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Delay-induced wave instabilities in single-species reaction-diffusion systems
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The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two)
components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the
presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of
arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay
is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species
reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with
constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical
simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave
instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation
with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from
homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits
are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson
equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period
is equal to the period of the variable delay.
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I. INTRODUCTION

In 1952 Turing published a paper which describes a
mechanism for pattern formation [1], emphasizing that dif-
fusion can induce an instability of a spatially homogeneous
solution. Intuitively, diffusion erases spatial inhomogeneities
and stabilizes the homogeneous states. For instance, a drop
of ink put into water diffuses through the water, and after a
long period of time no color differences will be detected in
the water. In contrast, Turing has shown that diffusion can
also cause a breaking of the spatial symmetry, which drives
the system away from the homogeneous stable state. This
type of instability is called Turing instability. At first, Turing
patterns were considered as just an isolated phenomenon and a
theoretical hypothesis, and the Turing instability has not been
considered as the origin of patterns in nature and experiments.
Hence, his paper did not attract much attention until Prigogine
and Nicolis advanced the dissipative structure theory [2].
Scientists realized that self-organized pattern formation relies
on universal mechanisms and Turing’s theoretical paper
became more relevant. While Turing patterns in the strict sense
are constant in time, the time-periodic equivalent of the Turing
instability is often called wave instability. The wave instability
is characterized by spatially inhomogeneous oscillations that
appear from homogeneous states due to the introduction
of diffusion [3]. Pattern formation due to diffusion-driven
instabilities such as the classical Turing instability or the wave
instability is studied, for example, in Refs. [4–6].

On the other hand, time-delay systems are studied in
various fields. With the introduction of time delays into
dynamical systems, theoretical models become more realistic.
Time-delay systems can be found, for example, in optics [7],

*otto.a@mail.de
†jianwn@hotmail.com
‡radons@physik.tu-chemnitz.de

engineering [8], control theory [9,10], biology, and physiology
[11,12]. The influence of time delays was also studied for
spatially extended systems. For instance, there are results for
the general stability, and in bifurcation analysis [13–16], the
analysis of spatiotemporal structures [17–19], the control of
localized structures via time-delay feedback [20], and in the
analysis of Turing instabilities in reaction-diffusion systems
[21–23].

A well-known example and one of the simplest models of
a single-species reaction-diffusion equation is the Fisher-KPP
equation. It was introduced in two independent publications
in 1937 [24,25]. The equation is used as a spatially extended
model for the analysis of population dynamics and has much
been used for studying the propagation of front solutions.
Diffusion-induced instabilities are not possible for single-
species reaction-diffusion systems without delay because at
least two species are necessary, as it was shown in the
original Turing paper [1]. When a time delay appears, the
dimension of the system increases and diffusion-induced
instabilities might be possible. Such systems are to some extent
related to multiple-component systems with only one diffuser,
where diffusion-induced instabilities are possible [26–28]. The
existence of Turing-like waves for a single-species delayed
reaction-diffusion model on a complex network was already
reported in [29], where a constant time delay was introduced
in the diffusion along the network. Moreover, spatiotemporal
patterns in single-species reaction-diffusion systems with
small fluctuating delays in the diffusion term were found
in [30].

In this paper we study systematically the existence
of diffusion-induced instabilities for general single-species
reaction-diffusion systems with a delay in the reaction term,

∂u(x,t)

∂t
= f (u(x,t),uτ (x,t)) + D�u(x,t), (1)

where the scalar field u(x,t) can be considered as the
concentration of some substance in n dimensions, x ∈ Rn.
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The delay variable uτ (x,t) in the reaction term is given by a
superposition of delayed states of the form

uτ (x,t) =
∫ τmax

τmin

ρ(t,τ )u(x,t − τ )dτ, (2)

where ρ(t,τ ) � 0 is the delay distribution with nonzero values
between the minimal and the maximal delay τmin and τmax,
respectively. The delay distribution is normalized to 1, that is,∫ τmax

τmin
ρ(t,τ )dτ = 1. Equation (1) with a nondelayed reaction

term of the form f = au(1 − u) is equivalent to the above-
mentioned Fisher-KPP equation. On the other hand, Eq. (1)
with a delay in the reaction term f = au(1 − uτ ) but without
diffusion (D = 0) is a generalization of the Hutchinson
equation. In particular, this equation with one constant delay
τ0, i.e., with ρ(t,τ ) = δ(τ − τ0), where δ denotes the Dirac
δ function, was introduced in 1948 by Hutchinson to form a
more realistic logistic model for population dynamics [31]. In
systems like Eq. (1) the current state u and the delayed state
uτ in the reaction term can play the role of an activator and an
inhibitor, which facilitates and prevents its own reproduction,
respectively. In this case the Hutchinson equation can produce
oscillatory solutions which are not possible in the classical
logistic equation. It is natural to study the interaction between
diffusion and delay in these models for population dynamics.

For instance, in population dynamics the delay in Eq. (1)
may specify the time to reach sexual maturity of a species,
which is typically given by a threshold condition [32]. Under
well-controlled laboratory conditions it may be reasonable to
assume a unique constant velocity of maturation (development
rate) leading to a constant discrete delay. However, in a more
realistic scenario the environmental conditions may change,
leading to a time-varying development rate and time-varying
delays [33,34]. On the other hand, the development rate and
therefore the time delay is, in general, not the same for all
individuals of a species, which leads to a distribution of
delays. Thus, we consider three different types of delays:
(1) a constant discrete delay τ0, ρ(t,τ ) = δ(τ − τ0), (2) a
constant distributed delay with more than one discrete delay,
ρ(t,τ ) = ∑

i δ(τ − τi), or a continuous delay distribution,
and (3) a discrete time-varying delay τ0(t) = τ0(t + Tp) with
period Tp, ρ(t,τ ) = δ(τ − τ0(t)).

