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Anomalies in the equilibrium and nonequilibrium properties of correlated
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Emergent statistical attributes, and therefore the equations of state, of an assembly of interacting charge carriers
embedded within a complex molecular environment frequently exhibit a variety of anomalies, particularly in the
high-density (equivalently, the concentration) regime, which are not well understood, because they do not fall
under the low-concentration phenomenologies of Debye-Hückel-Onsager and Poisson-Nernst-Planck, including
their variants. To go beyond, we here use physical concepts and mathematical tools from quantum scattering
theory, transport theory with the Stosszahlansatz of Boltzmann, and classical electrodynamics (Lorentz gauge)
and obtain analytical expressions both for the average and the frequency-wave vector-dependent longitudinal and
transverse current densities, diffusion coefficient, and the charge density, and therefore the analytical expressions
for (a) the chemical potential, activity coefficient, and the equivalent conductivity for strong electrolytes and
(b) the current-voltage characteristics for ion-transport processes in complex molecular environments. Using
a method analogous to the notion of Debye length and thence the electrical double layer, we here identify a
pair of characteristic length scales (longitudinal and the transverse), which, being wave vector and frequency
dependent, manifestly exhibit nontrivial fluctuations in space-time. As a unifying theme, we advance a quantity
(inverse length dimension), g(a)

scat, which embodies all dynamical interactions, through various quantum scattering
lengths, relevant to molecular species a, and the analytical behavior which helps us to rationalize the properties
of strong electrolytes, including anomalies, in all concentration regimes. As an example, the behavior of g

(a)
scat in

the high-concentration regime explains the anomalous increase of the Debye length with concentration, as seen
in a recent experiment on electrolyte solutions. We also put forth an extension of the standard diffusion equation,
which manifestly incorporates the effects arising from the underlying microscopic collisions among constituent
molecular species. Furthermore, we show a nontrivial connection between the current-voltage characteristics
of electrolyte solutions and the Landauer’s approach to electrical conduction in mesoscopic solids and thereby
establish a definite conceptual bridge between the two disjoint subjects. For numerical insight, we present results
on the aqueous solution of KCl as an example of strong electrolyte, and the transport (conduction as well as
diffusion) of K+ ions in water, as an example of ion transport across the voltage-gated channels in biological
cells.
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I. INTRODUCTION

Microscopic dynamics of interacting charged molecular
species in the presence of external electromagnetic fields or
the fields originating from electrically polarizable medium
(embedding solvent, for example) manifest in a variety of
nontrivial emergent equilibrium and nonequilibrium statistical
phenomena in electrochemical, soft matter, and biophysical
systems [1], representative examples of which include (a)
the physical chemistry of strong electrolytes and electrically
charged interfaces [2], (b) selective transport of molecular ions
in nanofluidic systems such as the naturally occurring trans-
membrane protein channels within the crowded environment
of biological cells [3–8], (c) the transport of charged carriers
in mesoscopic semiconductors such as the photovoltaic cells
and nanometer-sized molecular devices [9], and so forth. To
develop unambiguous conceptual understanding, predictive
mathematical frameworks and practical computational proto-
cols for such diverse varieties of complex molecular systems
are some of the major intellectual challenges of physical
science today. There is a rich history associated with this
subject, which spans a century of scientific efforts and includes
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the pioneering analytical works in physical chemistry of
Debye, Hückel, Falkenhagen, Onsager, Fuoss, Nernst, Planck,
Mayer, Kirkwood, and others [10–24] and the equally relevant
theoretical works on electrical conduction in hard condensed
matter and mesoscopic systems of Drude, Sommerfeld, Bloch,
Landau, Kubo, Kohn, Luttinger, Landauer, and others [25–35].
Still, the present state of affairs on our understanding of
interacting ensembles of charged carriers in complex molecu-
lar environment, as we briefly review the chemical physics
context below, is not completely satisfactory. The central
objective of the present work is to advance an ab initio
theoretical framework, which unambiguously bridges the
microscopic world of molecules with the statistical nature
of emergent phenomena, to study a variety of equilibrium
as well as nonequilibrium properties of systems consisting
of correlated charge carriers, which are embedded within
a complex molecular environment such as the solvent or
biological cells, in the presence of external electromagnetic
fields.

Let us consider, as an example, the case of strong elec-
trolytes, for which the chemical potential (and therefore the
activity coefficient, γ ) and the equivalent conductivity, �, for
the electrolyte in a given solvent atmosphere serve as conve-
nient physical observables [2]. Experimentally, in the regime
of low concentrations, ln γ and � both are known to decrease
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as one increases the concentration, 〈n〉, of the electrolyte.
This behavior of strong electrolytes famously falls within the
framework of Debye-Hückel-Onsager (DHO) phenomenology
and is well understood [2,10–20]. In the high-concentration
regime, on the other hand, both ln γ versus 〈n〉 and � versus
〈n〉 curves exhibit a variety of nontrivial anomalies (ln γ and
� may increase as we increase 〈n〉, for example), which are
beyond the predictions of the original DHO phenomenology
and for which we do not yet possess a completely satisfactory
microscopic understanding, even though there have been
important advances within the framework of the Ornstein-
Zernike equation and the hypernetted-chain-closure protocol
[36]. To rationalize experimental observations in the high-
concentration regime, there have been a number of theoretical
studies [2,37–72], which, while retaining the key elements of
the DHO phenomenology, introduce a number of additional
adjustable parameters to improve upon the original DHO
predictions on strong electrolytes, with varying degrees of
success. Notable recent studies are based on the framework
of time correlation functions [67–70]. These advances, though
useful, are mostly executed from within the DHO framework
and hence they are, in essence, tentative in character. In fact, the
dynamical properties of strong electrolytes and associated ions
in the high-concentration regime remains a subject of lively
debate today, particularly in the biological setting [7,8]. Why
is the DHO formalism or its variants not so successful in the
high-concentration regime? To decipher the possible reasons,
we here highlight two important conceptual shortcomings
associated with the DHO paradigm and its various extensions.
First, it is based on classical electrostatics [46,73]; that is,
the influence of the vector potential and the dynamical aspect
of the scalar potential are simply absent. This has important
consequences. As an example, the use of frequency-dependent
4-potentials, as the present work reveals, necessarily intro-
duces two distinct frequency- and wave-vector-dependent
length scales: (a) the longitudinal one, which is analogous
to but conceptually transcends the notion of Debye length,
and (b) the transverse length, which is nonzero only at finite
frequencies and therefore is completely absent in DHO-based
phenomenologies. The spatial and frequency dispersions im-
ply that these length scales would potentially exhibit nontrivial
fluctuations in space-time, leading to interesting but yet
unexplored emergent phenomena involving correlated ions in
electrolyte solutions and biophysical contexts. Next, the DHO
framework does not explicitly take congnizance of the inertial
mass of charge carriers, constituting the electrolyte; that is, the
atomic and molecular masses of various charge carriers are
not manifestly present in various DHO-based mathematical
expressions for chemical potentials, activity coefficients, and
equivalent conductivities. That means a DHO-based theory
of strong electrolytes would not manifestly differentiate, for
example, a Na+ ion from a K+ or (NH4)+ ion, thus defeating
the very purpose of chemical and inertial identities for ions
in molecular science. Next, we consider the question of
selective ion transport in transmembrane channels and pumps
within the crowded atmosphere of biological cells [3–5]. To
understand the physical mechanism of ion flow across the
cell membrane, one frequently uses concepts emanating from
the DHO phenomenology and employs the framework of
the Nernst-Planck equation [17–20] along with the Poisson

equation to model the electrostatic interactions among various
charged molecular species [44–57]. The resulting Poisson-
Nernst-Planck (PNP) framework and its variants do capture
important aspects of the chemical physics of ion flow, but
they also miss, like DHO and its variants, key conceptual
elements due to the absence of the dynamical aspects of the
electromagnetic potentials in the theory. Also, like DHO, the
PNP phenomenology does not manifestly take the inertial
mass of the charged molecular species into consideration.
An objective of the present work is to develop a theoretical
formalism that does not suffer from these shortcomings.

The key question now is as follows: What is a conceptually
rigorous as well as practically feasible theoretical paradigm to
study the nonequilibrium properties of the ensemble of charge
carriers, embedded within a complex molecular environment,
in the presence of the external electromagnetic fields, in a
faithful manner? The equilibrium properties would be ob-
tained simply as the space-time average of the corresponding
nonequilibrium expressions. To this end, we here use the
framework of the Boltzmann transport equation (BTE), for it
provides a practical and unifying basis to unambiguously ratio-
nalize a wide variety of nonequilibrium statistical phenomena
in terms of the fundamental scattering events taking place
within the microscopic world of molecules [74–76]. This point
of view for an assembly of correlated ions has a close parallel
with the Fermi liquid theory program of Landau and others
[30,31,77,78], which have found wide usage in the theory
of metals [79]. This approach is also conceptually consistent
with the viewpoint that the dynamics of microscopic collisions
eventually provides a mechanism for the many-body systems
to approach the state of statistical equilibrium [80]. Other
theoretical approaches based on the notion of stochasticity,
such as the Fokker-Planck-type equations, are useful, but they
are essentially approximate implementations of the BTE [81].
In the present work, therefore, we use the following set of
coupled Boltzmann-Maxwell equations in the Lorentz gauge
to study the nonequilibrium properties of correlated charged
molecular species in the presence of external electromagnetic
fields: ∑

μ

∂μAμ = 0 and
∑

ν

∂ν∂
νAμ

= 1

ε0c2
jμ

(
with∂μ =

{
1

c

∂

∂t
, �∇

})
, (1)(

∂

∂t
+

∑
i

[ηi,Ĥeff]
∂

∂ηi

−
∑

b

Ĝab

)
fa(�r,�k,t) = 0. (2)

In Eq. (1), Aμ and jμ are the 4-vectors associated with the
potentials and the currents respectively. In Eq. (2), (η1,η2,η3)
and (η4,η5,η6) respectively are the components of the position
�r and the wave vector �k of molecular species a. Ĥeff is
the effective one-particle Hamiltonian including the external
fields, the symbol [· · · ] stands for the Poisson bracket, and the
quantity

∑
b Ĝab denotes the collision operator which formally

accounts for the absorption and emission of molecular species
a from a definite wave-vector range due to scattering. We
here obtain an analytical solution for Eqs. (1) and (2) and
then derive analytically closed-form expressions for the charge
density, current densities, equivalent conductivities, diffusion
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coefficient, chemical potential, activity coefficient, and the
current-voltage curves. Furthermore, we advance a quantity,
designated as the intrinsic wave vector of magnitude g

(a)
scat,

which is of inverse length dimension, to be a fundamental
attribute (like the effective mass and the effective charge) of
the molecular species a, in a given complex molecular envi-
ronment. This quantity embodies all dynamical interactions
present in the system and helps us to faithfully rationalize
various equilibrium and nonequilibrium properties of the
ensemble of correlated ions. To be specific, g

(a)
scat, in general,

depends on the temperature, external potentials, and the
concentration (equivalently, the density) of molecular species
present in the system. The detailed mathematical nature of the
fluctuations in g

(a)
scat is, inter alia, the fundamental key here that

(a) reveals the rich variety of physical scenarios, which the
molecular systems of chemical and biophysical interests may
potentially exhibit in various experiments, and (b) allows us
to transcend the predictions of DHO-type phenomenology. As
an example, the concentration dependence of g

