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Stochastic thermodynamics for a periodically driven single-particle pump
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I. INTRODUCTION

Engines are to engineering what catalysts are to chemistry:
they facilitate a transformation. Engines usually deal with
the transformation between different forms of energy, while
catalysts deal with the transformation of chemical substances.
Since catalysts and engines are left untouched at the end of
each completed transformation, and the entire operation needs
to be repetitive to continue the process, catalysts and engines
typically operate in cyclic fashion. The most famous example
of a cyclic engine is undoubtedly the Carnot engine. In addition
to the case of Carnot-like engines, the focus in the literature
on irreversible thermodynamics has been on the operation of
engines under steady-state conditions. The key properties of
engines in the linear regime in this case are captured by the
famous Onsager coefficients.

The purpose of this paper is to introduce a periodically
driven single-particle pump that illustrates two recent devel-
opments in the field: the derivation of Onsager coefficients for
periodically driven machines [1–17] and the thermodynamic
description of small-scale systems based on stochastic ther-
modynamics [18–24]. Our model has an additional virtue: it
is exactly solvable even far away from the linear regime.

It is arguably the simplest exactly solvable example of a
periodically driven stochastic pump [25–29]. It consists of a
system that can switch between two different configurations,
with only two possible states in each configuration: empty
or occupied. To have a pumping function, the system needs
to be placed in contact with (at least) two (ideal) reservoirs.
The configurations are such that, in the absence of switching,
the system reaches a full equilibrium state in one or the
other configuration. The nonequilibrium driving consists of
a modulation, piece-wise constant in time, between the
configurations. This modulation affects the exchange rates
with the reservoirs. There is now a current that reflects
the two mechanisms that break basic symmetries: a spatial
asymmetry, and the alternation between two configurations
that tend toward two different equilibrium states. We present

*arosas@fisica.ufpb.br

the full thermodynamic picture, including explicit analytic
expressions for entropy production, thermodynamic force,
work, heat, and efficiency.

II. SINGLE-PARTICLE PUMP

A pump is a construction that transports a “conserved”
quantity (such as a particle) from one location to another. For
concreteness, we consider the transport of particles. Being
particularly interested in the stochastic aspects of the problem,
we focus on the extreme limit of a pump that manipulates
particles one at a time. More precisely, we assume that the
system that connects the two (or more) reservoirs between
which the particles are pumped can hold at most one particle
at a time. We refer to the two possible states of the system as
“occupied” and “empty” and denote the probability that the
system is occupied by p.

When in contact with a single reservoir, the probability
distribution of occupation of the system will relax to an equi-
librium distribution peq. To complete our pump construction,
we need to add the active, nonequilibrium ingredient. Since
our intention is to provide an exact and explicit stochastic
thermodynamic analysis for a periodically driven pump, we
consider the simplest possible modulation. The connection
of the system to the outside world is periodically alternated
in a piecewise constant way, such that the corresponding
equilibrium states are p(1)

eq when t ∈ [0,τ/2], mod τ , and
p(2)

eq for t ∈ [τ/2,τ ], mod τ , with τ the period. How this is
achieved in detail is irrelevant for the subsequent analysis.
For the sake of clarity, we will focus on one possible
implementation: the time-modulated two-state system is in
contact with two ideal reservoirs at equilibrium. As will
be shown below, for a flux to exist the two contacts must
be different from one another (“asymmetric coupling”). By
switching the configuration of the setup, the equilibrium
occupation peq of the system alternates between two different
values. In the scenario in which the reservoirs are themselves
not altered by the modulation, the difference in equilibrium
occupation probabilities can be achieved by modulating the
energy of the occupied state. The alternation is schematically
reproduced in Fig. 1.
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FIG. 1. Schematic representation of a single-particle pump. A
two-state system that can operate in two different configurations, 1
and 2, is connected to two reservoirs. In each configuration, transition
rates between system and reservoirs obey detailed balance even
though the couplings may be asymmetric (that is, the couplings of
the system to left and right reservoirs may be different). Pumping is
achieved by periodic alternation from one configuration to the other.