The paper is organized as follows. The linear stability anal-
ysis of Eq. (1) and the numerical methods used are presented
in Sec. II. Diffusion-induced instabilities from homogeneous
equilibria of the system Eq. (1) with time-invariant delays are
systematically studied in Sec. III. The stability of equilibria
in the case of a fluctuating time delay is analyzed in Sec. IV,
where the limiting cases of slow and fast time variations of the
delay are connected to the analytical results for constant delays.
In Sec. V diffusion-induced instabilities from stable periodic
orbits in the Fisher-KPP equation with delay are discussed,
and closing remarks are given in Sec. VI.

II. STABILITY ANALYSIS

In this section the linear stability of Eq. (1) is analyzed
for reference solutions ū(x,t) of one-component reaction-
diffusion systems with delay by determining the asymptotic
behavior of small perturbations ξ (x,t) = u(x,t) − ū(x,t). The

linearized dynamics can be described by

∂ξ (x,t)

∂t
= (α(x,t) + D�)ξ (x,t) + β(x,t)ξτ (x,t), (3)

with ξτ (x,t) as defined in Eq. (2) and

α(x,t) = ∂f (u,uτ )

∂u

∣∣∣∣
u=ū,uτ =ūτ

,

β(x,t) = ∂f (u,uτ )

∂uτ

∣∣∣∣
u=ū,uτ =ūτ

. (4)

Equation (3) holds for infinitesimal small perturbations of
the reference solution ū(x,t). Depending on the shape of the
reference solution ū(x,t), different methods for the stability
analysis are used.

A. Fourier space formulation

For spatially homogeneous solutions ū(x,t) = ū(t) the dif-
fusion term vanishes and the dynamics can be characterized by

u̇(t) = f (u(t),uτ (t)), (5)

which is a delay differential equation (DDE) without spatial
degrees of freedom. The solution of Eq. (5) can be obtained
via numerical integration [35]. These solutions are equivalent
to the homogeneous solutions of the spatially extended system
Eq. (1). Note that in networks of coupled dynamical systems
homogeneous solutions are known as synchronized solutions
and the submanifold defined by Eq. (5) is known as a
synchronization manifold [36].

While homogeneous solutions u(t) of the spatially ex-
tended system within the synchronization manifold can be
described by the scalar DDE Eq. (5), perturbations can be
spatially homogeneous (tangential perturbations) or spatially
heterogeneous (transversal perturbations). For homogeneous
solutions the coefficients α(x,t) = α(t),β(x,t) = β(t) for the
dynamics of the perturbations are spatially translation invariant
and the Fourier basis can be used to diagonalize the Laplace
operator. The n-dimensional Fourier transform ξ̂ (k,t) of the
perturbations ξ (x,t) is defined by

ξ̂ (k,t) =
∫ ∞

−∞
ξ (x,t)e−ikxdx, (6)

where k is the wave vector. In Fourier space Eq. (3) for
perturbations of spatially homogeneous solutions can be
written as

∂ξ̂ (k,t)

∂t
= (α(t) − Dk2)ξ̂ (k,t) + β(t)ξ̂τ (k,t), (7)

where k = |k| is the wave number corresponding to the wave
vector k. In fact, the original linear delay partial differential
equation (3) is reduced via application of the Fourier transform
to the DDE Eq. (7) without spatial extension but with the
additional parameter k. The counterpart of Eq. (7) in network
dynamics is known as the master stability function, where
−k2 are the eigenvalues of the Laplace operator and ξ̂ (k,t)
are the corresponding eigenmodes [37]. The n Fourier modes
ξ̂ (k,t) with k = 0 characterize the temporal evolution of
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homogeneous perturbations within the synchronization mani-
fold, whereas the Fourier modes with k > 0 specify spatially
heterogeneous perturbations, i.e., transversal perturbations.

As can be seen from Eq. (7), the linear stability of the
perturbations depends only on the wave number k but not on the
specific form of the wave vectors k. Thus, for the linear stability
analysis it is reasonable to consider a continuous scalar
parameter k, although boundary conditions and their symmetry
may select a discrete subset of wave vectors k. Moreover, the
specific shape of the boundary conditions may become relevant
for the nonlinear behavior of diffusion-induced instabilities.
The transformation of the Fourier modes from k space back to
the original x space can be done by an n-dimensional inverse
Fourier transform

ξ (x,t) = 1

(2π )n

∫ ∞

−∞
ξ̂ (k,t)eikxdk. (8)

B. Spatially homogeneous solutions

If the stability of a spatially homogeneous equilibrium point
ū(x,t) = u∗ is studied, the coefficients of the linearized DDE,
Eq. (3), are time and space invariant, α(x,t) = α, β(x,t) = β.
If, in addition, a time-invariant delay distribution is considered,
ρ(t,τ ) = ρ(τ ), the perturbations are described by a linear
autonomous DDE. Thus, the exponential ansatz ξ̂ (k,t) = ξ̂ke

st

can be used for the time evolution of the perturbations, where
ξ̂k = ξ̂ (k,0) are the Fourier modes at the initial time t = 0.
By putting the exponential ansatz into Eq. (7), one obtains the
characteristic equation

s = (α − Dk2) + βg(s). (9)