(a)
scat explains

a recent experimental observation on NaCl in water and
an ionic liquid solution at high concentrations, wherein the
Debye length, beyond a certain electrolyte concentration,
anomalously increases as the concentration increases [82].
Notably, the present work rests on the ideas of classical
mechanics, except on two fronts. First, we use the formalism
of quantum scattering theory [83–85], to obtain an expression
for the collision operator, Ĝab, to be used in Eq. (2). Next, we
normalize the distribution function, fa(�r,�k,t) in Eq. (2), in the
dimensionless phase space, which is spanned by the position,
�r , and the wave vector, �k, of the molecular species under con-
sideration. Given that h̄�k stands for the linear momentum, this
essentially means that the classical phase space, spanned by the
position and the linear momentum of point particles, has been
coarse grained over the dimension of h̄3 (h̄ = h/2π and h is
the Planck constant), which effectively takes care of the Gibbs
paradox of classical statistical mechanics. Finally, we here
use the following convention for the Fourier transformation:
(2π )2f (�r,t) = ∫∫

d3gdωf (�g,ω) exp [i(�g · �r − ωt)].
The paper is organized as follows. In Sec. II, we define

the necessary constitutive relations that connect, in the Fourier
(�g,ω) space, the longitudinal and transverse conduction current
densities with the external electric fields and the diffusion
current density with the concentration (equivalently, the
number density) gradient in the system. In Sec. III, we present
a brief summary of classical microscopic electrodynamics in
the Lorentz gauge and present various expressions, connecting
the electromagnetic fields and potentials with the charge and
current densities, used here. In Sec. IV, we use a simple
expression for the collision operator to solve the Boltzmann
transport equation in the Fourier (�g,ω) space and obtain
an analytical expression for the nonequilibrium distribution
function, which we use in Sec. V to derive expressions for the
fundamental set of observables, such as the nonequilibrium
charge density and transverse-longitudinal current density. In
Sec. V, we also obtain analytical expressions for the average
and the frequency- and wave-vector-dependent longitudinal
and transverse conductivities and the coefficient of diffusion.
In Sec. VI, we present a relation between the longitudinal
current density and the charge density, which reveals the

role of molecular collisions in providing a mechanism for
dissipation, which, in turn, suggests a new effective equation
of motion for diffusive transport that manifestly incorpo-
rates the influence of microscopic scattering events among
constituent molecular species. In Sec. VII, we advance a
physical meaning to the infinite self-energy and obtain a
renormalized expression for the singularity-free longitudinal
electric field, useful for computing observables. In Sec. VIII A,
we use the Poynting theorem [86] to obtain an analytical
expression for the chemical potential. In Secs. VIII B and C,
we compute the activity coefficient and equivalent and molar
conductivity for z:z-valent binary electrolytes, discuss their
behavior in the low- as well as high-concentration regimes,
and contrast them with the original DHO phenomenology. In
Sec. VIII D, we obtain an expression for the current-voltage
curves, useful for understanding ion-transport processes in
biological channels and pumps. In Sec. VIII D, we also show
a nontrivial connection between the present expression for the
current-voltage curve and the Landauer’s approach to electron
conduction in mesoscopic systems [32–34] and thereby estab-
lish a conceptual bridge between the two apparently disjoint
fields of research. In Sec. VIII E, we discuss the behavior of
the coefficient of diffusion as a function of the concentration
of diffusing molecules, which is useful to rationalize the
phenomenon of anomalous diffusion, frequently encountered
in physical and biological sciences. We conclude the paper
with a brief outline on future outlook in Sec. IX.

II. CONSTITUTIVE RELATIONS

Basic observables of interest here are the current density,
arising either due to the concentration (equivalently, the
density) gradient (diffusion current, �J (diff)

|| ) or due to the

external electromagnetic fields (longitudinal, �J (drift)
|| , and the

transverse conduction current, �J (drift)
⊥ ) or both. We therefore

introduce relevant constitutive relations, in the Fourier (�g,ω)
space, as follows:

�J (drift)
|| (�g,ω) = σ||(�g,ω) �E||(�g,ω), (3)

�J (drift)
⊥ (�g,ω) = σ⊥(�g,ω) �E⊥(�g,ω), (4)

�J (diff)
|| (�g,ω) = −igD||(�g,ω)n(�g,ω)ĝ, (5)

where �E||(�g,ω) = [ĝ · �E(�g,ω)]ĝ and �E⊥(�g,ω) = �E(�g,ω) −
�E||(�g,ω) respectively are the longitudinal and transverse

components of the electric field. In the orthogonal coordi-
nate system defined by the set, {êi ,i = 1,2,3}, of unit vectors,
we have �g = ∑3

i=1 gi êi and therefore �E||(�g,ω) and �E⊥(�g,ω)
have the following representations:

�E||(�g,ω) =
3∑

j=1

[
3∑

i=1

(
gigj

g2

)
Ei(�g,ω)

]
êj , (6)

�E⊥(�g,ω) =
3∑

j=1

[
3∑

i=1

(
δij − gigj

g2

)
Ei(�g,ω)

]
êj . (7)

The quantity D||(�g,ω), in Eq. (5), is the coefficient of diffusion
and n(�g,ω) represents the number density of the molecular

052133-3



MAHAKRISHNAN, CHAKRABORTY, AND VIJAY PHYSICAL REVIEW E 96, 052133 (2017)

species. In Eqs. (3) and (4), σ‖(�g,ω) and σ⊥(�g,ω) respectively
stand for the longitudinal and transverse conductivities. With
Eqs. (3)–(5), the expression for the total current density takes
the following form:

êj · �J (�g,ω) =
3∑

l=1

σjl(�g,ω)El(�g,ω) − igjD||(�g,ω)n(�g,ω),

(8)

where σjl(�g,ω) = δjlσ⊥(�g,ω) + gjgl

g2
[σ||(�g,ω) − σ⊥(�g,ω)]

(9)

⇒ �J (�r,t)

=
3∑

j=1

x̂j

⎡
⎣ 1

2π2

∫ ∞

−∞

∫ ∞

−∞
d3r ′dt ′h(t − t ′)

×
{[

3∑
l=1

σjl

( �r
2

− �r ′,t − t ′
)

El

( �r
2

+ �r ′,t ′
)]

−
⎡
⎣D||

( �r
2

− �r ′,t − t ′
)[

∂

∂x ′′
j

n( �r ′′,t ′)

]
�r ′′= �r

2 +�r ′

⎤
⎦
⎫⎬
⎭
⎤
⎦,

(10)

where the Heaviside step function, h(t − t ′), accounts for the
causality in the time domain.

III. ELECTROMAGNETIC POTENTIALS

Necessary relations among the charge and current densities
and the electromagnetic potentials and the fields used in the
present study are derived from Eq. (1), which, in the Cartesian
(�g,ω) space, yields the following set of equations for the
scalar, φ(�g,ω), and the vector potential, �A(�g,ω), and thence
the electric, �E(�g,ω), and magnetic field, �B(�g,ω) [86]:

�A(�g,ω) = μ

g2 − μεω2
�J (�g,ω), (11)

φ(�g,ω) = 1

ε
(
g2 − μεω2

)ρ(�g,ω), (12)

�A||(�g,ω) = ωμε

g
φ(�g,ω)ĝ, (13)

�B(�g,ω) = i �g × �A⊥(�g,ω), (14)

�E(�g,ω) = i[ω �A(�g,ω) − �gφ(�g,ω)], (15)

where ρ(�g,ω) is the charge density. Notably, the potentials
in Eqs. (11) and (12) and the gauge in Eq. (13) imply the
conservation of free charges, as shown below:

�J||(�g,ω) = ω

g
ρ(�g,ω)ĝ. (16)

Finally, from Eqs. (11)–(16), we have the following expres-
sions for the electric and magnetic fields in the Fourier (�g,ω)

space:

�E||(�g,ω) = i[ω �A||(�g,ω) − �gφ(�g,ω)]

= iĝ

g
(μεω2 − g2)φ(�g,ω)

= − i

gε
ĝρ(�g,ω) = − i

ωε
�J||(�g,ω), (17)

�E⊥(�g,ω) = iω �A⊥(�g,ω) = iωμ

g2 − μεω2
�J f

⊥ (�g,ω), (18)

�B⊥(�g,ω) = igμ

g2 − μεω2
ĝ × �J⊥(�g,ω). (19)

That is, it is the finite values of the wave vector, �g, that
differentiate the notion of the transverse vector field, �E⊥(�g =
0,ω), from the longitudinal one, �E||(�g = 0,ω), as Eqs. (17) and
(18) reveal.

IV. BOLTZMANN EQUATION

We here use the BTE as given in Eq. (2) and outline a con-
trolled sequence of approximations to obtain an expression for
the nonequilibrium distribution function, useful for computing
a variety of molecular observables. For charged molecular
species of type a in the presence of external electromagnetic
fields, Eq. (2) reads as follows [75]:[

∂

∂t
+ h̄

ma

�k · �∇r + 1

h̄
�F (a)(�r,t) · �∇k

]
fa(�r,�k,t)

=
∑

b

Ĝabfa(�r,�k,t), (20)

where the distribution function fa(�r,�k,t), multiplied with
d3rd3k, defines the mean number of molecular species a within
the volume element d3r located at �r , whose wave vectors are
confined within d3k at �k, at time t . na(�r,t) = ∫

d3kfa(�r,�k,t) is
the local number density and Na = ∫

d3rna(�r,t) stands for the
total number of species a present in the system. In Eq. (20), ma

is the molecular mass of species a, �∇r = x̂(∂/∂x) + ŷ(∂/∂y) +
ẑ(∂/∂z), and �∇k = x̂(∂/∂kx) + ŷ(∂/∂ky) + ẑ(∂/∂kz). �F (a)(�r,t)
stands for the external force acting on molecular species a. For
ionic transport studies, in the absence of an external magnetic
field, �F (a)(�r,t) is frequently equal to Zae �E(ext)(�r,t), where
e is the magnitude of the electric charge, Za is the charge
number (positive or negative integers) of the species a, and
�E(ext)(�r,t) is the external electric field. In Eq. (20), the symbol∑

b Ĝab stands for the nonlinear collision operator which,
axiomatically, contains the complete information on molecular
interactions taking place within the system. To proceed further,
we here decompose the distribution function, fa(�r,�k,t), as
follows:

fa(�r,�k,t) = f (eq)
a (�r,�k,t) + f (neq)

a (�r,�k,t)

= n(eq)
a (�r,t)φ(eq)

a (k) + f (neq)
a (�r,�k,t) (21)

with φ(eq)
a (k) =

(
l
(aa)
th

(2π )1/2

)3

exp

[
−1

2

(
l
(aa)
th k

)2
]
, (22)
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where f
(neq)
a (�r,�k,t) represents the space-time fluctuation in the

distribution function from its values in the local thermal equi-
librium, l

(ab)
th = h̄/

√
2μabkBT and μab = mamb/(ma + mb).

Notably, for equilibrium situations, we have assumed the local
validity of the Maxwell-Boltzmann distribution of velocities
and ignored the issue of quantum statistics, if any, for the
moment.

A. Collision operator

A simple expression for Ĝab, using the Stosszahlansatz of
Boltzmann and the framework of elastic quantum collisions
among constituent species, is given as follows [85]:

Ĝabfa(�r,�k,t) ≈ −ξabn
(eq)
b (�r,t)f (neq)

a (�r,�k,t), (23)

ξab = (
λ

(ab)
th

)3
ωth[1 − 1F1(2; 1/2; −ξ0)], (24)

ξ0 = 4π
(
sab

/
λ

(ab)
th

)2 = (
p

(ab)
th sab

/
h̄
)2 = (

k
(ab)
th sab

)2
, (25)

where the symbol 1F1 in Eq. (24) stands for the con-
fluent hypergeometric function (Kummer function), ωth =
(2/π )kBT/h̄, λ(ab)

th = [2πh̄2/(μabkBT )]
1/2

, and sab is the range
of the hard sphere potential, which may, in turn, be iden-
tified, particularly at low temperatures, with the scattering
length, l

(ab)
scat , associated with the (a,b) pair of molecules. This

identification is important for l
(ab)
scat , and sab can, in principle,

differ by orders of magnitude [84], which may fruitfully be
used to rationalize a variety of experimental observations, in
particular, at low temperatures. n(eq)

b (�r,t) is the time-dependent
local equilibrium density of species b. k(ab)

th is the magnitude of
thermal wave vector and p

(ab)
th (= √

2μabkBT = h̄k
(ab)
th , where

μab is the reduced mass) is the thermal momentum belonging
to the pair of molecular species a and b. As an example, the
value for λ

(ab)
th for K+ in water at 300 K is approximately equal

to 0.03 nm, and therefore k
(ab)
th is about 1.235 × 1011 m−1.