While in configuration 1, a particle may jump from the
system (when in the occupied state) to the left (right) reservoir
with transition rate ω1�(ω1r ), or from the left (right) reservoir
to the system (when in the empty state) with transition
rate ω�1(ωr1). We also introduce the total rate from the
system into either reservoir, ω10 = ω1� + ω1r , and the total
rate from the reservoirs into the system, ω01 = ω�1 + ωr1.
Similarly, for the system in configuration 2 the transition
rates are denoted by ω2�, ω2r , ω�2, ωr2, ω20, and ω02. The
corresponding equilibrium distributions are given by

p(1)
eq = ω01

ω01 + ω10
, (1)

p(2)
eq = ω02

ω02 + ω20
. (2)

Since we assume that the system relaxes toward equilibrium
when in a given configuration, detailed balance must be
satisfied for the transitions between the system and each
reservoir independently:

ω1�p
(1)
eq = ω�1

(
1 − p(1)

eq

)
, ω1rp

(1)
eq = ωr1

(
1 − p(1)

eq

)
, (3)

ω2�p
(2)
eq = ω�2

(
1 − p(2)

eq

)
, ω2rp

(2)
eq = ωr2

(
1 − p(2)

eq

)
, (4)

that is

p(1)
eq = ω�1

ω�1 + ω1�

= ωr1

ωr1 + ω1r

, (5)

p(2)
eq = ω�2

ω�2 + ω2�

= ωr2

ωr2 + ω2r

. (6)

We end this section by introducing the “reduced levels of
occupancy,” denoted by ν, which will play a central role in the
subsequent analysis:

ν1 = p(1)
eq

1 − p
(1)
eq

= ω�1

ω1�

= ωr1

ω1r

,

ν2 = p(2)
eq

1 − p
(2)
eq

= ω�2

ω2�

= ωr2

ω2r

. (7)

III. PROBABILITY AND FLUX

The time evolution of the probability vector p = {1 − p,p}
obeys a Markov equation,

ṗ = Mp, (8)

where M is the time-periodic transition matrix. Its elements are
specified in terms of the transition rates introduced above. We
are interested in the long-time solution of the Markov process.
The probability p(t) will then reach a “steady” time-periodic
state with the same period as that of the modulation, p(t) =
p(t + τ ). This function can be found as follows. The stochastic
dynamics consists of a time-periodic alternation between two
different relaxations, one toward p(2)

eq and the other toward p(1)
eq

as the system switches periodically from configuration 2 to
1 at times equal to a multiple of τ , and from 1 back to 2 at
times t = τ/2, mod τ . The unique steady-state time-periodic
solution is found by matching the end of this double relaxation
after each period with the initial value. The details of the
calculation are given in the Appendix. Denoting the probability
distributions when the modulation is in the first or second half
of each period by p1(t) and p2(t), one finds the following
explicit results:

p1(t) = p(1)
eq + e−t(ω01+ω10)[1 − e− 1

2 τ (ω02+ω20)](ω02ω10 − ω01ω20)

(ω01 + ω10)(ω02 + ω20)[1 − e− 1
2 τ (ω01+ω02+ω10+ω20)]

, (9)

p2(t) = p(2)
eq + e−(t−τ )(ω02+ω20)[1 − e

1
2 τ (ω01+ω10)](ω01ω20 − ω02ω10)

(ω02 + ω20)(ω01 + ω10)[1 − e
1
2 τ (ω01+ω02+ω10+ω20)]

. (10)

As expected, if the modulation is slow (τ → ∞), the
probability distribution relaxes to the corresponding equi-
librium distribution at the end of each half period. In the
fast modulation limit, on the other hand (τ → 0), the system
freezes into the following nonequilibrium steady state:

p1(t) � p2(t) � ω01 + ω02

ω01 + ω10 + ω02 + ω20
. (11)

This corresponds to the steady state for an unmodulated system
with effective transition rates ω01 + ω02 and ω10 + ω20.

We are now in a position to evaluate the net flux through the
system. Since the system can at most carry a single particle,
any net flux from one of the reservoirs to the system has to
be compensated by a corresponding net flux out of the system
into the other reservoir. Hence, the system operates as a pump.
The net average flux at time t in each period coming from the

052135-2



STOCHASTIC THERMODYNAMICS FOR A PERIODICALLY . . . PHYSICAL REVIEW E 96, 052135 (2017)

FIG. 2. Average flux from the left reservoir (multiplied by the
period of oscillation) as a function of the �2r . The parameters are
�10 = 1.5, �1r = 1.0, ν1 = 0.8, and �20 = 3.0. The different curves
correspond, from top to bottom on the left-hand side of the figure, to
the following values of ν2: 0.2, 0.4, 0.8, 1.0, and 1.2.

left reservoir is given by

J (t) =
{
ω�1[1 − p1(t)] − ω1�p1(t) for 0 � t < τ/2
ω�2[1 − p2(t)] − ω2�p2(t) for τ/2 � t < τ

.