The function g(s) is the generally complex-valued Laplace
transform of the delay distribution [38]

g(s) =
∫ τmax

τmin

ρ(τ )e−sτ dτ. (10)

In general, Eq. (9) is a transcendental equation and has
infinitely many roots s for each Fourier mode with wave
number k. The infinitely many roots for a fixed wave number k

indicate the infinite dimension due to the time delay, whereas
the infinite dimension due to the spatial extension is covered
by the parameter k, which can become arbitrarily large. The
characteristic roots sl(k) = λl(k) + iωl(k), i.e., the roots of
Eq. (9), determine the temporal asymptotic behavior of the
Fourier modes. The root with the largest real part λl(k)
is written simply as s(k) = λ(k) + iω(k) and λ(k) is called
the maximal stability exponent (MSE). If the MSE λ(k) is
positive (negative), the amplitude of the corresponding Fourier
mode increases (decreases) in time. The frequency of the
oscillation of the Fourier mode in time is characterized by
the imaginary part ω(k). The MSE λ(k) can be used to find
diffusion-induced instabilities. If the system is stable with
respect to homogeneous perturbations λ(0) < 0 but unstable
for heterogeneous perturbations λ(ku) > 0, with some finite
wave number ku > 0 a diffusion-induced instability occurs. If,
in addition, the imaginary part of the MSE at the instability is
zero ω(ku) = 0, a classical Turing instability appears, whereas
for ω(ku) �= 0 the instability is called wave instability. For
the computation of the stability border in parameter space
the D-subdivision method can be used. The D-curves are

the boundaries in parameter space, where the real part of
one characteristic root vanishes λl(k) = 0 [39]. They can
be determined via Eq. (9). There are infinitely many D-
curves for a specific wave number k. The stability border is
specified by the D-curve with vanishing MSE λ(k) = 0, where,
consequently, all other characteristic roots have a negative
real part.

For the nonautonomous case, for example, for a homo-
geneous periodic solution, the calculation of the MSE λ(k)
can be no longer done via the characteristic Eq. (9). In this
case a numerical method is used. In particular, the delay
interval is discretized, where the step size �t = ti − ti−1 for
the discrete time steps ti = i�t is chosen in such a manner
that the maximum delay τmax is a multiple of the step size �t .
After discretization the state space of system (7) is finite and
can be defined by the ( τmax

�t
)-dimensional vector,

�̂(k,ti) = [ξ̂ (k,ti),ξ̂ (k,ti−1), . . . ,ξ̂ (k,ti − τmax)]T , (11)

where T denotes transposition. The state can be evolved by a
discrete version of Eq. (7), which can be obtained, for example,
via the semidiscretization method [40]. From the asymptotic
behavior of the state of the perturbations, the MSE can be
calculated numerically as [41]

λ(k) = lim
t→∞

1

t
ln

∣∣�̂(k,t)
∣∣∣∣�̂(k,0)
∣∣ . (12)

By varying the wave number k in the discrete version of
Eq. (7), the function λ(k) can be obtained.

C. Analytical results

In this section, we give analytical results for the time-
invariant case with a single discrete delay τ0. Putting the delay
kernel ρ(t,τ ) = δ(τ − τ0) for a single delay in Eq. (10) yields
g(s) = e−sτ0 and the characteristic Eq. (9) becomes

s = (α − Dk2) + βe−sτ0 . (13)

Equation (13) can be written in the form W(z)eW(z) = z. The
function W(z) is called the Lambert W function and has
multiple branches for complex z [42]. With the Lambert W
function the characteristic roots s of Eq. (13) can be calculated
explicitly by

s = (α − Dk2) + W(βτ0e
(Dk2−α)τ0 )

τ0
. (14)

As an example, we use the Fisher-KPP equation with single
discrete delay τ0 = 1 and a = 1:

∂u(x,t)

∂t
= au(x,t)(1 − uτ (x,t)) + D�u(x,t). (15)

For the homogeneous equilibrium u∗ = 1 of Eq. (15) the
coefficients of the linearized DDE Eq. (7) are α = 0 and
β = −a. In Fig. 1 we show the real part of the first branch of the
Lambert W function Eq. (14) (black solid), which is equal to
the MSE λ(k) of the equilibrium u∗. The analytically obtained
MSE is compared with the numerical results from Sec. II B,
where two different step sizes �t were used. One can see that
the deviations between the numerical and the analytical results
are very small and they decrease for decreasing step size �t .
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FIG. 1. The analytical results for the MSE λ of the equilibrium
u∗ = 1 of Eq. (15) coincide very well with our numerical results
(a = 1, τ0 = 1).

D. Spatially heterogeneous solutions

In Sec. V the stability of arbitrary reference solutions
of Eq. (1) is studied. In general, these solutions are spa-
tially heterogeneous. We have calculated asymptotic solutions
ū(x,t) of Eq. (1) with the forward-time central-space (FTCS)
scheme [43]. The use of the FTCS method with discrete
times ti = i�t and the spatial grid points xj , j = 1, . . . ,n

transforms the spatially extended time-delay system with
an infinite-dimensional state space to a system of ordinary
differential equations with a finite-dimensional state space.

The FTCS method can also be used to determine the
solution of the linear system Eq. (3). The finite-dimensional
approximation of the state of the linearized system Eq. (3) can
be defined by the (nτmax

�t
)-dimensional vector

�(ti) = [ξ (x1,ti), . . . ,ξ (xn,ti),

ξ (x1,ti−1), . . . ,ξ (xn,ti−1),

...