Notably, the argument, ξ0, of the Kummer function in Eq. (24)
possesses an interesting geometrical interpretation of quantum
origin, for it refers to the area of the phase space which is
spanned by the scattering length (a mechanical quantity) and
the thermal momentum (a thermodynamic quantity) belonging
to a pair of molecules, coarse grained over the Planck scale,
as Eq. (25) reveals. Can this phase space area, represented
by ξ0, be exactly zero? This is possible when sab = 0 and this
would happen when there are no interactions among molecular
species in the system. In such a situation, the magnitude of the
Kummer function is unity and hence ξab = 0. For later use, we
define a quantity, g

(a)
scat, of inverse length dimension, as given

below:

g
(a)
scat

def=
(

ma

kBT

)1/2 ∑
β

ξaβ
〈
n

(eq)
β

〉 ⇒
∑

β

ξaβ
〈
n

(eq)
β

〉

= v
(a)
th g

(a)
scat, (26)

where v
(a)
th = (kBT/ma)1/2 and the summation index β stands

for different species present in the system. In fact, g
(a)
scat in

Eq. (26) may be viewed as a fundamental attribute associated
with the molecular species a, for which the explicit expression

as given here in terms of ξaβ in Eq. (24), is an approximation,
albeit a faithful one. In the absence of molecular interactions,
however, g(a)

scat = 0. In a complex molecular environment, as we
will discuss later, g

(a)
scat may depend on a number of physical

variables. In a given circumstance, for analytical applications,
the Kummer function, 1F1, may be approximated as a finite
series and accordingly Eq. (24) may be simplified, for limiting
cases of the argument, ξ0, as follows:

ξab ≈ 32

(
2πkBT

μab

)1/2

(sab)2 (27)

⇒ g
(a)
scat ≈ 32

√
2π

∑
β

(
1 + ma

mβ

)1/2

(saβ)2
〈
n

(eq)
β

〉
. (28)

To estimate the order of magnitude for g
(a)
scat, let us consider K+

in water at 0.01 M concentration. Given the number density of
water, 〈n(eq)

H2O
〉 = 3.3312 × 1028 m−3 at 300 K, Eq. (28) yields

g
(K+)
scat ≈ 4.7576 × 1030 × (sK+−H2O)2 m−1, where sK+−H2O is

given in the unit of meter. A typical value for sK+−H2O , as
estimated from ab initio quantum chemical studies [87,88],
is 0.165 nm (an approximate location of the repulsive wall),
which implies g

(K+)
scat ≈ 0.1295 × 1012 m−1.

Important remarks on the nature of sab, and therefore g
(a)
scat,

and the possible scope for further generalizations are in order
here. As it stands, the quantity sab refers to a pair of molecular
species a and b, which are supposed to interact only with
each other; that is, there are no external electromagnetic fields
impressed on the molecular pair and also the pair does not
interact with the internal fields generated by the surrounding
electrically polarizable medium. In a complex molecular
environment such as the embedding solvent, the crowded
atmosphere of biological cells and so forth, however, sab, may,
inter alia, depend on the local number density (equivalently,
the concentration) of the molecular species. Then, obviously,
if sab is a function of the number density, so must be the case
with ξab and consequently g

(a)
scat. In general, ξab and g

(a)
scat may

be understood as a local quantity in the position space. How
does sab depend on the local number density? This question
is too complex to answer in full generality here. However, we
note that the distance of closest approach, which the quantity
sab essentially signifies, would obviously depend on the extent
to which the embedding molecular atmosphere allows the pair
(a, b) to approach each other. In the low-concentration regime
(infinite dilution, say), for example, individual ions would be
well surrounded by the solvent molecules and therefore the
probability for two ions to be located in the close vicinity of
each other would be smaller, in comparison to the circumstance
when the electrolyte concentration is large and consequently
there is a less effective solvation and caging of ions. In
fact, the lowest limit on the distance of the closest approach
(conceptually, the gas-phase limit wherein the pair (a, b) does
not interact with the environment for all practical purposes)
will be reached only when the electrolyte concentration is
significantly large. Accordingly, we expect the magnitude of
sab to decrease as the electrolyte concentration, 〈n〉, increases;
that is, dsab/d〈n〉 � 0. For later use, we define an average
quantity (positive-valued and dimensionless), θav, which is the
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same for all pairs of molecules, as follows:

dsab

d〈n〉 + θav
sab

〈n〉 ≈ 0. (29)

At low electrolyte concentrations, sab is expected to be a slowly
varying function of 〈n〉, and accordingly the magnitude of θav

would be much less than unity. As an example, assuming
a simple power-law dependence, an explicit model for the
scattering length, s

(min)
ab � sab � s

(max)
ab , in the presence of

complex molecular environments, may be given as follows:

sab = s
(max)
ab − (

s
(max)
ab − s

(min)
ab

)[ 〈n〉 − 〈nmin〉
〈nmax〉 − 〈nmin〉

]δ

(30)

⇒ θab = −〈n〉
sab

dsab

d〈n〉 = δ
〈nmax〉 − 〈nmin〉
1 − 〈nmin〉/〈n〉

(
s

(max)
ab

sab
− 1

)
.

(31)

Then, θav in Eq. (29) may be taken as the average of
θab, as in Eq. (31), corresponding to all pairs of molecular
species present in the system. In Eqs. (30) and (31), 〈nmin〉
stands for the electrolyte concentration at the infinite dilution,
a physically realistic meaning of which will be discussed
later, and 〈nmax〉 is the maximum electrolyte concentration
that is physically conceivable for the electrolyte solution.
Accordingly, s

(min)
ab and s

(max)
ab respectively stand for the

minimum and maximum scattering length for the pair (a,
b) in the given molecular environment. The exponent, δ, in
Eq. (30), is a real and positive number (δ � 0), which is
to be determined by independent means (by appealing to
experimental measurements, for example). For a slow variation
of the scattering length with 〈n〉, the exponent may be taken
in the range, 0 < δ < 1. Finally, anticipating the possibility
of dynamical association and dissociation of electrolytes
with the change of 〈n〉, sab may also be conceived as an
oscillatory function (with decaying amplitude) of the local
number density; that is, the equality in Eq. (29) would then
potentially possess multiple roots and, for a given θav, there
may be a number of concentration values of the electrolyte
that would satisfy Eq. (29). Given Eq. (29), for later use,
we obtain the slope of the g

(a)
scat versus 〈n(eq)

a 〉 curve for the
z:z-valent binary electrolyte (KCl, say) within the confinement
of a solvent (H2O, for example) as shown below. To be explicit,
g

(a)
scat, from the simple expression in Eq. (28), reads as follows

(with 〈n(eq)
a 〉 = 〈n〉 = 〈n(eq)

b 〉):

g
(a)
scat = 64π1/2

[
〈n〉

{
(saa)2 + 1√

2

(
1 + ma

mb

)1/2

(sab)2

}

+ 1√
2

〈
n(eq)

s

〉(
1 + ma

ms

)1/2

(sas)
2

]
(32)

⇒ d

d〈n〉g
(a)
scat ≈ (1 − 2θav)

g
(a)
scat

〈n〉 , (33)

where 〈n(eq)
s 〉 is the equilibrium number density of the solvent,

ms is the mass of the solvent molecule, and sas stands for the
scattering length involving the charged molecular species a
and the solvent molecule s. To reach Eq. (33), we have, for
simplicity, assumed that the scattering length sas is relatively
independent of the solute concentration, 〈n〉.

Next, sab, at a given electrolyte concentration, may also
depend on the (time-dependent) electromagnetic fields, which
are either externally impressed or internally generated by the
electromagnetically polarizable molecular medium. An impor-
tant biophysical example, in the present context, is the voltage
difference impressed along the ion channels in biological cells,
that leads to a characteristic, and experimentally measurable,
current-voltage response curve for the ion transport under
study. Conceptually, then, sab, in general, should fluctuate
in time. Though the exact mathematical expression for the
dependence of sab on the voltage is not completely known
here, we expect all physical scenarios to be probable and
experimentally realizable; that is, the slope of the sab versus
voltage curve may be either negative, zero, or positive. In such
a situation, the mathematical analyses involving Eqs. (29)–(31)
still hold if we simply substitute the variable, 〈n〉, by the
voltage, with the understanding that θav, in Eq. (29), and the
exponent, δ, in Eq. (30), would now admit all possible values
(negative, zero, and positive). As we will see presently, it
is, inter alia, the dependence sab on the local concentration
and/or the electromagnetic fields, which reveals a rich variety
of physical scenarios in specific examples of chemical and
biophysical interests.

We now make a brief remark on the expression of the
collision operator as given in Eqs. (23)–(25). This is a quantum
mechanical result, based on plane waves as asymptotic
scattering states, the use of which rests on the premise of
the binary collision approximation of the Boltzmann transport
equation. In a realistic physical situation, however, one may
use distorted wave quantum scattering theory to obtain a better
expression for the collision operator, though it is practically
more complex to implement. The present treatment may be
thought of as an approximation (plane wave) to the distorted
wave description, the use of which is justified for the collisions
that frequently dominate the physics is the short-range part of
the interaction potential, wherein the molecular environments
(such as the solvent) are essentially an average background
effect. In the present work, we have attempted to ameliorate
the situation by positing the scattering cross sections to be
dependent on the concentration of the charged molecular
species and the electromagnetic fields.

B. Nonequilibrium distribution function

To obtain an analytical expression for the distribution
function, we substitute Eqs. (21) and (23) in Eq. (20), retain
only those terms which are linear in the density of molecular
species a, and express the Boltzmann equation in the Fourier
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(�g,ω) space as follows:(
−iω + ih̄

ma

�k · �g
)

fa(�g,�k,ω) + 1

(2π )2

∫∫
d3g′d3ω′

{∑
b

ξab

2

[
n

(eq)
b ( �g′,ω′)f (neq)

a (�g − �g′,�k,ω − ω′)

+ n
(eq)
b (�g − �g′,ω − ω′)f (neq)

a ( �g′,�k,ω′)
]} −

{(
l
(aa)
th

)2

2h̄

[ �F (a)(�g,ω′) · �kn(eq)
a (�g − �g′,ω − ω′)

+ �F (a)(�g − �g′,ω − ω′) · �kn(eq)
a ( �g′,ω′)

]
φ(eq)

a (k)

}
= 0. (34)

Equation (34) is manifestly nonlinear, for the nonequilibrium fluctuation, f
(neq)
a (�g,�k,ω), which is as yet unknown, appears inside

the integral. To obtain an analytically closed form expression for f
(neq)
a (�g,�k,ω), we evaluate the integrals in Eq. (34) with the

following simplifying expression for the equilibrium density of molecular species b:

n
(eq)
b (�g,ω) ≈ (2π )2

〈
n

(eq)
b

〉
δ(�g)δ(ω), (35)

with,
〈
n

(eq)
b

〉 = lim
V →∞

lim
τ→∞

1

V τ

∫
V

∫
τ

d3rdtn
(eq)
b (�r,t), (36)

where (2π/τ )δ(ω = 0) ≈ 1 ≈ (8π3/V )δ(�g = 0) with the understanding that V is the total volume available to the system and τ

is the largest time scale relevant for the problem at hand. With Eq. (35), Eq. (34) yields the following expression for fa(�g,�k,ω):

fa(�g,�k,ω) =
[(

i
∑

b

ξab
〈
n

(eq)
b

〉)
n(eq)

a (�g,ω) + i

(
l
(aa)
th

)2

2h̄

1

(2π )2

∫∫
d3g′d3ω′{�k · �F (a)( �g′,ω′)n(eq)

a (�g − �g′,ω − ω′)

+ �k · �F (a)(�g − �g′,ω − ω′)n(eq)
a ( �g′,ω′)

}] φ
(eq)
a (k)

ω̃a − h̄
ma

�k · �g , (37)

where ω̃a = ω + i
∑

b ξab〈n(eq)
b 〉 = ω + iv

(a)
th g

(a)
scat. Equation (37) is an approximate solution of the Boltzmann equation in Eq. (20),

which we use here to compute a number of observables.

V. OBSERVABLES

In what follows, we obtain analytically closed-form expression for the wave vector and frequency-dependent charge density,
ρa(�g,ω), transverse and longitudinal current density, �J (a)

⊥ (�g,ω)/ �J (a)
|| (�g,ω), and the coefficient of diffusion, D(a)

|| (�g,ω), for molecular
species a. In the sequel, we also obtain the space-time-averaged (that is, �g = 0 and ω = 0) expressions for the same. As we will
see presently, the longitudinal current density and the coefficient of diffusion, at zero frequency (ω = 0), are intimately related
to each other.