(12)

As we are focusing on the steady-state time-periodic regime,
the quantity of interest is the average of this quantity over one
period:

J = 1

τ

∫ τ

0
J (t)dt. (13)

In combination with Eq. (7), one finds

J = [e
1
2 (ν1+1)τω10 − 1][e

1
2 (ν2+1)τω20 − 1]

τ [e
1
2 τ (ν1+1)ω10+ 1

2 τ (ν2+1)ω20 − 1]

ω1�ω2r − ω1rω2�

ω10ω20

× ν1 − ν2

(ν1 + 1)(ν2 + 1)
. (14)

This is the first main result of our paper, and we pause to make
a few comments. First, we note that the above expression
incorporates the broken symmetries needed for the system
to operate as a ratchetlike pump. Equilibrium corresponds to
ν1 = ν2, which is equivalent to p(1)

eq = p(2)
eq . Despite being a

trivial result, it is reassuring to see that the flux is zero in this
case. Second, and again not very surprisingly, both states of
the system must make contact with at least one reservoir. For
example, the flux vanishes if we set both ω2� and ω2r equal to
zero. Third, the sign of J changes upon interchanging the left
and right reservoirs. An interesting consequence is that no flux
exists when the system obeys the left-right symmetry ω1rω2� =
ω1�ω2r . Fourth, the signs of the products of the differences
ν1 − ν2 and ω1�ω2r − ω1rω2� determine the direction of the
flow, with equilibrium and the symmetric situation being
points of flux reversal. We illustrate this phenomenon in
Fig. 2. Introducing the variables �α = ωατ , we note that flux
reversal occurs when �2r = ω2�ω1r/ω1� = �1r�20/�10 = 2.

0
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FIG. 3. Net average flux from the left reservoir as a function of
the period τ (ln scale). The other parameters are ω1� = 0.1, ω1r =
0.2, ν1 = 0.1, ω2� = 0.1, and ω2r = 2.2. The different curves corre-
spond to the following values of ν2: 0.2,0.7,1.2,1.7,2.2, and 2.7. The
symbols are the results of numerical simulations with 10 samples of
105 cycles each.

Fifth, we mention the limits of slow oscillation
(τ → ∞) and fast oscillation (τ → 0). In the former case,
the exponentials in numerator and denominator cancel and the
flux decays as 1/τ :

lim
τ→∞ J ∼ 1

τ

(ν1 − ν2)(ω1�ω2r − ω1rω2�)

(ν1 + 1)(ν2 + 1)ω10ω20
. (15)

For fast oscillations the average flux tends to a nonzero
constant value:

lim
τ→0

J = (ν1 − ν2)(ω1�ω2r − ω1rω2�)

2[(ν1 + 1)ω10 + (ν2 + 1)ω20]
. (16)

Finally, we notice that the average flux J is a monotonic
function of the period. In fact, its absolute value decreases as
the period of oscillation increases. This monotonic decay can
be observed in Fig. 3. This figure also shows the increase in the
flux as we move away from equilibrium, that is, as ν2(>ν1) in-
creases. The figure illustrates the perfect agreement of our ex-
act expression for the average flux with numerical simulations.

IV. ENTROPY PRODUCTION

We start from the general definition for the rate of entropy
production of a Markov process characterized by transition
rates Mij between states i and j . Following stochastic
thermodynamics [23,24,30,31], it is given by

Ṡ = kB

∑
ij

(MijPj − MjiPi) ln
MijPj

MjiPi

. (17)

Here Pi (Pj ) is the probability that the system is in state
i (state j ). Applied to our model, we get the following
expression in terms of the probabilities pi that the system
is in the occupied state while in configuration i:

Ṡ(t) = kB

⎧⎪⎨
⎪⎩

∑
k=�,r [ω1kp1(t) − ωk1(1 − p1(t))] ln

ω1kp1(t)

ωk1(1 − p1(t))
for 0 � t < τ/2

∑
k=�,r [ω2kp2(t) − ωk2(1 − p2(t))] ln

ω2kp2(t)

ωk2(1 − p2(t))
for τ/2 � t < τ

. (18)
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FIG. 4. Comparison of the exact (full line) and Onsager approxi-
mation (dashed line) expressions for the average entropy production
(main panel) and flux (inset) per cycle for small forces. The
parameter values are ω1� = 0.1, ω1r = 0.2, ν1 = 0.1, ω2� = 2.1, and
ω2r = 0.1.