ξ (x1,ti − τmax), . . . ,ξ (xn,ti − τmax)]T . (16)

Similar to Eq. (12), the stability of the system can be calculated
by the asymptotic behavior of the perturbations

 = lim
i→∞

1

ti
ln

|�(ti)|
|�(0)| . (17)

In Eq. (17)  is called the maximal Lyapunov exponent (MLE).
not to be confused with the MSE λ(k) in Eq. (12). Whereas
the MSE λ(k) characterizes the stability of homogeneous
solutions against perturbations with wave number k, the MLE
 characterizes the stability of an arbitrary asymptotic solution
of Eq. (1). Moreover, the MLE does not depend on the
wave number k. In fact, the information on the shape of the
most unstable perturbation is contained in the vector �(ti),
which approximates the most dominant Lyapunov vector
corresponding to the asymptotic solution of Eq. (1).

FIG. 2. D-curves of Eq. (18) for τ0 = 1. The (red) arrows indicate
the direction of the D-curve with increasing ω. No Turing or wave
instability is possible (see text).

III. RESULTS FOR CONSTANT DELAYS

In this section the results for the existence of diffusion-
driven instabilities from homogeneous equilibria of reaction-
diffusion systems with constant discrete and distributed delay
are presented.

A. Single discrete delays

The D-subdivision method [39] is used to study diffusion-
driven instabilities in a general one-component system with
a single discrete delay τ0. The D-curves in (α,β) parameter
space are derived by substituting s = iω in Eq. (13),

β = Dk2 − α, for ω = 0,

α − Dk2 = ω
tan ωτ0

β = − ω
sin(ωτ0)

}
, for ω > 0.

(18)

It is sufficient to consider only non-negative frequencies ω � 0
because according to Eq. (13), the D-curves for s = iω and
the complex conjugate s̄ = −iω are the same. Without loss
of generality, by rescaling the parameters α, β, and D the
discrete delay can be set to 1, τ0 = 1. The D-curves are shown
in Fig. 2. Each curve is associated with frequencies in one
subinterval ω ∈ [(m − 1)π,mπ ], where m ∈ N is odd (even)
for the curves with β < 0 (β > 0). The (red) arrows on the
D-curves indicate the direction of increasing ω. The system is
stable in the white region of the parameter plane.

A diffusion-driven instability is possible if the system is
stable for k = 0 and unstable for some k > 0. This can be illus-
trated as follows. We consider an arbitrary stable homogeneous
state in the white region of Fig. 2 with fixed parameters α,
β, and k = 0. Then, a diffusion-driven instability is possible,
if for increasing k or decreasing α − Dk2, respectively, one
crosses a D-curve and reaches an unstable region. Obviously,
this is not possible for the D-curves in Fig. 2, which means
that Turing or wave instabilities do not exist in single-species
reaction-diffusion systems with a discrete constant delay. This
can be proven by showing that the D-curves for a single discrete
delay do not intersect each other and by deriving the monotonic
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relationship between the α and β values for the two D-curves
that separate stable and unstable regions. However, a rigorous
mathematical proof for this is out of the scope of this paper.

B. Distributed delays

For distributed delays the Laplace transform of the delay
distribution at the D-curves can be written as g(iω) =
ĝ(ω)eiγ (ω), where ĝ(ω) and γ (ω) are the amplitude and the
phase of the function g, respectively. With this definition the
D-curves in parameter space can be determined by

β = Dk2 − α, for ω = 0,

α − Dk2 = − ω
tan(γ (ω))

β = ω
ĝ(ω) sin(γ (ω))

}
, for ω > 0.

(19)

Again, no negative frequencies are considered because, ac-
cording to Eq. (10) we have g(iω) = ḡ(−iω), and conse-
quently, no additional D-curves appear for ω < 0. For the case
of a single discrete delay we have ĝ(ω) = 1 and γ (ω) = −ωτ0,
and obviously, Eq. (19) is identical to Eq. (18). In general,
for a distributed delay both the amplitude ĝ and the phase
γ depend on the frequency ω. However, according to the
normalization of the delay distribution ρ we have g(0) = 1.
This is the reason why the D-curve β = Dk2 − α for ω = 0 is
independent of the delay. Moreover, it is strictly monotonically
decreasing, which means that for an arbitrary single-species
reaction-diffusion systems with an arbitrary constant delay
distribution no classical Turing instability with ω = 0 is
possible.

As can be derived from Eq. (10), for a symmetric delay
distribution around the mean delay τm with ρ(τm + τ ) =
ρ(τm − τ ) the amplitude of the function g(iω) is given by
(see Appendix)

ĝ(ω) = 2

∣∣∣∣
∫ τmax

τm

ρ(τ ) cos ω(τ − τm)dτ

∣∣∣∣. (20)

The phase is γ (ω) = −ωτm or γ (ω) = π − ωτm for a positive
or negative value of the integral in Eq. (20), respectively.
As a consequence, the parametric curve for α in Eq. (19)
does not depend on the delay distribution and the condition
dα
dω

� 0 holds for the derivative of the parametric function. This
might be a reason why in our extensive numerical studies with
various symmetrical delay distributions no diffusion-driven
instabilities for one-component reaction-diffusion systems
were detected. However, in this case a possible proof is much
more complex because, in contrast to the case of a single
discrete delay, for distributed delays the varying amplitude
ĝ(ω) of the function g is not constant, meaning that different
D-curves can intersect each other.