A. Charge density

From Eq. (21), the number density, na(�g,ω), of molecular species a in the Fourier (�g,ω) space is given as follows:

na(�g,ω) = n(eq)
a (�g,ω) + n(neq)

a (�g,ω) = n(eq)
a (�g,ω) +

∫
d3kf (neq)

a (�g,�k,ω). (38)

With Eq. (37) for f
(neq)
a (�g,�k,ω), Eq. (38) yields the following expression for the frequency and spatially dispersive number

density:

n(neq)
a (�g,ω) =

[(
1 − ω

ω̃a

)
ζ

(a)
1 (�g,ω) − 1

]
n(eq)

a (�g,ω) + iλa(�g,ω)

2h̄ω̃a

[
ζ

(a)
1 (�g,ω) − 1

] 1

(2π )2

×
∫∫

d3g′d3ω′[F (a)
|| ( �g′,ω′)n(eq)

a (�g − �g′,ω − ω′) + F
(a)
|| (�g − �g′,ω − ω′)n(eq)

a ( �g′,ω′)
]
, (39)

where F
(a)
|| ( �g′,ω′) is the longitudinal (with respect to �g) component of the external force acting on species a and ζ

(a)
1 (�g,ω) is as

given below:

I
(a)
1 (�g,ω) =

∫ ∞

0
dkkφ(eq)

a (k) ln

{
ω̃a + (h̄kg/ma)

ω̃a − (h̄kg/ma)

}
, (40)

ζ
(a)
1 (�g,ω) = 2π

I
(a)
1 (�g,ω)

l
(a)
scat(�g,ω)

=
∞∑

s=0

�(2s)

2s−1�(s)

[
l
(a)
rel (�g,ω)

]2s ≈ 2 + kBT

H
(a)
int (�g,ω)

, (41)
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l
(a)
rel (�g,ω) = l

(a)
scat(�g,ω)

l
(aa)
th

=
(

kBT

H
(a)
int (�g,ω)

)1/2

, (42)

l
(a)
scat(�g,ω) = gh̄

maω̃a
and H

(a)
int (�g,ω) = maω̃

2
a

g2
, (43)

and λa(�g,ω) = l
(aa)
th

l
(a)
rel (�g,ω)

= h̄

kBT

ω̃a

g
. (44)

Next, if we evaluate the integral in Eq. (39) with the simplified expression for the equilibrium number density, n
(eq)
a (�g,ω), as

given in Eqs. (35) and (36), then n
(neq)
a (�g,ω) in Eq. (39) takes the following form:

n(neq)
a (�g,ω) =

[(
1 − ω

ω̃a

)
ζ

(a)
1 (�g,ω) − 1

]
n(eq)

a (�g,ω) + iλa(�g,ω)

h̄ω̃a

(
ζ

(a)
1 (�g,ω) − 1

)
F

(a)
|| (�g,ω)

〈
n(eq)

a

〉
(45)

⇒ ρ(neq)
a (�g,ω) = Zaen

(neq)
a (�g,ω) =

[(
1 − ω

ω̃a

)
ζ

(a)
1 (�g,ω) − 1

]
ρ(eq)

a (�g,ω) + iZae

h̄ω̃a
λa(�g,ω)

(
ζ

(a)
1 (�g,ω) − 1

)
E

(ext)
|| (�g,ω)

〈
ρ(eq)

a

〉
(46)

=
[(

1 − ω

ω̃a

)
ζ

(a)
1 (�g,ω) − 1

]
ρ(eq)

a (�g,ω) + ε0[κ (a)
|| (�g,ω)]2φext(�g,ω) (47)

where [κ (a)
|| (�g,ω)]2 = λa(�g,ω)

g
(g2 − μ0ε0ω

2)
[
ζ

(a)
1 (�g,ω) − 1

]Zae
〈
ρ

(eq)
a

〉
ε0h̄ω̃a

(48)

≈ (Zae)2

〈
n

(eq)
a

〉
ε0

[
1

H
(a)
int (�g,ω)

+ 1

kBT

][
1 − μ0ε0

(
ω

g

)2
]

(49)

⇒ [κ (a)
|| (�g,ω = 0)]2 ≈ (Zae)2

〈
n

(eq)
a

〉
ε0kBT

⎡
⎣1 −

(
g

g
(a)
scat

)2
⎤
⎦ (50)

=
⎡
⎣1 −

(
g

g
(a)
scat

)2
⎤
⎦ × (Za × 2.0531 nm−1)2 (0.01 M solution at 300 K). (51)

To pass from Eq. (46) to Eq. (47), we have used the
expression for the longitudinal electric field, E

(ext)
|| (�g,ω), as

given in Eq. (17). The symbols ε0 and μ0 in Eqs. (47)
and (48) respectively stands for the permittivity and the
permeability of the surrounding medium (vacuum, here). The
quantity, 1/κ

(a)
|| (�g,ω), from Eq. (48), defines a characteristic

longitudinal length scale of the system, which transcends the
notion of Debye length, frequently used in electrochemical
sciences. Using Eqs. (38) and (46)–(48), now, the total
charge density, ρtot(�g,ω), may be obtained by summing
ρs(�g,ω)[=ρ

(eq)
s (�g,ω) + ρ

(neq)
s (�g,ω)] over all molecular species

s present in the system, as shown below:

ρtot(�g,ω) = ρ
(Diff)
tot (�g,ω) + ρ

(Drift)
tot (�g,ω), (52)

ρ
(Diff)
tot (�g,ω) =

∑
s

(
1 − ω

ω̃s

)
ζ

(s)
1 (�g,ω)ρ(eq)

s (�g,ω), (53)

ρ
(Drift)
tot (�g,ω) = ε0[κ||(�g,ω)]2φext(�g,ω), (54)

[κ||(�g,ω)]2 =
∑

s

[κ (s)
|| (�g,ω)]2. (55)

In the long-wavelength limit, we have (g/g
(a)
scat)

2 � 1 [for
example, at 300 K, g(K+)

scat ≈ 0.1295 × 1012 m−1 from Eq. (28)]

and therefore the value of 1/κ
(a)
|| in Eq. (51) is approximately

equal to 0.49 nm for potassium ions in aqueous solvent. In
fact, Eq. (49) yields, for g = 1 nm−1 and 0.01 M solution,
κ

(K+)
|| (�g,ω = kBT/h̄) ≈ 2.05 × (1 − i0.24 × 10−4) nm−1.

To unfold the essential characteristics of the [κ (a)
|| (�g,ω)]

2

versus 〈n(eq)
a 〉 curve, let us, for simplicity, consider Eq. (48)

with ω = 0 for the case of z:z-valent electrolyte solution,
assuming g < g

(a)
scat. To this end, we use Eqs. (33) and (48)

to compute the slope as follows:

d

d
〈
n

(eq)
a

〉 [κ (a)
|| (�g,ω = 0)]2 ≈ (Zae)2

εkBT

(
2g

g
(a)
scat

)2

(θc − θav),

(56)

where 4θc = 1 + (g(a)
scat/g)

2
. From Eq. (56), we may now

draw a number of conclusions. As we have discussed earlier
[see the arguments following Eq. (29)], θav, at very low
concentrations, is expected to be an infinitesimally small
(positive) number. Accordingly, then, from Eq. (56), the slope

of the [κ (a)
|| (�g,ω = 0)]

2
versus 〈n(eq)

a 〉 curve will be positive, as
we expect for electrolyte solutions in the low-concentration
region, which is also consistent with the predictions of
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θav > θcθav < θc

Y

X

Y0

Xc

FIG. 1. A schematic plot for various equations of state. Y/X =
[1/κ

(a)
|| (�g,ω)]/〈n(eq)

a 〉 (only curve d, Y0 = a large positive number),
ln γ /〈n〉 (all curves, Y0 = 0), �m/〈n〉 (only curve d, Y0 = molar
conductivity at infinite dilution), and D

(a)
|| /〈n(eq)

a 〉 (only curve d, Y0 =
a finite positive number) for the situation when the extremum
condition, θav = θc (for each Y/X pair) is satisfied for a number of
concentration values (Xc is the corresponding critical concentration).
The normal region, which falls within the predictions of the Debye-
Hückel-Onsager phenomenology, lies between the zero concentration
and the first extremum, whereas the region beyond the first extremum
is the high-concentration regime, displaying a variety of anomalies.

the DHO paradigm. If, on the other hand, θav > θc, which
will be the case at high concentrations, the slope will be
negative, which implies that the characteristic length scale,
1/κ

(a)
|| (�g,ω = 0), which is analogous to the Debye length,

will increase as the electrolyte concentration increases. This
is the anomalous regime, which is not covered by the DHO
phenomenology and its variants. Next, the situation θav = θc

may, in general, yield a number of nontrivial roots (extrema);

that is, the equality would, in general, be satisfied for a number
of physically realizable concentration values of the electrolyte.
In general, then, we expect an oscillatory behavior for the
1/κ

(a)
|| (�g,ω) versus 〈n(eq)

a 〉 curve, as schematically shown Fig. 1
(curve d).

As indicated in Fig. 1, the region between the
lowest concentration and the first extremum, which
is a minimum here, is what falls under the DHO
phenomenology. Beyond the first extremum lies the
anomalous regime, the existence of which is interestingly
seen in a recent experimental work on NaCl in water
and an ionic liquid (1-butyl-1-methylpyrrolidinium
bis[(trifluoromethane)-sulfonyl]imide, [C4C1Pyrr][NTf2])
solution in propylene carbonate at high concentrations [82].
In this experiment, the first extremum for the NaCl and ionic
liquid solutions are found at about 1 and 0.64 M respectively.
Even more interesting in the experimental findings on ionic
liquid solution is the appearance of a second extremum (at
about 2.75 M) [82], which essentially indicates an oscillatory
behavior for the 1/κ

(a)
|| (�g,ω) versus 〈n(eq)

a 〉 curve, consistent
with the present analysis. This oscillatory behavior may be
attributed to the process of caging and decaging ions by the
solvent molecules as the electrolyte concentration increases.
Finally, for �g = 0, the nonequilibrium density is obtained
as follows: ω̃aρ

(neq)
a (�g = 0,ω) + ωρ

(eq)
a (�g = 0,ω) = 0, which

implies ρ
(neq)
a (�g = 0,ω = 0) = 0 ⇒ 〈ρ(neq)

a 〉 = 0. The total
density, ρtot(�g = 0,ω) = ∑

s (1 − ω/ω̃s)ρ
(eq)
s (�g = 0,ω)⇒

ρtot(�g = 0,ω = 0) = ∑
s ρ

(eq)
s (�g=0,ω = 0) = (2π )4δ(�g=0)

δ(ω = 0)
∑

s〈ρ(eq)
s 〉 = 0, if the system is electrically

neutral.

B. Transverse current density

The expression for the transverse current density, in the
Fourier (�g,ω) space, is, by definition, given as the nonequilib-
rium average of the transverse current as follows:

�J (a)
⊥ (�g,ω) = Zae

∫ ∞

−∞
d3k

h̄�k⊥
ma

fa(�g,�k,ω) = Zae
h̄

ma

∫ ∞

−∞
d3k�k⊥f (neq)

a (�g,�k,ω) (57)

To comply with the constitution relation, �J (a)
⊥ (�g,ω) = σ

(a)
⊥ (�g,ω) �E(ext)

⊥ (�g,ω) in Eq. (4), we substitute f
(neq)
a (�g,�k,ω) from Eq. (37) in

Eq. (57), use �F (a)(�g,ω) = Zae �E(ext)(�g,ω), and perform the integral for �k fully analytically. The final expression for the transverse
current density is as follows:

�J (a)
⊥ (�g,ω) = (Zae)2

(
l
(aa)
th

)2

2h̄

i

2g

[
maω̃a

gh̄
+ 2π

{
I

(a)
2 (�g,ω) −

(
maω̃a

gh̄

)2

I
(a)
1 (�g,ω)

}]

× 1

(2π )2

∫∫
d3g′dω′{n(eq)

a (�g − �g′,ω − ω′) �E(ext)
⊥ ( �g′,ω′) + n(eq)

a ( �g′,ω′) �E(ext)
⊥ (�g − �g′,ω − ω′)

}
, (58)

where �E(ext)
⊥ ( �g′,ω) is the transverse (with respect to �g) external electric field. The expression for I

(a)
1 (�g,ω) is as shown in Eq. (40),

whereas I
(a)
2 (�g,ω) is as given below:

I
(a)
2 (�g,ω) =

∫ ∞

0
dkk3φ(eq)

a (k) ln

{
ω̃a + (h̄kg/ma)

ω̃a − (h̄kg/ma)

}
= 1

2π

ζ
(a)
2 (�g,ω)

l
(a)
scat(�g,ω)