To find an appropriate “steady-state” expression character-
izing the periodically operating pump, we need to perform an
average over one cycle:

Ṡ = 1

τ

∫ τ

0
Ṡ(t)dt. (19)

After a strenuous calculation, one obtains the following simple
and revealing expression, which is our second major result:

Ṡ = kB

[e
1
2 (ν1+1)τω10 − 1][e

1
2 (ν2+1)τω20 − 1]

τ [e
1
2 (ν1+1)τω10+ 1

2 (ν2+1)τω20 − 1]

(ν1 − ν2)

(ν1 + 1)(ν2 + 1)

× ln
ν1

ν2
. (20)

In the next section we will recover this result via a less
strenuous approach using stochastic thermodynamics for a
particular case.

We again pause to make several comments. First, the
entropy production is positive, as it should be. It vanishes and
only vanishes at equilibrium, ν1 = ν2, as it should. Second,
by combination with the expression for the flux, cf. Eq. (14),
the entropy production can be written as a flux-times-force
expression, familiar from irreversible thermodynamics:

Ṡ = JX, (21)

with the following expression for the thermodynamic force:

X = kB

ω10ω20

ω1�ω2r − ω1rω2�

ln
ν1

ν2
. (22)

Recalling that ν = peq/(1 − peq) and that peq is the equi-
librium probability for an occupied system, this expression
for X reproduces the intuitive observation that its amplitude
depends on the (logarithmic) difference between occupation
in both configurations. The sign of the force is, however,
also determined by the balance of rates (cf. denominator
ω1�ω2r − ω1rω2�). Third, the corresponding Onsager coeffi-
cient that describes the linear response regime is then found
by evaluating the flux J in the limit of small force, X → 0, or
equivalently, in the equilibrium limit ν1 → ν2 ≡ ν:

J ∼ LX. (23)

0

0.1

0.2
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0.5 1 1.5 2 2.5 3 3.5 4 4.5

ν2

Ṡ
/k

B

ln τ

FIG. 5. Average entropy production per cycle as a function of
the period. The parameters are ω1� = 0.1, ω1r = 0.2, ν1 = 0.1 ω2� =
2.1, and ω2r = 0.1. The different curves correspond to different values
of ν2—from bottom to top: 0.2, 0.7, 1.2, 1.7, 2.2, and 2.7. The symbols
are the results of numerical simulations with 100 samples of 10 000
cycles each.

One finds

L = ν

kB(1 + ν)2

[e
1
2 (ν+1)τω10 − 1][e

1
2 (ν+1)τω20 − 1]

τ [e
1
2 (ν+1)τ (ω10+ω20) − 1]

×
(

ω1�ω2r − ω1rω2�

ω10ω20

)2

. (24)

As expected, the Onsager coefficient is invariant upon inter-
change of the left and right reservoirs. It is always positive,
reflecting that current J flows in the direction of the force X.
Fourth, we note that the results for the flux and entropy
production are exact and valid far from equilibrium. In Fig. 4,
we show how the exact entropy production expression Eq. (20)
deviates from its near equilibrium expression (main panel):

Ṡi = LX2, (25)

and how the linear flux-versus-force relation (inset) breaks
down. The figure shows that the entropy production is greater
when the system is farther from equilibrium. The graphs are
plotted as functions of ln ν1/ν2, used here as a measure of the
distance from equilibrium.

Finally, we carried out extensive numerical simulations and
found perfect agreement with the above analytic result for the
entropy production, cf. Fig. 5.

V. WORK, HEAT, AND EFFICIENCY

So far we have made no reference to the concept of energy.
In this section, we consider a scenario that connects the above
construction to a thermochemical pump engine [4,32–34]. This
will allow us to ask the standard thermodynamic questions
about work, heat, and efficiency. To simplify matters, we take
the system to be in contact with a single reservoir in each of
its two configurations, say the left reservoir in configuration 1
and the right reservoir in configuration 2. Mathematically, this
is achieved by taking the limits:

ω2� → 0, ω�2 → 0, ω1r → 0, ωr1 → 0. (26)
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Next, we attribute the energies ε1 and ε2 to the system when
occupied by a particle in configurations 1 and 2, respectively.
This implies that upon the transitions from configuration 1 to 2
and back, while the system contains a particle, an energy equal
to ε2 − ε1 and ε1 − ε2 has to be provided via an outside source,
which we take to be a dissipationless work source. Averaged
over one period, and recalling that the flux J is measured from
the left reservoir into the system, we conclude that the work
W on the system is given by