In case of an asymmetric delay distribution the phase γ (ω)
can adopt arbitrary values, and therefore, the condition dα

dω
� 0

no longer holds. As a consequence, loops of the D-curves are
also possible. An appropriate example for the loops is shown
in Fig. 3, where the asymmetric delay distribution ρ(τ ) =
0.7δ(τ − 0.48) + 0.3δ(τ − 1.52) was used. The crucial loop
for the existence of a wave instability is enlarged in Fig. 3(b).
The nonmonotonic behavior of the D-curve, which separates
stable from unstable regions, enables the occurrence of a
diffusion-induced instability. In this case, the nonmonotonic

FIG. 3. D-curves of Eq. (19) with an asymmetric delay dis-
tribution ρ(τ ) = 0.7δ(τ − 0.48) + 0.3δ(τ − 1.52). Panel (b) is an
enlarged figure of panel (a) and shows the parameter region, where a
wave instability is possible. The red arrows indicate the direction of
the D-curves with increasing ω.

behavior of the D-curve is associated with a sign change
of the derivative dα

dω
, which becomes partially larger than

zero in the region of the loop. In fact, in the valley of the
D-curve for α = 0 and −6.2 < β < −6 the equilibrium is
stable against homogeneous perturbations with k = 0 and
becomes unstable against spatially heterogeneous perturba-
tions with wave number k > 0. As a result, asymmetric delay
distributions in single-species reaction-diffusion systems can
lead to diffusion-induced instabilities from equilibria.

IV. RESULTS FOR TIME-VARYING DELAYS

In this section, diffusion-induced instabilities of the homo-
geneous equilibrium u∗ = 1 for systems with time-varying
delays are studied. In this case small perturbations are
described by a linear DDE (3) with constant coefficients α,
β, and the time-varying delay distribution

ρ(t,τ ) = δ(τ − τ0(t)). (21)

The Fisher-KPP equation (15) with periodic time-varying
delay is used for the following numerical examples. For
periodic delays the Floquet theory is valid and the MSE
λ(k) is equivalent to the real part of the dominant Floquet
exponent. The coefficients of the linearized system are α = 0
and β = −a. Two different types of periodic delay variations
are considered. The first is a rectangular delay,

τ0(t) =
{
τm − τA, if t mod Tp < T1

τm + τA, otherwise, , (22)

and the second is a sinusoidal delay,

τ0(t) = τm + τA sin

(
2πt

Tp

)
, (23)

where τA and Tp are the amplitude and the period of the delay
variation. For the rectangular delay the switching time T1 < Tp

is used to implement an asymmetric delay variation.
In Fig. 4 the MSE λ(k) of the Fisher-KPP equation with an

asymmetrically rectangular delay is shown for varying periods
Tp. The parameters τm = 1, τA = 0.52, and a longer duration
of the short delay T1 = 0.7Tp are chosen. The parameter
a = −β = 6.1 corresponds to the valley of the D-curve of
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FIG. 4. MSE λ(k) for different periods Tp of a rectangular delay
fluctuation Eq. (22). Two limiting cases for slowly and fast time-
varying delay can be identified, i.e., large and small periods Tp ,
respectively.

the system with distributed delay, where a wave instability
appears [cf. Fig. 3(b)]. From Fig. 4 an asymptotic behavior
for the two limiting cases of a very slow (Tp → ∞) and fast
(Tp → 0) delay variation can be identified, which is studied
semianalytically in the next sections.

A. Slowly time-varying delays

By using Floquet theory the solution of the linear DDE
equation, Eq. (7), with constant coefficients α, β and a periodic
delay distribution ρ(t,τ ) = ρ(t − Tp,τ ) can be written as [44]

ξ̂ (k,t) =
∞∑
l=0

ξ̂l(k,t)eμl (k)t , (24)

where ξ̂l(k,t) is a time-periodic coefficient vector with
ξ̂l(k,t) = ξ̂l(k,t + Tp) and μl(k) is called the Floquet expo-
nent. Since Eq. (7) is a time-delay system, in general, infinitely
many Floquet modes exist. The frozen time approach can be
used to analyze the stability of the nonautonomous DDE for
slowly time-varying delays [45].

In particular, the period Tp of the delay variation is separated
into P time intervals Ij = [tj−1,tj ] with tj = j�t and tP =
Tp. This is similar to the discretization used in Sec. II D for
the numerical methods, but here we consider a larger step
size τmax < �t << Tp. Note that the inequality τmax << Tp

holds for slowly time-varying delays. As a consequence,
the variation of the delay distribution within one interval Ij

is negligible, i.e., the constant delay distribution ρ(t,τ ) =
ρ(tj ,τ ) can be used for t ∈ Ij . In this case the perturbations
ξ̂ (k,t) within the intervals Ij can be described by the linear
autonomous DDE Eq. (7) with the constant delay distribution
ρ(tj ,τ ). This means that the solution in the j th interval

Ij is described by the infinitely many eigenmodes es
j

l (k)t ,
where s

j

l (k) = λ
j

l (k) + iω
j

l (k), with l = 0, . . . ,∞ being the
characteristic roots of the autonomous DDE [46,47]. The char-
acteristic roots s

j

l (k) can be calculated via the characteristic
Eq. (9) with the corresponding constant delay distribution
ρ(tj ,τ ). By using the adiabatic theorem [48], which states

that for slowly time-varying systems the coefficient for the
lth eigenmode es

j

l (k)t in the present interval Ij is the same

coefficient as for the lth eigenmode es
j−1
l (k)t from the previous

interval Ij−1, one can show that the Floquet exponents μl can
be approximated by [45,47]