(59)
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with ζ
(a)
2 (�g,ω) =

∞∑
s=0

(2s + 3)�(2s)

2s−1�(s)

[
l
(a)
rel (�g,ω)

]2s+2 ≈ 6kBT

H
(a)
int (�g,ω)

, (60)

where H
(a)
int (�g,ω) is as given in Eq. (43). With Eqs. (59) and (60), Eq. (58) for the transverse current density reduces to the

following form:

�J (a)
⊥ (�g,ω) = iλa(�g,ω)

4gh̄
(Zae)2

[
1 + ζ

(a)
2 (�g,ω) − ζ

(a)
1 (�g,ω)

] 1

(2π )2

∫∫
d3g′dω′{n(eq)

a (�g − �g′,ω − ω′) �E(ext)
⊥ ( �g′,ω′)

+ n(eq)
a ( �g′,ω′) �E(ext)

⊥ (�g − �g′,ω − ω′)
}

(61)

⇒ σ
(a)
⊥ (�g,ω) = iλa(�g,ω)

4gh̄
(Zae)2

[
1 + ζ

(a)
2 (�g,ω)−ζ

(a)
1 (�g,ω)

] 1

E
(ext)
⊥ (�g,ω)

1

(2π )2

∫∫
d3g′dω′[n(eq)

a (�g − �g′,ω − ω′) �E(ext)
⊥ ( �g′,ω′)

+ n(eq)
a ( �g′,ω′) �E(ext)

⊥ (�g − �g′,ω − ω′)
] · Ê

(ext)
⊥ (�g,ω), (62)

where λa(�g,ω) is as given in Eq. (44) and Ê
(ext)
⊥ (�g,ω) is the

unit vector in the transverse direction. Now, Eqs. (61) and
(62) involve a convolution of the external electric field with
the equilibrium number density for species a, which may be
further simplified if we use the approximation for n

(eq)
a (�g,ω)

as expressed in Eqs. (35) and (36). Accordingly, then, the
expression for the transverse current in Eq. (61) and the
transverse conductivity in Eq. (62) reduce to the following
mathematical form:

�J (a)
⊥ (�g,ω) = σ

(a)
⊥ (�g,ω) �E(ext)

⊥ (�g,ω) (63)

where σ
(a)
⊥ (�g,ω) = iZaeλa(�g,ω)

2gh̄

[
1 + ζ

(a)
2 (�g,ω)

− ζ
(a)
1 (�g,ω)

]〈
ρ(eq)

a

〉
. (64)

Furthermore, if we use the approximations as indicated in
Eqs. (41) and (60), Eq. (64) simplifies as follows:

σ
(a)
⊥ (�g,ω) ≈ i

2
(Zae)2

〈
n

(eq)
a

〉
maω̃a

(
5 − H

(a)
int (�g,ω)

kBT

)
(65)

⇒ σ
(a)
⊥ (�g,ω = 0) ≈ (Zae)2

2(makBT )1/2

〈
n

(eq)
a

〉
g

(a)
scat

⎡
⎣5 +

(
g

(a)
scat

g

)2
⎤
⎦,

(66)

where g
(a)
scat is as given in Eq. (26) or Eq. (28). In the

long-wavelength limit with g = 109 m−1 and 0.01 M so-
lution at 300 K temperature, for example, Eq. (65) yields
σ

(K+)
⊥ (�g,ω = kBT/h̄) ≈ 611 × (1 − i1.2) S m−1, whereas

Eq. (65) gives σ
(K+)
⊥ (�g,ω = 0) ≈ 611 S m−1. Next, we

use Eq. (18) to express �E(ext)
⊥ (�g,ω) in Eq. (63) in terms

of the transverse vector potential, �A(ext)
⊥ (�g,ω), and introduce

the notion of a characteristic transverse length (analogous to
the Debye length), κ

(a)
⊥ (�g,ω), associated with the molecular

species a, as follows:

�J (a)
⊥ (�g,ω) = μ−1[κ (a)

⊥ (�g,ω)]2 �A(ext)
⊥ (�g,ω),

with [κ (a)
⊥ (�g,ω)]2 = iμωσ

(a)
⊥ (�g,ω). (67)

With g = 1 nm−1 and 0.01 M solution at 300 K, Eqs. (65)–(67)
yield the transverse length scale, 1/κ

(K+)
⊥ (�g,ω = kBT/h̄) ≈

4.33 × (1 − i0.36) × 10−6 m, as opposed to the value 0.49 ×
(1 + i0.24 × 10−4) × 10−9 m for the longitudinal length scale
(see Sec. V A). That means, in the long-wavelength limit,
the molecular ions are essentially well shielded along the
longitudinal direction, as opposed to the transverse one.

Next, we note that Eqs. (58)–(67) are valid only for nonzero
wave vector (that is, �g �= 0). For �g = 0, on the other hand,
the expressions for the transverse current density and the
conductivity are obtained as follows:

�J (a)
⊥ (�g = 0,ω) = Zae

∫ ∞

−∞
d3k

h̄�k⊥
ma

f (neq)
a (�g = 0,�k,ω)

(68)

= iZae

2πmaω̃a

1

(2π )2

∫∫
d3g′dω′

× {
ρ(eq)

a (− �g′,ω − ω′) �E(ext)
⊥ ( �g′,ω′)

+ ρ(eq)
a ( �g′,ω′) �E(ext)

⊥ (− �g′,ω − ω′)
}

(69)

≈ iZae
〈
ρ

(eq)
a

〉
πmaω̃a

�E(ext)
⊥ (�g = 0,ω) (70)

⇒ �J (a)
⊥ (�g = 0,ω = 0) ≈ Zae

〈
ρ

(eq)
a

〉
πma

∑
b ξab

〈
n

(eq)
b

〉
× �E(ext)

⊥ (�g = 0,ω = 0) (71)

⇒ 〈 �J (a)
⊥

〉 = σa
〈 �E(ext)

⊥
〉
,

where σa ≈ 1

π

(Zae)2

(makBT )1/2

〈
n

(eq)
a

〉
g

(a)
scat

. (72)

To pass from Eq. (68) to Eq. (69), we have used Eq. (37) with
�g = 0 for f

(neq)
a (�g = 0,�k,ω) and performed the integral over

�k fully analytically. Next, to go from Eq. (69) to Eq. (70),
we have used the simplifying expression for the equilibrium
number density as given in Eqs. (35) and (36). Finally, we
have used the relation given in Eq. (26) to pass from Eq. (71)
to Eq. (72). Equation (72) is the simplest expression for the
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average conductivity that contains the complete information on
scattering events, through g

(a)
scat as given in Eq. (26) or Eq. (28),

involving charged molecular species constituting the system.
For 0.01 M aqueous solution of KCl at 300 K, Eq. (72) yields
σK+ ≈ 0.023 S m−1, the experimental context of which will
be will be given later (see Sec. VIII C).

An important remark regarding the temperature dependence
of the conductivity, σa, in Eq. (72), is in order here. First, for a
given electrolyte solution, we note that the summation over β

in Eq. (26), which defines g
(a)
scat, involves the solvent molecules,

beside the ions constituting the electrolyte. That means g
(a)
scat,

as Eqs. (24) and (26) reveal, has an explicit dependence on
temperature through the argument of the Kummer function,
beside an implicit dependence through the solvent density.
Furthermore, as Eq. (28) reveals, g

(a)
scat, in the lowest order of

approximation, has only implicit dependence on temperature
through the solvent density. Now, the solvent density, in most
circumstances (except, for example, the temperature range
where water displays anomalies), is expected to decrease
with the increase of temperature, which, from Eq. (28),
means that g

(a)
scat would also decrease with the temperature. It

may happen that g
(a)
scat has a power-law dependence; that is,

g
(a)
scat ∝ T δ−1/2 (with δ � 1/2). It may also happen that the

explicit and implicit dependences compensate each other in
such as way that δ = 1/2 and consequently g

(a)
scat becomes

temperature independent. Keeping in view these possible
scenarios, Eq. (72) reveals a rich set of possibilities. If δ is a
negative number, then the conductivity, σa, will increase with
the increase of temperature, as we normally expect. Next, the
situation δ = 0 implies a plateau region for the σa versus T

curve. If, however, δ happens to assume a positive value then
the σa versus T curve would anomalously exhibit a negative
slope, which may be verified in experiments.

C. Longitudinal current density and diffusion

The longitudinal current density is defined as the nonequi-
librium average of the longitudinal current, which, in the
Fourier (�g,ω) space, is given as follows:

�J (a)
‖ (�g,ω) = Zae

∫
d3k

h̄�k‖
ma

fa(�g,�k,ω)

= Zaeh̄

ma

∫
d3k�k||f (neq)

a (�g,�k,ω). (73)

In accordance with the constitutive relation in Eq. (3), we
substitute f

(neq)
a (�g,�k,ω) from (37) in Eq. (73) with �F (a)(�g,ω) =

Zae �E(ext)
|| (�g,ω) and perform the integral over �k fully analyti-

cally to obtain the following expression for the longitudinal
current density:

�J (a)
‖ (�g,ω) = Zae

(
ζ

(a)
1 (�g,ω) − 1

)[
(ω̃a − ω)

ĝ

g
n(eq)

a (�g,ω)

+ iZaeλa(�g,ω)

2gh̄

1

(2π )2

∫∫
d3g′dω′

× {
n(eq)

a (�g − �g′,ω − ω′) �E(ext)
|| ( �g′,ω′)

+ n(eq)
a ( �g′,ω′) �E(ext)

|| (�g − �g′,ω − ω′)
}]

(74)

where, �E(ext)
|| ( �g′,ω′) = [ĝ · �E(ext)( �g′,ω′)]ĝ. (75)

The first term on the right-hand side of Eq. (74) is the diffusion
current density arising because of the density (equivalently,
the concentration) gradient present in the system, whereas the
second term stands for the pure conduction current density due
to the externally applied longitudinal electric field, �E(ext)

|| (�g,ω).
To extract the expressions for the coefficient of diffusion,
D

(a)
|| (�g,ω), and the longitudinal conductivity, σ

(a)
|| (�g,ω), we

use the constitutive relations, Eqs. (3) and (5), in Eq. (74). The
final results are as given below:

D
(a)
|| (�g,ω) = i(ω̃a − ω)

g2

(
ζ

(a)
1 (�g,ω) − 1

)n(eq)
a (�g,ω)

na(�g,ω)
, (76)

σ
(a)
|| (�g,ω) = iλa(�g,ω)

2gh̄
(Zae)2 ζ

(a)
1 (�g,ω) − 1

E
(ext)
|| (�g,ω)

1

(2π )2

×
∫∫

d3g′dω′[n(eq)
a (�g − �g′,ω − ω′) �E(ext)

|| ( �g′,ω′)

+ n(eq)
a ( �g′,ω′) �E(ext)

|| (�g − �g′,ω − ω′)
] · Ê

||
ext(�g,ω).