W = J (ε2 − ε1). (27)

Furthermore, the left and right reservoirs are characterized
by chemical potentials and temperatures equal to μ�,T� and
μr,Tr , respectively. The particle pump thus produces a period-
averaged amount of chemical work W chem from the system
into the reservoirs, and heat currents Ql and Qr from the left
and right reservoirs into the system, given by

W chem = J (μr − μ�),

Q� = J (ε1 − μ�), (28)

Qr = −J (ε2 − μr ).

Taking into account that the system returns to the same
(statistical) state after each period, the first law requires that
the sum of all average energy contributions vanishes. Noting
that the chemical work is work provided to the reservoirs, we
get the following energy balance equation:

W + Q� + Qr = W chem. (29)

The second law is recovered by noting that the heat fluxes are
responsible for the entropy production, and hence

Ṡ = −Q�

T�

− Qr

Tr

. (30)

By identification with Ṡ = JX, cf. Eq. (21), one thus obtains
the following expression for the thermodynamic force X:

X = ε2 − μr

Tr

− ε1 − μ�

T�

. (31)

The consistency of these expressions with the previous results
for entropy production and thermodynamic force, cf. Eqs. (20),
(21), and (22), comes through the explicit identification of
peq for a system in contact with a heat-particle reservoir μ,T .
There are only two energy states for the system, namely, energy
equal to 0 (empty) and equal to ε (occupied). The probability
for the occupied state is given by the Fermi function:

peq = 1

eβ(ε−μ) + 1
. (32)

This result fixes the ratio of the exchange rates with each of the
reservoirs, cf. Eqs. (5) and (7). It suffices to verify that, with
this prescription, Eq. (31) indeed reduces to Eq. (22). The
equivalence is established by remembering the limits Eq. (26),
implying that Eq. (22) simplifies to X = kB ln ν1/ν2, together
with

ln ν = ln peq/(1 − peq) = −β(ε − μ). (33)

To discuss the issue of efficiency, we focus on the case of a
thermal engine, with the left reservoir playing the role of the

FIG. 6. Chemical work as a function of the thermodynamic
force. Parameter values: ε1 = 1, μ� = 0, β� = 1, βr = 2, ω1� = 1,

ω1r = 2, and τ = 1. The three curves correspond to the following
values of μr : 1, 1/2, and 1/4 (from top to bottom). The straight
lines correspond to the linear response approximation.

hot, heat providing entity (Q� > 0, T� > Tr ). The output is the
net work, i.e., the chemical work minus the input work. The
efficiency η is thus given by

η = W chem − W

Q�

= 1 + Qr

Q�

= 1 − Tr

T�

− Tr Ṡi

Q�

� 1 − Tr

T�

.

(34)

We thus have explicit analytic expressions for the power,
efficiency, and dissipation valid at any distance away from
equilibrium. Actually, combining the expression for the ef-
ficiency, cf. Eq. (34), with those for the heat currents, cf.
Eq. (29), one concludes that the efficiency can be rewritten
as follows:

η = 1 − ε2 − μr

ε1 − μ�

. (35)

The efficiency is thus fully determined by the choice of energy
levels. At first glance, this observation is surprising because
none of the parameters that are related to the dissipation
appear explicitly in Eq. (35), i.e., the rate of modulation, the
temperatures and the rate of entropy production. However, one
must remember that the energies are linked to the variable
ν and temperature via Eq. (33). In fact, one immediately
verifies that Carnot efficiency is recovered if one specifies that
the system operates under equilibrium conditions, X = 0 or
(ε2 − μr )T� = (ε1 − μ�)Tr , cf. Eq. (31). Note also that, as we
move further away from equilibrium, the efficiency decreases
linearly with ln(ν1/ν2) and eventually becomes negative. The
latter regime corresponds to a dud engine, as it just dissipates
while failing to deliver any work at all.

We close this section with two illustrative plots. In Fig. 6 we
show how the chemical work increases as we move away from
equilibrium. Near equilibrium, the linear response approxima-
tion agrees with the exact solution, but it overestimates the
chemical work, as the latter saturates in tune with the particle
flux.