μl(k) = λl(k) + iωl(k) = 1

P

P∑
j=1

s
j

l (k). (25)

Thus, for slowly time-varying delays the MSE λ(k) is the
time average of the real part λ

j

0(k) of the dominant charac-
teristic exponents s

j

0 (k) of the time-invariant systems with the
frozen delay distributions ρ(tj ,τ ), j = 1, . . . ,P . Similar to
the analysis in Sec. III A for a time-invariant discrete delay,
no diffusion-induced instabilities are possible for a slowly
time-varying discrete delay because from the Lambert W
approach Eq. (14) it follows that the real parts λ

j

0(k) of the
dominant exponents in each interval, j = 1, . . . ,P , become
smaller for increasing wave number k.

The MSE λ(k) of the KPP-Fisher Eq. (15) with rectangular
delay fluctuation and large periods Tp is shown in Fig. 5(a). The
parameters are equivalent to the parameters used in Fig. 4. The
relationship between the MSE λ(k) and Dk2 is approximately
linear. For an increasing period Tp the MSE λ(k) for the system
with fluctuating delay approaches the limiting case of the
frozen time approximation (black, solid line), calculated with
Eq. (25).

B. Fast time-varying delays

If the period Tp of the delay fluctuation is much smaller
than the internal time scale of the system, the original moving
Dirac-δ peak in Eq. (21) can be replaced by a time-averaged
invariant delay distribution [38]

ρ̄(τ ) = 1

Tp

∫ t+Tp

t

δ(τ − τ0(t ′))dt ′. (26)

This means that the solution ξ̂ (k,t) does not change signifi-
cantly in the time interval [t,t + Tp]. As a consequence, the
time evolution of the Fourier modes ξ̂ (k,t) of the nonau-
tonomous Eq. (7) can be approximated by the exponential
behavior ξ̂ (k,t) = ξ̂ke

st of the autonomous distributed delay
comparison system

∂ξ̂ (k,t)

∂t
= (α − Dk2)ξ̂ (k,t) + β

∫ τmax

τmin

ρ̄(τ )ξ̂ (k,t − τ )dτ.

(27)

The distributed delay comparison system Eq. (27) can be
analyzed via the characteristic Eq. (9) and the D-subdivision
method as described in Sec. II A.

In Fig. 5(b) the MSE λ(k) is shown for small periods
Tp of the delay variation. The parameters are equivalent to
the parameters in Fig. 4. The black solid line represents
the asymptotic behavior for infinitely small periods, Tp →
0, calculated by the distributed delay comparison system
Eq. (27). For Tp = 0.32 (green dashed line) the behavior of the
MSE λ(k) is not related to the results of the distributed delay

052202-6



DELAY-INDUCED WAVE INSTABILITIES IN SINGLE- . . . PHYSICAL REVIEW E 96, 052202 (2017)

FIG. 5. Convergence of the MSE λ(k) for the two limiting cases of a (a) slow and (b) fast delay fluctuation. The same parameters as in
Fig. 4 are used.

comparison system because there are still significant changes
of the solution ξ̂ (k,t) in the time interval [t,t + Tp]. However,
for smaller periods (Tp = 0.16: blue crosses; Tp = 0.01: red
circles) the MSE gets closer to the MSE of the distributed
delay comparison system.

In this example with a rectangular delay Eq. (22) with τm =
1, τA = 0.52, and T1 = 0.7Tp, a wave instability is possible for
a fast asymmetric delay fluctuation with Tp � 0.16. The MSE
λ(k) is negative for k = 0 and has a positive maximum near
Dk2 ≈ 1, i.e., at a finite wave number ku > 0 [cf. Fig. 5(b)].
The time-averaged delay distribution defined by Eq. (26),
ρ̄(τ ) = 0.7δ(τ − 0.48) + 0.3δ(τ − 1.52), is to the asymmetric
delay distribution that was used in Fig. 3. Moreover, the
parameter a = −β = 6.1 of the example is chosen in the
valley of the D-curve, where the wave instability is possible
for the system with distributed delay. Thus, it is not surprising
that the wave instability occurs also for fast time-varying
delays. For the distributed delay with Tp → 0 the maximum
of the MSE is located at Dk2

u = 1.05, which corresponds
to the MSE λ(ku) = 0.0074 and a frequency ω(ku) = 4.564.
Indeed, the diffusion-induced instability is a wave instability
and not a classical Turing instability, because the frequency
of the Fourier mode is nonzero. Wave instabilities can be
found, for example, in chemical reaction-diffusion systems
or in the convection of binary mixtures [3,49]. In nondelayed
reaction-diffusion systems Turing noted that for the existence
of a wave instability at least three species are necessary and
the resulting pattern will be of the form of “genuine traveling
waves” [1].

An example of the corresponding oscillatory Turing pattern
in one space dimension with periodic boundary condition
is shown in Fig. 6. The Fisher-KPP Eq. (15) with a = 6.1,
D = 0.1 and the asymmetrically distributed delay is used.
Indeed, one can observe a traveling wave. The wave number
ks = 3.1 and the angular frequency ωs = 4.6 of the structure
are near the corresponding wave number ku = √

10.5 and
the frequency ω(ku) = 4.564 of the linear stability analysis.
In snapshots of the two-dimensional structure with periodic
boundary conditions, which are shown in Fig. 7, at first one
observe some spots [see panel (a) and (b)] and later the spots
evolve into stripes [see panel (c) and (d)]. The dark stripes
can be found at different locations in panels (c) and (d), which
indicate a traveling wave solution.