(77)

Equation (77) may be further simplified if we use Eqs. (35)
and (36) for n

(eq)
a (�g,ω), in which case the final results are as

given below:

σ
(a)
|| (�g,ω) = iλa(�g,ω)

gh̄
(Zae)2

(
ζ

(a)
1 (�g,ω) − 1

)〈
n(eq)

a

〉
,

(78)

where �J (a)
‖ (�g,ω) = σ

(a)
|| (�g,ω) �E(ext)

|| (�g,ω)

− igD
(a)
|| (�g,ω)ρa(�g,ω)ĝ (79)

= {(ε0ω̃a)[κ (a)
|| (�g,ω)]2φext(�g,ω)

− ig2D
(a)
|| (�g,ω)ρa(�g,ω)} ĝ

g
(80)

with [κ (a)
|| (�g,ω)]2 = i

(
μ0ε0ω

2 − g2

ω̃aε0

)
σ

(a)
|| (�g,ω). (81)

Notably, κ
(a)
|| (�g,ω) in Eqs. (80) and (81) stands for the

characteristic longitudinal length (analogous to the Debye
length), which is the same as that given in Eq. (48). Next, if we
use the approximation as indicated in Eq. (41), the coefficient
of diffusion in Eq. (76) and the longitudinal conductivity in
Eq. (78) assume the following forms:

D
(a)
|| (�g,ω) ≈ i(ω̃a − ω)

g2

(
1 + g2kBT

maω̃2
a

)
n

(eq)
a (�g,ω)

na(�g,ω)

(82)

⇒ D
(a)
|| (�g,ω = 0) ≈ v

(a)
th

g
(a)
scat

⎡
⎣1 −

(
g

(a)
scat

g

)2
⎤
⎦n

(eq)
a (�g,ω = 0)

na(�g,ω = 0)

(83)

052133-11



MAHAKRISHNAN, CHAKRABORTY, AND VIJAY PHYSICAL REVIEW E 96, 052133 (2017)

≈ v
(a)
th

g
(a)
scat

⎡
⎣1 −

(
g

(a)
scat

g

)2
⎤
⎦, (84)

σ
(a)
|| (�g,ω) ≈ i(Zae)2

〈
n

(eq)
a

〉
maω̃a

(
1 + H

(a)
int (�g,ω)

kBT

)
, (85)

σ
(a)
|| (�g,ω = 0) ≈ (Zae)2

ma

〈
n

(eq)
a

〉
v

(a)
th g

(a)
scat

⎡
⎣1 −

(
g

(a)
scat

g

)2
⎤
⎦. (86)

To go from Eq. (83) to Eq. (84), we have used the ap-
proximation implied by Eqs. (35) and (36) and the fact that
〈ρ(neq)

a 〉 = 0 and therefore 〈na〉 = 〈n(eq)
a 〉. Now, upon compar-

ing Eqs. (84) and (86), we have the following interesting re-
lation, analogous to the Nernst-Einstein equation, well known
in electrochemical science [2], between the longitudinal
conductivity and the diffusion coefficient: D

(a)
|| (�g,ω = 0) =

1
(zae)2〈na〉

∂
∂[1/(kBT )] [σ

(a)
|| (�g,ω = 0)]. That is, the slope of the

σ
(a)
|| (�g,ω = 0) versus 1/(kBT ) curve may be used to extract

the coefficient of diffusion from the experimentally obtained
longitudinal conductivity as a function of temperature. Next,
for a substantial diffusive transport processes, one must have
a significantly large concentration gradient present in the
system. Accordingly, for large g, we may consider g

(a)
scat < g

and simplify Eq. (84) to obtain the following expression for the
coefficient of diffusion, which is independent of the frequency,
ω, and the wave vector, �g:

D
(a)
|| ≈ v

(a)
th

g
(a)
scat

=
(

kBT

ma

)1/2 1

g
(a)
scat

. (87)

Equation (87) is the simplest expression for the diffusion
coefficient that contains the complete information on col-
lisional dynamics, through g

(a)
scat as given in Eq. (26) or

Eq. (28), involving the constituent molecular species within
the system. Let us now make a numerical test for Eq. (87).
For a system consisting of potassium ions solvated in water,
the value of g

(K+)
scat , in the low-concentration region (say, at

0.01 M aqueous solution) at 300 K temperature, is approx-
imately equal to 129.524 nm−1 (see Sec. IV), which, from
Eq. (87), implies D

(K+)
|| ≈ 1.95 × 10−9 m2/s, a value very

close to the experiment (2 × 10−9 m2/s) [1]. Furthermore, if
we use the Stokes-Einstein relation, the friction coefficient,
γf , is obtained from Eq. (87) as follows: γf = p

(a)
th g

(a)
scat =

(makBT )1/2g
(a)
scat ⇒ η = ( p

(a)
th

6πR
(a)
H

)g(a)
scat, where η is the viscosity

of the medium within which the phenomenon of diffusion
occurs and R

(a)
H is the Stokes (hydrodynamic) radius of the

diffusing molecular species. It is important to emphasize here
that the quantity g

(a)
scat appearing in Eq. (87) need not be a

constant. As we have discussed in Sec. IV, g
(a)
scat, in a complex

molecular environment, may be concentration dependent. We
will say more on this later (see Sec. VIII E).

For �g = 0, on the other hand, we simplify Eq. (37) by
substituting �g = 0 for the nonequilibrium distribution function
and obtain the expressions for the longitudinal current density

and thence the longitudinal conductivity as follows:

�J (a)
|| (�g = 0,ω) = Zae

∫ ∞

−∞
d3k

h̄�k||
ma

f (neq)
a (�g = 0,�k,ω)

(88)

= iZae

2πmaω̃a

1

(2π )2

∫∫
d3g′dω′

× {
ρ(eq)

a (− �g′,ω − ω′) �E(ext)
⊥ ( �g′,ω′)

+ ρ(eq)
a ( �g′,ω′) �E(ext)

⊥ (− �g′,ω − ω′)
}

(89)

≈ iZae
〈
ρ

(eq)
a

〉
πmaω̃a

�E(ext)
|| (�g = 0,ω) (90)

⇒ �J (a)
|| (�g = 0,ω = 0) ≈ Zae

〈
ρ

(eq)
a

〉
πma

∑
b ξab

〈
n

(eq)
b

〉
× �E(ext)

|| (�g = 0,ω = 0) (91)

⇒ 〈 �J (a)
|| 〉 ≈ Zae

〈
ρ

(eq)
a

〉
πma

∑
b ξab

〈
n

(eq)
b

〉 〈 �E(ext)
|| 〉

⇒ 〈 �J (a)
|| 〉 = σa〈 �E(ext)

|| 〉, (92)

where the average conductivity, σa, is the same as that given
in Eq. (72). To go from Eq. (89) to Eq. (90), we have used the
simplifying expression for the charge density, ρ

(eq)
a (�g,ω) =

Zaen
(eq)
a (�g,ω), as given in Eqs. (35)–(36). As expected, from

Eqs. (72) and (92), the average conductivity is the same for the
transverse and the longitudinal cases, and therefore we obtain
the following general result on the average current density:

〈 �Ja〉 = σa〈 �E(ext)〉. (93)

Notably, the situation �g = 0 implies the absence of concen-
tration (density) gradient in the system and accordingly the
diffusion current simply vanishes. For �g �= 0, on the the other
hand, we have, from Eq. (64) and Eq. (78), the following
interesting relation between the transverse and longitudinal
conductivities:

σ
(a)
|| (�g,ω) =

(
1 − x

1 − 5x

)
σ

(a)
⊥ (�g,ω), (94)

where x = kBT

H
(a)
int (�g,ω)

= g2kBT

ma
(
ω + iv

(a)
th g

(a)
scat

)2 (95)

⇒ σ
(a)
|| (�g,ω = 0) =

(
1 + y2

1 + 5y2

)
σ

(a)
⊥ (�g,ω = 0)

(
where y = g/g

(a)
scat

)
. (96)

Equation (96) shows that the longitudinal conductivity, in the
limit g � g

(a)
scat, converges to the transverse conductivity and

they become identical when g → 0, as manifested in Eq. (93).
We parenthetically note that the expressions for the

transverse and longitudinal conductivities obtained above
may also be used to compute the electric permittivity,
ε(�g,ω), and the inverse magnetic permeability, ζ (�g,ω), of
the system consisting of charged molecular species. Required
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relations, following the work of Lindhard [89,90], are
as follows: ε(�g,ω) = ε0 − (i/ω)σ||(�g,ω) and ζ (�g,ω) = ζ0 +
(iω/g2)[σ⊥(�g,ω) − σ||(�g,ω)], where ε0 and ζ0 respectively are
the electric permittivity and the inverse magnetic permeability
in vacuum. The magnetic permeability, μ(�g,ω), is equal to
1/ζ (�g,ω).

VI. DIFFUSION AND DISSIPATIVE TRANSPORT

In what follows, we highlight a relation between the
charge density, ρa(�g,ω), and the longitudinal current density,
�J (a)
‖ (�g,ω), which reveals how the notion of charge conservation

is modified due to the irreversible nature of the Boltzmann-
equation-based ensemble molecular dynamics. Furthermore,
as we will see presently, this relation implies a nontrivial exten-
sion of the standard diffusion equation, by explicitly incorpo-
rating the effect of collisions among various molecular species.
To begin, Eqs. (46) and (79) establish the following identity,
�J (a)
‖ (�g,ω) = [ω̃aρ

(neq)
a (�g,ω) + ωρ

(eq)
a (�g,ω)]ĝ/g, which implies

the following:

ρa(�g,ω) = 1

ω̃a

[
gJ

(a)
‖ (�g,ω) + iv

(a)
th g

(a)
scatρ

(eq)
a (�g,ω)

]
(97)

= 1

ω

[
gJ

(a)
‖ (�g,ω) − iv

(a)
th g

(a)
scatρ

(neq)
a (�g,ω)

]
(98)

⇒
(

∂

∂t
+ v

(a)
th g

(a)
scat

)
ρa(�r,t) + �∇ · �J (a)(�r,t)

= v
(a)
th g

(a)
scatρ

(eq)
a (�r,t). (99)

Notably, g
(a)
scat = 0, when there are no interactions among

molecular species (see Sec. IV), in which case Eq. (99)
represents the conservation of charge density for molecular
species a. Also, the thermal speed, v

(a)
th = √

kBT/ma, at zero
temperature is manifestly zero, in which circumstance the
strict conservation of charge trivially prevails. In a sense,
then, Eq. (99) reveals a necessary conceptual modification
to the notion of charge conservation for the irreversible
transport processes wherein the molecular scattering provides
a mechanism of dissipation, consistent with the viewpoint of
Van Hove [80]. Next, we note that �J (a)(�r,t) in Eq. (99) consists
of contributions both from the conduction and the diffusion
current and they are easily separated, if so required. For
example, if we identify �J (a)(�r,t) with the diffusion current and
use a constitutive relation �J (a)(�r,t) = −D

(a)
|| �∇ρa(�r,t) (Fick’s

law) with D
(a)
|| as the diffusion coefficient [2], then we obtain,

using Eq. (87), a generalized diffusion equation as follows:(
h̄

∂

∂t
− h̄2

2m
(a)
eff

∇2 + u
(a)
eff

)
ρa(�r,t) = u

(a)
effρ

(eq)
a (�r,t), (100)

where m
(a)
eff = (h̄g

(a)
scat/2)

√
ma/(kBT ) may be interpreted as the

temperature- and collision-induced effective mass of the diffus-
ing molecules. It is worth remembering here that the actual in-
ertial mass of the diffusing molecules also plays the necessary
mechanical role in quantum collision dynamics, which gives
the operational meaning to the collision operator as given, for
example, in Eq. (23). Similarly, u(a)

eff = h̄g
(a)
scat

√
kBT/ma may be

conceived as the temperature-dependent effective “potential

energy”, originating from the scattering events in the system.
Notably, Eq. (100) is analogous to the Schrödinger equation
(in Euclidean time) with a source term, and therefore m

(a)
eff

and u
(a)
eff may as well be treated as the free model parameters.

In any event, with Eq. (26) as a model for g
(a)
scat, Eq. (100)

offers a well-defined equation of motion to study diffusive
transport processes, wherein collisional events are expected
to be important, such as those frequently encountered within
the crowded environment of the biological cells and complex
molecular liquids. As a further generalization, we just note
that m

(a)
eff and u

(a)
eff would, in general, be dependent on the

number density of molecular species a, and this is particularly
expected to be the case when there are position-dependent
variations in the complexity of the surrounding molecular
environment. In such a situation, m(a)

eff and u
(a)
eff would depend on

the position variable, implicitly through the density, ρa(�r,t).
This also effectively renders the temperature to be a locally
defined quantity in the position space, thus giving a useful
avenue to study the effects of temperature gradient, if any,
present in the system. Equation (100) may accordingly be
further generalized, leading to a nonlinear theory of diffusive
transport. To obtain a numerical perspective, let us now, as an
example, evaluate m

(a)
eff and u

(a)
eff for 0.01 M aqueous solution of

potassium ion at 300 K, for which g
(a)
scat has been approximately

evaluated to be 0.129524307 × 1012 m−1 (see Sec. IV). The
final results are as follows: m(K+)

eff ≈ 16.28356 amu and u
(K+)
eff ≈

2.0777 kJ/mole = 21.5336 mV. This is revealing. What this
actually means is that the diffusive transport of potassium
ion (mass = 39.0983 amu) in the aqueous environment may
be viewed as a deterministic dynamics of the ensemble of
quasipotassium ions (each with a mass ≈16 amu, at 300 K),
immersed within an effective temperature-dependent one-
body potential barrier (≈2 kJ/mole at 300 K); that is, as if
an effective voltage (≈21.5 mV at 300 K) has been impressed
on the ensemble of quasipotassium ions, each of mass 16
amu. We thus obtain a purely mechanical interpretation of
diffusive transport processes in nature. This is important, for
the diffusive motion is frequently conceived as a stochastic
phenomenon, wherein the diffusing species perform a random
walk movement. In summary, Eq. (99) and its generalizations,
in conjunction with a detailed (and more realistic) constitutive
relations connecting the current density and its various causes,
may be used to study drift and diffusion processes in those
varieties of physical and biological systems, for which the
microscopic scattering events matter.

