),
respectively. Symbols and colors indicate different system sizes
N ∈ {21,25,31}. Each point represents an average over 200 random
initial condition.
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FIG. 7. For a system of N = 21 the average and maximal order
parameter are shown in (a) and (b), respectively. As initial conditions
we used synchronous solutions obtained for K > KC . Marked points
correspond to parameter values of examples shown in other figures:

= globally stable MLS, see Fig. 4 (b); = stable MLS coexisting
with turbulence, see Fig. 4 (a); = modulated MLS (comb splitting),
see Fig. 9; = torus breakup, see Fig. 10; = intermittent solution,
see Fig. 11.

a stable MLS was reached for all initial conditions within
106 time units. As we will see below, there are parameter
values where more complicated types of periodic solutions
and multistability between them may exist. As γ increases,
i.e., for the first harmonic dominating, the transient times show
an exponential growth before the MLS loses its stability.

VII. INSTABILITIES AND BIFURCATIONS

Varying parameters K and γ , we observe an extremely
complicated scenario of coexistence and transitions between
different dynamical regimes, containing not only stable MLSs
and phase turbulence but also a variety of more complicated
solutions emerging from the fundamental MLS. In Fig. 7 a
survey for different parameter values K,γ is presented, using
coherent initial conditions from the synchronous state, which
appears for coupling strength K > KC above the Kuramoto
threshold. The different levels of the average order parameter,
given in Fig. 7(a), allows us to distinguish between synchrony
(values close to one), phase chaos (intermediate values), and
mode locking (smallest values). The maximal values of the
order parameter, given in Fig. 7(b), indicate high coherence
at the mode-locking peaks and allow us to identify also those
regions where such peaks appear erratically.

The parameter scan in Fig. 8 for γ = 0.82 shows that
various symmetric and asymmetric MLSs as well as chaotic re-
gions appear for varying coupling strength K . In the following
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FIG. 8. (a) Sampled return times Tν for varying parameter
K,γ = 0.82. Different colors correspond to increasing (blue) and
decreasing (orange) coupling strength. Narrow periodic windows
occur between regions of phase chaos. (b) Sampled distances χ from
the symmetry-invariant subspace with respect to the symmetry action
σ at the crossings of the section.

subsections we discuss some of the more complicated types of
solutions and some of the transition scenarios in more detail.
A comprehensive bifurcation analysis in the two parameters
K and γ would be desirable but seems to be beyond the scope
of the present paper.

A. Modulated mode-locked solutions

In the regime of fundamental mode locking reappearing
pulses are identical, and the period is the time between two
pulses. In addition, we observe solutions where the effective
frequencies �k are still equidistant, but the pulse heights
and interpulse intervals are modulated. This modulation can
be periodic, quasiperiodic, or chaotic. The transitions are
mediated by period doubling or torus bifurcation resulting
in periodic or quasiperiodic modulation, respectively. Sub-
sequently chaotically modulated MLSs can arise via torus
breakup or period doubling cascades.

B. Comb splitting

It turns out that in our setting of equidistant natural
frequencies there can appear more complicated configurations
of the effective frequencies �k . In particular, we observe a
specific type of solution where two different spacings �k,k+1 ∈
{��1,��2} between the effective frequencies appear as a
result of dynamical self-organization. If the spacings show a
rational relation p��1 = q��2 with p,q ∈ N, the solution
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FIG. 9. Comb splitting MLS for (K,γ ) = (0.765,1.0) and N =
21. (a) Time trace of the order parameter R1(t); (b) orbit of period
7 in a two-dimensional Poincaré section with return times Tν of
consecutive section crossings plotted against each other; (c) spacings
�� of effective frequencies.

is periodic with period

T = 2πp/��1 = 2πq/��2.

An example for first harmonic coupling γ = 1 with a rational
relation of the two spacings is shown in Fig. 9. From the
evolution of R1(t), shown in Fig. 9(a), one can clearly see
a modulation of the pulses. Consecutive interpulse intervals
obtained from the return times between crossings of the
Poincaré section are plotted in Fig. 9(b). Note that the number
of section crossings during a period with a split frequency
comb depends on the frequency spacing between the two
oscillators that are used for the section. In Fig. 9(c) we show
the effective frequency spacings that are related here by the
ratio 7/8. When the ratio between the two spacings is irrational
the solution has a quasiperiodic modulation. In that case one
finds a closed curve in the two-dimensional Poincaré section
instead of multiple points.