C. General time-varying delays

If the behavior of the time-varying delay cannot be approx-
imated by the limiting cases of a slow or fast delay variation,
no general statement on the occurrence of diffusion-driven
instabilities can be made. To investigate the occurrence of a
Turing or wave instability, one can compare the MLE of the
asymptotic solution for the delayed reaction-diffusion systems
with and without diffusion.

In Fig. 8 the MLE  of the Fisher-KPP Eq. (15) with a sine-
shaped delay is shown. In this section we are only interested in
instabilities from homogeneous equilibria, which corresponds
to the region on the left-hand side of the bifurcation point.
In particular, in this parameter region the asymptotic state
of the system without diffusion (solid black) is the stable
homogeneous equilibrium u∗ = 1 with  < 0. If the system
with diffusion D > 0 converges to the same equilibrium, the
MLE is identical to the system without diffusion. In Fig. 8,
the red dashed line for D = 0.05 coincides with the black
curve for D = 0. Numerical integration of Eq. (15) for values
of a on the left of the bifurcation point showed that, in fact,
the system converges for both cases D = 0 and D = 0.05
to the same homogeneous equilibrium u∗ = 1 and not to
another attractor with the same or nearly the same MLE.
Similar results were obtained for a symmetric rectangular

FIG. 6. 1D-Turing pattern for the system Eq. (15) with the dis-
tributed delay ρ(τ ) = 0.7δ(τ − 0.48) + 0.3δ(τ − 1.52) and periodic
boundary condition (a = 6.1, D = 0.1).
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FIG. 7. Snapshots of 2D-Turing pattern for the system Eq. (15)
with the distributed delay ρ(τ ) = 0.7δ(τ − 0.48) + 0.3δ(τ − 1.52)
and periodic boundary conditions (a = 6.1, D = 0.1). The snapshots
are taken at (a) t = 1000, (b) t = 2000, (c) t = 3000, and (d) t =
5000. The size of space is 18 × 18. An initial condition near the
equilibrium u∗ = 1 with an arbitrary small perturbation was used.

delay with τm = 1.5, τA = 0.5, Tp = 2, and T1 = 1, which
are not shown in the paper. In our research we have made
various numerical calculations for different parameters and
symmetrical delay fluctuations. But so far, we have not found
any wave instability from equilibria in cases with symmetrical
time-varying delay, which conforms with the observations for
systems with symmetric delay distributions.

FIG. 8. MLE  of Eq. (15) for D = 0 (black) and D = 0.05
(red dashed) dependent on the parameter a. A sine-shaped delay
with τm = 1.5, τA = 0.5, and Tp = 2π 2 is used. Periodic boundary
conditions and random initial conditions near the equilibrium u∗ = 1
are considered. The space size is 10.

V. DIFFUSION-INDUCED INSTABILITIES
FROM PERIODIC ORBITS

In general, Turing instabilities are studied from stable
equilibria. In 1982, Lin and Kahn studied the stability of
homogeneous limit cycles in the presence of diffusion [13].
For limit cycles the MLE is associated with perturbations along
the trajectory and vanishes,  = 0. For Eq. (15) with constant
discrete delay τ0 the homogeneous periodic orbit that exists
for aτ0 > π/2 has a zero MLE  = 0, similar to the limit
cycles studied in [13]. In this case, diffusion-driven instabilities
similar to the original Turing instability may be possible. Here,
we are interested in the stability of such homogeneous periodic
orbits of Eq. (15) against spatially heterogeneous perturbations
in the case of time-varying delays. For time-varying delays
the system becomes nonautonomous and periodic orbits with
negative MLEs  < 0 are possible [50,51]. As a consequence,
the comparison of the MLE for the system with diffusion
and the system without diffusion maybe useful for finding
diffusion-induced instabilities.

In Fig. 8 the MLE of Eq. (15) with sinusoidally varying
delay is shown for varying parameter a. On the right-hand
side of the bifurcation point one can find some windows with
a stable solution ( < 0) for the Hutchinson equation (black,
solid), i.e., Eq. (15) with variable delay but without diffusion.
These solutions are windows with attracting periodic orbits.
In some situations the MLE of the system with diffusion
(red, dashed) is positive at the same value of the bifurcation
parameter a. This is an indication for a stable homogeneous
periodic orbit of the system without diffusion, which may
become unstable in the presence of diffusion. For a detailed
analysis, we choose a = 1.45 as a prototypical examples. The
selected parameter is denoted by a vertical dotted line in Fig. 8.