VII. SELF-ENERGY: FIELD RENORMALIZATION

Using Eqs. (17) and (97), we now compute the longitudinal
electric field, �E(a)

|| (�g,ω), solely due to the charged molecular
species a, as follows:

�E(a)
|| (�g,ω) = − iĝ

gε
ρa(�g,ω)

= 1

εω̃a

[
ĝ

g

(∑
b

ξab
〈
n

(eq)
b

〉)
ρ(eq)

a (�g,ω) − i �J (a)
‖ (�g,ω)

]
,

(101)
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where J
(a)
‖ (�g,ω) is as given in Eq. (74) or (79). As ω → 0,

ω̃a → ∑
b ξab〈n(eq)

b 〉 and therefore the situation when �g → 0
we have, from Eq. (101), the following expression for the
average longitudinal electric field:

〈 �E(a)
|| 〉 = −1

ε

[
〈 �J (a)

‖ 〉∑
b ξab

〈
n

(eq)
b

〉 + i
〈
ρ(eq)

a

〉(
lim
g→0

1

g

)
〈Ê(a)

|| 〉
]
,

(102)

where 〈Ê(a)
|| 〉 is the unit vector and 〈 �J (a)

‖ 〉 is as given in Eq. (92).
To understand the meaning of the limiting process in the second
term on the right-hand side of Eq. (102), we use Eqs. (92)
and (102) to evaluate, using the Poynting theorem [86], the
average energy per molecule of species a, associated with the
longitudinal electric field, 〈 �E(a)

|| 〉, as follows:

〈W (a)
|| 〉 = ε

2〈na〉 |〈
�E(a)

|| 〉|2

= ε

2
〈
n

(eq)
a

〉 |〈 �E(a)
|| 〉|2 = Zae

2ε

〈
ρ(eq)

a

〉

×
⎡
⎣( Zae〈 �E(ext)

|| 〉
πma

(∑
b ξab

〈
n

(eq)
b

〉)2

)2

+
(

lim
g→0

[
1

g

])2
⎤
⎦.

(103)

Evidently, the second term on the right-hand side of Eq. (103)
stands for the average self-energy of an individual molecule of
species a, which is formally infinity, as we expect. Suppose,
now, that the individual molecule of species a is not a point
charge, but it is a sphere of a finite radius. We then compute,
from classical electrodynamics, the self-energy of the sphere
of finite total charge, Zae, with radius, Ra, and equate with the
self-energy term in Eq. (103), to obtain the following meaning
for the limiting process in Eq. (103):

(Zae)2

2ε

〈
n(eq)

a

〉[
lim
g→0

(
1

g

)]2

= lim
Ra→0

3(Zae)2

20πεRa
⇒ lim

g→0

(
1

g

)

= lim
Ra→0

(
3

10π
〈
n

(eq)
a

〉
Ra

)1/2

. (104)

Equation (104) provides a well-defined meaning to the self-
energy (formally, an infinity) in terms of the radius, Ra, of the
individual molecular species. We will say more on the physical
estimate of Ra later (see Sec. VIII B). In a sense, then, Eq. (104)
introduces a characteristic length scale associated with the
problem at hand. With Eq. (104), Eq. (103) may be written as
follows:

〈W (a)
|| 〉 =

〈
n

(eq)
a

〉
2π2ε

(
ZaeL

(EM)
a

)2
(105)

where L(EM)
a =

⎡
⎣(

Zae|〈 �E(ext)
|| 〉|

πma
(∑

b ξab
〈
n

(eq)
b

〉)2

)2

+
(

3

10π
〈
n

(eq)
a

〉
Ra

)⎤⎦
1/2

. (106)

Finally, with Eqs. (92), (102), and (104), the renormalized
form of the average longitudinal electric field arising due to
the ensemble of molecular species a may be written as follows:

〈 �E(a)
|| 〉 = −1

ε

[〈
n

(eq)
a

〉
πma

(
Zae∑

b ξab
〈
n

(eq)
b

〉)2

〈 �E(ext)
|| 〉

+ iZae

(
3
〈
n

(eq)
a

〉
10πRa

)1/2

〈Ê(a)
|| 〉

⎤
⎦. (107)

To be consistent, using Eq. (17), the transverse electric field,
�E(a)

⊥ (�g,ω), due to the charged molecular species a, is given as
follows:

�E(a)
⊥ (�g,ω) = iω̃aμ

g2 − μεω̃2
a

�J (a)
⊥ (�g,ω) (108)

⇒ 〈 �E(a)
⊥
〉 = − 〈 �J (a)

⊥ 〉
ε
∑

b ξab
〈
n

(eq)
b

〉
= −

〈
n

(eq)
a

〉
πεma

(
Zae∑

b ξab
〈
n

(eq)
b

〉
)2

〈 �E(ext)
⊥ 〉, (109)

where �J (a)
⊥ (�g,ω) is as given in Eqs. (61)–(67). To arrive at

Eq. (109), we have used Eq. (72) for 〈 �J (a)
⊥ 〉. Thus, the total

average renormalized electric field, 〈 �E(a)〉 = 〈 �E(a)
|| 〉 + 〈 �E(a)

⊥ 〉,
arising due to molecular species a is given as follows:

〈 �E(a)〉 = −1

ε

⎡
⎣ 〈

n
(eq)
a

〉
πkBT

(
Zae

g
(a)
scat

)2〈 �E(ext)
〉

+ iZae

(
3
〈
n

(eq)
a

〉
10πRa

)1/2

〈Ê(a)
|| 〉

⎤
⎦. (110)

Next, using Eq. (18), the magnetic field, �B(a)
⊥ (�g,ω), due to the

charged molecular species a, is obtained as follows:

�B(a)
⊥ (�g,ω) = igμ

g2 − μεω̃2
a

ĝ × �J (a)
⊥ (�g,ω)

⇒ 〈 �B(a)〉 = 〈 �B(a)
|| 〉 + 〈 �B(a)

⊥ 〉 = 0, (111)

where �J (a)
⊥ (�g,ω) is as given in Eqs. (61)–(67).

VIII. APPLICATIONS

In what follows, we use results from Secs. V–VII and obtain
analytical expressions for the chemical potential, activity
coefficient, conductance, and the current-voltage curve.

A. Chemical potential

For electromagnetic processes, from classical thermody-
namics, the change in the free energy for molecular species
a, at a given temperature, volume, pressure, and number of
particles, is equal to the total electromagnetic work done on the
complete ensemble of molecular species a. Since the change
in the chemical potential, �μa, is, by definition, equal to the
change in the free energy per mole, we have �μa = NA〈wa〉,
where NA is the Avogadro number and 〈wa〉 is the average
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electromagnetic work done per charged molecular entity, of
species a. By definition, then,

〈wa〉 = u
(a)
tot

n
(a)
tot

− u(self)
a , (112)

with n
(a)
tot =

∫∫
d3rdtna(�r,t) = (2π )2[na(�g,ω)] �g → 0

ω → 0

,

(113)

u
(a)
tot =

∫∫
d3rdtua(�r,t) = (2π )2[ua(�g,ω)] �g → 0

ω → 0

. (114)

In Eqs. (113) and (114), na(�r,t) is the number density of
molecular species a at the space-time point (�r,t) and ua(�r,t)
is the space-time energy density belonging to the molecular
species a, which, according to the Poynting theorem [86], is
as given below:

uα(�r,t) = ε

2

∑
β

Re( �E(α)(�r,t) · [ �E(β)(�r,t)]∗

+ cmed �B(α)(�r,t) · [cmed �B(β)(�r,t)]∗) (115)

⇒ [uα(�g,ω)] �g → 0
ω → 0

= ε

2

∑
β

Re
∫∫

d3g1dω1( �E(α)(�g1,ω1) · [ �E(β)(�g1,ω1)]∗

+ cmed �B(α)(�g1,ω1) · [cmed �B(β)(�g1,ω1)]∗), (116)

where ε is the dielectric constant of the medium and cmed =
1/

√
με is the speed of the electromagnetic wave within

the medium. �E(α)(�r,t)/ �B(α)(�r,t) is the renormalized electric-
magnetic field (see Sec. VII) arising due to the ensemble of
charged molecular species α. The summation in Eqs. (115)
and (116) runs over the variety of charged molecular species
present in the system. The quantity u(self)

a in Eq. (112) stands
for the self-energy of the species a (see Sec. VII). Notably,
Eq. (115) implies the following expression for the total work
done, u(t), in assembling the complete system of charged
molecular species at its configuration at the time t :

u(t) = ε

2

∫
d3r(| �Etot(�r,t)|2 + |cmed �Btot(�r,t)|2) (117)

with �Etot(�r,t) =
∑

α

�E(α)(�r,t)and �Btot(�r,t) =
∑

α

�B(α)(�r,t).

(118)

Now, Eqs. (112)–(116) yield the following expression for the
chemical potential for the ensemble of charged molecular
species a:

�μa = NA

∫∫
d3gdωμa(�g,ω) (119)

with μα(�g,ω) = ε

2(2π )2[nα(�g,ω)] �g → 0
ω → 0

×
∑

β

Re( �E(α)(�g,ω) · [ �E(β)(�g,ω)]∗

+ cmed �B(α)(�g,ω) · [cmed �B(β)(�g,ω)]∗)

−u(self)
α , (120)

where μα(�g,ω) is the local chemical potential density in the
frequency–wave vector space. If we approximate the integral
in Eq. (119) by letting μα(�g,ω) be equal to (2π )2〈μα〉δ(�g)δ(ω),
then we have the following expression for the chemical
potential:

�μa ≈ NA

[μa(�g,ω)] �g → 0
ω → 0

[na(�g,ω)] �g → 0
ω → 0

= NA
〈μa〉
〈na〉 = NA

〈μa〉〈
n

(eq)
a

〉 (121)

with 〈μa〉 = ε

2

∑
β

Re
[〈 �E(a)〉 · 〈 �E(β)〉∗ + c2

med〈 �B(a)〉 · 〈 �B(β)〉∗]
−u(self)

a . (122)

Finally, we substitute the renormalized expressions for the
average electric and magnetic fields from Eqs. (110) and (111)
in Eqs. (121) and (122) to obtain the chemical potential for
molecular species a, the final expression of which is as given
below:

�μα = NA

∑
β

(
�α�β

〈
n

(eq)
β

〉 + �αβ

)
, (123)

where �a = (2ε)−1/2

πma

(
Zae∑

j ξaj
〈
n

(eq)
j

〉
)2

|〈 �E(ext)〉| (124)

and �ab = 3ZaZbe
2

20πε

(1 − δab)√
RaRb

(〈
n

(eq)
b

〉
〈
n

(eq)
a

〉
)1/2

. (125)

B. Activity coefficient

Using the chemical potential from Sec. VIII A,
we obtain the activity coefficient, γα , as ln γα =
(kBT )−1 ∑

β (�α�β〈n(eq)
β 〉 + �αβ). The mean ionic activity co-

efficient, γ , for the electrolyte of the type, A(Za)
νa

B(Zb)
νb

C(Zc)
νc

. . . ,
is

∏
β [(γβ)νβ ]1/ν(ν = ∑

β νβ), which implies the following
expression for ln γ :

ln γ = 1

νkBT

∑
α

∑
β

να

(
�α�β

〈
n

(eq)
β

〉 + �αβ

)
. (126)