C. Torus breakup chaotically modulated MLS, symmetry
breaking, and multistability

A scenario leading from a fundamental MLS towards more
complicated solutions is shown in Fig. 10. A harmonic MLS
undergoes a torus bifurcation with a subsequent breakup of
the invariant torus and emergence of chaos. In Fig. 10(a) we
have sampled the Poincaré return times for varying coupling
strength K , where the two different colors blue and orange
correspond to sweeping in positive and negative directions,
respectively. In a two-dimensional Poincaré section, shown
in Fig. 10(b), we observe the emergence of a closed curve.
For further increasing K , this curve folds over, and after the
breakup of the corresponding invariant torus, a chaotic attrac-
tor appears; see Fig. 10(c). This chaotic attractor collapses via
cascade of period doublings to a period 5 solution at slightly
higher values of K; see Fig. 10(a). Here two stable periodic
solutions with five pulses per period coexist. These solutions
do not have the symmetry (4) anymore. Instead they show up
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FIG. 10. (a) Sampled return times Tν between crossings of the
Poincaré section (11) for γ = 0.82 and varying K; blue and orange
correspond to sweeping K in the increasing and decreasing directions.
(b) and (c) Two-dimensional representation of return times Tν for
selected values of K given by dashed lines in panel (a). Closed curves
in (b) represent invariant tori. Low-dimensional chaos in (c).

as a symmetry-related pair φ(t) and φ̃(t), satisfying

φk(t) = −φ̃−k(t). (14)

Since our Poincaré condition (11) is not invariant under the
symmetry action (3), we get different return times for φ(t) and
φ̃(t), which can be distinguished by the two different colors
in the period 5 window in panel (a). For further increasing K

the period 5 orbit disappears in an intermittency transition as
discussed in more detail in the next section.

D. Intermittency between phase turbulence and MLS

In addition to the transition from MLSs to low-dimensional
chaos as discussed above, we can also observe direct tran-
sitions to extensive chaos. This happens when a MLS or
modulated MLS loses its stability and an intermittent behavior
[20,21] appears, alternating between phase chaos and episodes
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FIG. 11. Time trace of R1(t) at (K,γ ) = (1.12,0.82), showing
intermittency between phase chaos and a MLS. The rolling average
(15) can be used to distinguish between the two regimes (red line).
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FIG. 12. Distance from the critical parameter Kb and average
fraction of mode locking 〈τML〉 in a double logarithmic plot.

close to the weakly unstable MLS. As an example, we
analyze the intermittent behavior in the parameter window
below K = 1.137 for γ = 0.82. A time trace of R1(t) in this
intermittent regime is shown in Fig. 11. It turns out that the two
alternating regimes can be characterized by the rolling average
of R1 for a time window of length T close to the approximate
interpulse interval of the underlying MLS:

〈R1(t)〉T = 1

T

∫ t

t−T

R1(τ ) dτ. (15)

This quantity, shown by the red line in Fig. 11, is almost
constant when the system is close to the MLS and is fluctuating
around a significantly higher value in the regime of phase
chaos. In this way, we can extract from our numerical solutions
the average fraction of mode locking 〈τML〉 in the intermittent
trajectories. Varying the coupling parameter close to its critical
value Kb ≈ 1.137 we obtain a power law

〈τML〉 ∝ |K − Kb|−α, (16)

shown in Fig. 12, which is typical for intermittency transitions.
From this we can extract the critical exponent α ≈ 0.27, which
can be related to properties of the unstable peroidic orbit; see
Ref. [22].

VIII. CONCLUSION

We have introduced the notion of mode locking for
coupled phase oscillators and demonstrated this phenomenon
in globally coupled systems of Kuramoto-Daido type with

equidistant natural frequencies. Already below the Kuramoto
threshold this leads to a stable collective dynamical regime,
characterized by sharp periodic pulses in the global mean field.
Their stability can be substantially enhanced by introducing
a second harmonic in the coupling function. In this case,
for suitably chosen parameters the MLS is globally stable.
For classical Kuramoto oscillators, i.e., with only the first
harmonic in the coupling function, they are difficult to find,
since they can be found only in coexistence with stable phase
chaos. Also in the cases where the MLS is globally stable, the
transient times from random initial conditions to the MLS grow
exponentially with the number of oscillators, while before this
transition type II supertransients of phase chaos are observed.
In addition to the fundamental MLS, we demonstrate also
the existence of various types of modulated MLSs and study
the transitions between them. In particular, we observe an
intermittent behavior between the extensive chaos of phase
turbulence and the periodic regime of mode locking.

We believe that the concept of mode locking represents
another fundamental mechanism for the emergence of self-
organized collective dynamics in systems of coupled oscilla-
tors. A study of this phenomenon in systems of simple phase
oscillators of Kuramoto type can give insight into the relevant
mechanisms of the phase dynamics, which we have shown to
be characterized by complex and high-dimensional dynamical
phenomena.

To which extent these insights can be used for a better
understanding of the already extensively studied process of
mode locking in laser systems remains an open question for
future studies. Major differences to dynamical models for
mode locking in laser devices [7,8] is that there the coupling
of the modes is not given directly by a mean field of the
oscillators, but is mediated by additional dynamical quantities
such as gain and absorption. Moreover, the dynamics of the
mode amplitudes, which are fixed to be constants in our phase
oscillator model, are considered to play an important role there.
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