We have calculated the MSE λ(k) in dependence of the
wave number k for this example. The results are shown in
Fig. 9. The stable periodic solution in the system without
diffusion is illustrated in Fig. 9(a). The period of the solution is
equivalent to the period Tp of the periodic delay, which means
that there is some resonance between the internal frequency
of the Hutchinson equation and the driving frequency of the
variable delay (see [52,53] and references therein). For this
so-called mode-locked homogeneous solution the MSE λ(k)
is shown in Fig. 9(b). Obviously, one finds that the MSE
is negative for k = 0 and positive for Dk2 ∈ [0.05,0.24].
This indicates a Turing-like diffusion-induced instability. The
resulting spatiotemporal patterns in one space dimension are
shown in Fig. 10 for two different diffusion coefficients
D = 0.01 (a) and D = 0.1 (b). Obviously, the structures are
standing waves with a period equal to the period Tp of the time-
varying delay. Thus, the variable delay drives the system to a
periodic state, which is stable for the case without diffusion but
unstable in the presence of diffusion. The occurring structures
are standing waves similar to the structures that were found in
nondelayed reaction-diffusion systems with external periodic
forcing [52]. The time-averaged spatial spectra of the standing
waves are shown in Fig. 11 for the two cases with D = 0.01
and D = 0.1. Due to the periodic boundary conditions only
a discrete spectrum appears. Since the MSE λ(k) is positive
in a specific interval for Dk2, a larger diffusion coefficient
D leads to smaller wave number k in the observed pattern.
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FIG. 9. (a) Periodic orbit for Hutchinson equation with a sine-
shaped fluctuating delay with τm = 1.5, τA = 0.5, Tp = 2π 2, and
a = 1.45. (b) The MSE λ(k) for a spatial homogeneous state with the
periodic orbit shown in (a).

In other words, the wavelength of the diffusion-induced
pattern will be larger for larger D. In particular, the wave
numbers k ∈ [2.24,4.90] for the system with D = 0.01 and
k ∈ [0.71,1.55] for the system with D = 0.1 correspond to a
positive MSE λ(k) in the linear stability analysis. As can be
seen from Fig. 11, the peaks with the maximal amplitude in
the spatial spectra of the asymptotic solution of the nonlinear
system are located in these intervals of positive MSEs.

VI. CONCLUSIONS

In this paper we have studied the occurrence of diffusion-
driven instabilities in one-component reaction-diffusion sys-
tems with delay. In a system without delay more than
one (two) component(s) is necessary for a Turing (wave)
instability. We have shown that diffusion-driven instabilities
are already possible in reaction-diffusion systems with only
one component but with a delay in the reaction term. This is
not a contradiction to former results, because a time delay
increases the dimension of the system. Roughly speaking,
a one-component system with delay can be interpreted as a
system without delay but with infinitely many components,
where only a single component diffuses.

The possibility of a diffusion-induced instability from
equilibria of a one-component system with delayed reaction

FIG. 10. Asymptotic state of Eq. (15) in case of a diffusion-driven
instability for parameters as in Fig. 9 and (a) D = 0.01, (b) D = 0.1.
Space size is 32, and periodic boundary conditions are considered.
The initial condition is chosen close to the homogeneous periodic
orbit in Fig. 9(a).

was studied systematically for various types of delays. For the
case with a single time-invariant discrete delay a diffusion-
induced instability from an equilibrium is not possible.
For a symmetrically distributed delay, no diffusion-induced
instability was found, but a rigorous proof has not been
given. In contrast, for an asymmetric time-invariant delay
distribution the existence of a wave instability was found.
For time-varying delays, the stability of the system in the
limiting cases of a slowly and fast varying delay was studied
systematically and related to the autonomous cases with
constant delays. On the one hand, a slow delay fluctuation
can be approximated by the averaged stability behavior of
several subsystems with constant frozen delays. In this case, a
diffusion-driven instability is not possible. On the other hand,
a fast delay fluctuation can be approximated by a distributed
delay. As a consequence, a wave instability is possible for
an asymmetrically time-varying delay. We have shown a
simple argument as to why asymmetric delays in contrast
to symmetric delays are more suitable for the generation of
diffusion-driven instabilities.

In the case of a periodic delay, the system without diffusion
can follow a stable periodic orbit with negative maximal
Lyapunov exponent and a period equal to the period of the
delay variation. In other words, the system is driven by
the periodic delay and some resonance condition between the
delay frequency and the internal frequency of the system is
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FIG. 11. Spatial spectrum for structures in Fig. 10 with (a) D =
0.01 and (b) D = 0.1. A larger diffusion coefficient leads to a larger
wavelength of the structures. The dominant peaks are located at wave
numbers where the MSE λ(k) of the homogeneous periodic solution
is positive; cf. Fig. 9(b).

fulfilled. Diffusion-driven instabilities from such mode-locked
stable periodic orbits were found numerically. The period
of the resulting standing waves are equal to the period
of the variable delay, similar to the standing waves that
were found in externally forced chemical reactions [52]. The
wavelengths of the standing waves are close to the unstable
Fourier modes of the linear stability analysis. A further
investigation of the influence of asymmetric delay variations
and asymmetrically distributed delays in reaction-diffusion
systems and the investigation of the resulting pattern could
be directions for future work.

APPENDIX: SYMMETRIC DELAY DISTRIBUTION

From Eq. (10) we have

g(iω) =
∫ τmax

τmin

ρ(τ )e−iωτ dτ. (A1)

A useful change of the integration variable leads to

g(iω) = e−iωτm

∫ τmax−τm

τmin−τm

ρ(τm + τ ′)e−iωτ ′
dτ ′. (A2)

For a symmetric delay distribution around the mean τm we get

g(iω) = e−iωτm

∫ τmax−τm

0
ρ(τm + τ ′)(e−iωτ ′ + eiωτ ′

)dτ ′,

(A3)
resulting in

g(iω) = e−iωτm2
∫ τmax−τm

0
ρ(τm + τ ′) cos(ωτ ′)dτ ′. (A4)

By going back to the original integration variable we get

g(iω) = e−iωτm2
∫ τmax

τm

ρ(τ ) cos (ω(τ − τm))dτ ′. (A5)

From Eq. (A5) we get the amplitude ĝ(ω) defined by Eq. (20)
and the corresponding phase γ (ω).
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