In Fig. 7, we reproduce the heat current from the left and
right reservoirs, together with the entropy production. The
direction of both heat currents reverses at equilibrium, while
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(a) (b) (c)

FIG. 7. Heat current from the left reservoir (a), entropy produc-
tion (b), and heat current from the right reservoir (c) as a function of
the thermodynamic force. Same parameter values as in the previous
figure.

the entropy production reaches its minimum value (zero). Note
that the plotted curves are, for all three quantities, independent
of μr . This can be understood from the fact that changing μr

implies a corresponding change of ε2 such as to keep a fixed
value of ν2 (with all other parameters also being held constant).
Concomitantly, the flux is the same regardless of the value of
this chemical potential.

VI. PERSPECTIVES

We have introduced a simple model of a periodically driven
single-particle pump. It is exactly solvable and amenable to a
full and detailed stochastic thermodynamic analysis. It will
allow us to verify and test other predictions as they arise
from stochastic thermodynamics. One example is the recently
derived thermodynamic uncertainty relation for periodically
driven systems [35]. The calculations presented here can
also be repeated for a model with three instead of two
configurations. Such a construction allows one to break the
strong coupling constraint, which requires the energy and
particle flows to be proportional to each other. This will make
it possible to study the symmetry properties of both the linear
and nonlinear Onsager coefficients [36].
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APPENDIX: STEADY-STATE DISTRIBUTION

We first focus our attention on the general relaxation
dynamics when the system is in configuration 1. The transition

matrix for this system is

M =
(−ω01 ω10

ω01 −ω10

)
. (A1)

This matrix has two eigenvalues: λ(1)
eq = 0 (corresponding to

the equilibrium state) and λ
(1)
− = −ω10 − ω01 (which governs

the decay to equilibrium). The corresponding eigenvectors are

|�(1)
eq 〉 =

(
αeq

ω01
ω10

αeq

)
and |�(1)

− 〉 =
(

α−
ω01

ω01+ω10
α−

)
,

(A2)

where αeq and α− are constants. Defining the inner product of
two vectors,

|f 〉 =
(

f1

f2

)
and |g〉 =

(
g1

g2

)
, (A3)

as

〈f |g〉 = f1g1

αeq
+ f2g2

ω01
ω10

αeq
, (A4)

and imposing the normalization condition 〈�(1)
eq |�(1)

eq 〉 = 1, we
have that

αeq = ω10

ω01 + ω10
, (A5)

so that

|�(1)
eq 〉 =

(
ω10

ω01+ω10
ω01

ω01+ω10

)
and

〈
�(1)

eq

∣∣ = (1 1). (A6)

Analogously, the normalization condition for the eigenvector
|�(1)

− 〉 leads to

|�(1)
− 〉 =

⎛
⎝

√
ω01ω10

ω01+ω10

−
√

ω01ω10

ω01+ω10

⎞
⎠ and 〈�(1)

− | =
(√

ω01
ω10

− ω10√
ω01ω10

)
.

(A7)

Therefore, if the system is in state

|P0〉 =
(

1 − p0

p0

)
, (A8)

at time t = 0, it will evolve to equilibrium so that

|P1(t)〉 =
(

1 − p1(t)

p1(t)

)
, (A9)

with

p1(t) = p(1)
eq + (

p0 − p(1)
eq

)
eλ

(1)
− t , (A10)

where p(1)
eq = ω01/(ω01 + ω10).

Now, for the two-configuration system, Eq. (A10) still
governs the time-evolution of the system while it is in
configuration 1. Hence, if we start our clock when the system
goes to configuration 1, Eq. (A10) will hold up to τ/2 (when the
system jumps to configuration 2). In the following half period,
the time-evolution will be governed by the configuration 2
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dynamics, that is,

p2(t) = p(2)
eq + [

p1(τ/2) − p(2)
eq

]
eλ

(2)
− (t−τ/2), (A11)

where p(2)
eq = ω02/(ω02 + ω20) and λ

(2)
− = −ω20 − ω02.

As stated above, we are interested in the steady state.
Therefore, after a complete cycle, the system must return to

the beginning state. Consequently, p2(τ ) = p0, which leads to

p0 = e
λ

(2)
− τ

2
[
p(1)

eq (e
λ

(1)
− τ

2 − 1) + p(2)
eq

] − p(2)
eq

e
1
2 τ (λ(1)

− +λ
(2)
− ) − 1

. (A12)

Substituting this result in the expressions for p1(t) and p2(t),
we obtain the result of Eqs. (9) and (10) from the main text.
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