Let us now consider, as an example, the case of a z:z-valent
electrolyte (KCl, say) within the confinement of a solvent
(H2O, say), in which case we have Za = z = −Zb and
〈n(eq)

a 〉 = 〈n(eq)
b 〉 = 〈n〉. Furthermore, if there is no external

field acting on the electrolyte solution, 〈 �E(ext)〉 may be
equated to the average electric field, 〈 �E(s)〉, arising due to
the polarization of the solvent, 〈 �E(s)〉. The activity coefficient,
γ , from Eq. (126), then takes the following form:

ln γ = L0κ
(ab)
eff = L0

(
κ

(ab)
Dynamic − κ

(ab)
Singular

)
, (127)

where κ
(ab)
Dynamic = (1/π〈n〉3)[ze〈 �E(s)〉(m−1

a (ξaa + ξab)−2 +
m−1

b (ξba + ξbb)−2)]2 = (I/π )[e〈 �E(s)〉(m−1
a (ωaa + ωab)−2 +

m−1
b (ωba + ωbb)−2)]2, κ

(ab)
Singular = 1/R(ab)

av = (3/5)(RaRb)−1/2,

L0=z2e2/(4πεkBT ) =z2e2/(4πε0εrkBT ) = z2

εr
×55.700319 nm
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at 300 K and εr is the relative dielectric constant of the
medium. R(ab)

av is the average length associated with the
physical nature of the Coulomb singularity, involving the
charged molecular species a and b, embedded within a given
molecular environment and ξαβ is as given in Eqs. (23). The
symbol I stands for the ionic strength of the electrolyte and
ωαβ is interpreted as the scattering frequency involving the
ionic species α and β. As Eq. (127) shows, the behavior of ln γ

as a function of the electrolyte concentration, 〈n〉, is universal
and it is fully determined by the effective wave number, κ

(ab)
eff ,

which is here given as the difference of κ
(ab)
Dynamic and κ

(ab)
Singular,

available to the system, wherein L0 sets the fundamental
length scale (temperature dependent) associated with the
system. Notably, given the set of approximations involved in
the present study, the expression for κ

(ab)
Dynamic as obtained here

may be taken as tentative, albeit a fairly accurate, estimate.
Improved expressions for κ

(ab)
Dynamic that reflect the presence

of complex environment in a more realistic manner may be
obtained by considering, on physical ground, the quantity,
ξab, which is related to the scattering length (a quantum
mechanical object), sab, through Eq. (23), as dependent on
the electrolyte concentration, 〈n〉 (cf. Sec. IV). Now, there
are several conclusions we may draw from Eqs. (127), as we
delineate below.

First, κ
(ab)
Singular arises from the length scale, R(ab)

av , of the sin-
gularity, which, at a given finite temperature and concentration,
〈n〉, is expected to be smaller than other length scales of the
problem at hand. That is, in a normal physical situation, κ (ab)

Singular

is expected to be larger than κ
(ab)
Dynamic, which implies ln γ to be a

negative number. As a consequence, γ , from Eq. (127), would
be less than unity as one usually expects. However, γ would
assume a value which is greater than unity only in the situation
when there exists at least one physical length scale within the
system which, at some given temperature and the electrolyte
concentration, happens to be smaller than the length scale of
the singularity; that is, κ

(ab)
Singular < κ

(ab)
Dynamic, and this situation

is not completely unrealistic and it may as well be found in
nature, albeit not so frequently.

Next, interestingly, the limiting situation, κ
(ab)
Dynamic →

κ
(ab)
Singular, inter alia, gives a physical meaning to the concept

of the ideal solution, a notion frequently used in the studies of
electrolytes in physical and biological sciences. Before we
discuss this situation in detail, let us first understand the
nature of the quantity, κ

(ab)
Dynamic. The scattering length, sab,

which, through Eqs. (23), defines ξab, and therefore κ
(ab)
Dynamic,

is here synonymous with the range of the effective hard sphere
potential (approximately, a distance of closest approach)
involving the molecular pair (a, b), and this distance, as we
have discussed earlier in Sec. IV A, is, in general, a function [a
decreasing one, cf. Eq. (29)] of the electrolyte concentration,
〈n〉, arising due to the phenomenon of solvation or caging that
may occur, particularly in complex molecular environments.
As a consequence, the dependence of κ

(ab)
Dynamic on 〈n〉 comes

from two interlinked sources: (a) an explicit power law such
as 1/〈n〉3, as obtained here, and (b) an implicit dependence
through the quantity, ξab. The implicit dependence, as we will
see later, contains rich chemistry and it allows us to go beyond
the DHO phenomenology on electrolyte solutions.

Let us now consider the limiting case κ
(ab)
Dynamic → κ

(ab)
Singular

first in the simplest situation when sab does not depend on the
concentration of the electrolyte solution. At a given finite tem-
perature, the nontrivial situation κ

(ab)
Dynamic − κ

(ab)
Singular = 0 would

occur at a critical concentration, 〈n〉 = 〈nc〉, which, from
Eq. (127), is given as follows: 〈nc〉 = (R(ab)

av /π )1/3[ze〈 �E(s)〉 ×
(m−1

a (ξaa + ξab)−2 + m−1
b (ξba + ξbb)−2)]2/3. At 〈n〉 = 〈nc〉, we

have ln γ = 0 ⇒ γ = 1, which is the standard definition for
the ideal solution in equilibrium thermodynamics. One may
thus fruitfully use the limiting process κ

(ab)
Dynamic → κ

(ab)
Singular as

an operational definition for the ideal electrolyte solution.
Now, the ideal solution in thermodynamics is frequently con-
ceptualized as an entity, which is practically synonymous to the
physically noninteracting many-body systems. And, therefore,
the critical concentration, 〈nc〉, may also be likened to that
concentration which defines the notion of infinite dilution in
equilibrium thermodynamics. We will say more on this later.

We now consider the limiting case κ
(ab)
Dynamic → κ

(ab)
Singular for

the situations when sab does depend on the concentration of
the electrolyte solution. At a given temperature, here, the
circumstance κ

(ab)
Dynamic − κ

(ab)
Singular = 0 would, in general, yield

a number of roots, 〈n〉 = 〈nj 〉, the exact nature of which is
critically dependent on the detailed analytical form of the
dependence of sab, and thereby ξab, on 〈n〉. Each root, 〈nj 〉,
in any event, corresponds to ln γ → 0 ⇒ γ → 1. In such a
situation, the smallest (magnitude) root may be taken as the
critical concentration, 〈nc〉, that defines the ideal electrolyte
solution. In actual practice, however, there may exist only one
nontrivial root, defining the critical concentration, 〈nc〉. Before
we proceed further, let us now examine the behavior of κ

(ab)
Dynamic

as a function of 〈n〉. From Eq. (127), we obtain the following
expression for the slope of the ln γ versus 〈n〉 curve,

∂

∂〈n〉 ln γ ≈ 8L0

〈n〉 (θav − θc)κ (ab)
Dynamic, (128)

where θc = 3/8 and the dimensionless (positive-valued) quan-
tity, θav, is as defined in Eq. (29). Again, given the set of
approximations involved in the present study, the numerical
value for θc may be taken as tentative, though a realistic
estimate for practical purposes. Now, sab is only weakly
dependent on 〈n〉, which would particularly be the case in
the regime of low electrolyte concentrations (〈n〉 → 0). In
such a situation, sab is, as discussed in Sec. IV A, expectedly
large, and therefore the ratio 〈n〉/sab is vanishingly small.
That means, from Eq. (29), we will have a vanishingly small
θav, assuming the derivative, dsab/d〈n〉, does not fluctuate too
strongly in the low-concentration regime; that implies the slope
of the ln γ versus 〈n〉 curve, from Eq. (128), would yield
a negative value. The conclusion therefore is that ln γ , in the
low-concentration regime, would decrease with the increase of
〈n〉. This behavior is fully consistent with the prediction of the
Debye-Hückel (DH) phenomenology on strong electrolytes as
well as numerous experimental observations [2]. Furthermore,
this situation would continue to hold for finite values of θav, as
Eq. (128) reveals, until it reaches the critical point, θav = θc.
We designate the range, 0 � θav < θc, as belonging to the
DH regime, whereas the range θav > θc, which is not covered
by the original DH phenomenology, as the non-DH regime
wherein the slope of the ln γ versus 〈n〉 curve becomes positive
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and consequently ln γ starts increasing with the increase of
the 〈n〉. Notably, the existence of the non-DH regime is an
experimentally verified fact [2]. Next, the extremum point,
θav = θc, at which the slope of the ln γ versus 〈n〉 curve is zero,
may, in general, occur for a number of concentration values,
〈n〉 = 〈nj 〉, the exact nature of which would be determined
by the detailed mathematical behavior of θav as a function of
〈n〉. As an example, θav, as defined in Eq. (29), may as well
happen to be a function of 〈n〉, that oscillates (with decaying
amplitude) around θav = θc, in which circumstance ln γ as a
function of 〈n〉, according to Eq. (127), would, in general,
exhibit an oscillatory behavior, with 〈nj 〉 being the locations
of various extrema. A tentative physical picture for such a
scenario is that the charged molecular species constituting the
electrolyte tend to alternate between the state of solvation or
caging and the state of desolvation or decaging, as we system-
atically increase the electrolyte concentration. This prediction
is open to experimental verifications. If, on the other hand, the
extremum condition, θav = θc, is satisfied for only one nontriv-
ial concentration value, 〈nc〉, then the ln γ versus 〈n〉 curve,
beyond 〈n〉 = 〈nc〉, would possess a positive slope and exhibit
a nonoscillatory behavior; that is, ln γ , beyond 〈n〉 = 〈nc〉,
would simply increase as the 〈n〉 increases, possibly reach-
ing an asymptotic value at high electrolyte concentrations.
Notably, it is the nonoscillatory behavior of the ln γ versus
〈n〉 curve that is frequently encountered in experiments [2].
A schematic description of the behavior of ln γ as a function
of 〈n〉, at a given temperature, for various possible physical
scenarios is presented in Fig. 1 (all curves a, b, c, and d).

We now discuss the meaning of the DH limiting law, which
is known to hold at low electrolyte concentrations, within the
precinct of the present theoretical elaboration, as summarized
in Eq. (127). The DH limiting law, that connects ln γDH and
the ionic strength, I , is stated as follows: ln γDH = −ADHI 1/2,
where ADH is a constant. To proceed, let us consider the
expression for κ

(ab)
Dynamic in terms of the ionic strength I and

the scattering frequency, ωαβ , as given in Eq. (127). In order
to have a realistic description that takes cognizance of the
complex molecular environment, we may consider ωαβ to be
a function of I . In fact, on physical ground, we expect ωαβ to
increase with the increase of I . This behavior of the scattering
frequency is also seen in the complete thermal equilibrium
situation, wherein the total number of collisions per unit
volume and per unit time between a pair of molecular species
is known to be proportional to the product of their equilibrium
number densities [75]. In any event, then, the dependence of
κ

(ab)
Dynamic on I consists of two factors: (a) an explicit power

law (proportional to I , that is) as obtained here and (b) an
implicit dependence through ωαβ , with the slope, dωαβ/dI ,
being positive definite. Now, using Eq. (127), we evaluate the
slope of the ln γ versus

√
I curve as follows:

d ln γ

dI 1/2
= (ψc − ψav)

8L0

I 1/2
κ

(ab)
Dynamic (129)

with

(
dωαβ

dI

)
≈ ωαβ

I
ψav, (130)

where ψc = 1/4. Notably, Eq. (130), like Eq. (29), is an
independent postulate that defines a form for (dωαβ/dI )
through the dimensionless quantity, ψav, which may depend on

the ionic strength, I . In order to recover the DH limiting law,
we must have, from Eq. (129), the following identity at low
ionic strengths: ψav = ψc + (ADH/8L0)(I 1/2/κ

(ab)
Dynamic), which

provides a dynamical interpretation of the DH limiting law.
Accordingly, then, Eq. (130) yields the following expression
for ωαβ :

ωαβ = ω
(0)
αβ

[
ψc ln I + ADH

8L0

∫
dI

I 1/2κ
(ab)
Dynamic

]
, (131)

where ω
(0)
αβ is the constant of integration. Equation (131)

provides a definite condition on ωαβ that is necessary for
the DH limiting law to hold. To gain further insight in
the region of low ionic strengths, we may approximately
evaluate the integral in Eq. (131) as follows. As Eqs. (127)
and (128) reveal, κ

(ab)
Dynamic, in the low-concentration region

(θav < θc), decreases with the increase of 〈n〉 (and wherefore
the ionic strength, I ), and, therefore, let us introduce a
power law dependence for κ

(ab)
Dynamic as follows: κ

(ab)
Dynamic =

κ̃
(ab)
DynamicI

−δ(δ > 0), which, from Eq. (131), yields ωαβ =
ω

(0)
αβ [ψc ln I + (ADH/4L0)(I δ+1/2/2δ + 1)κ̃ (ab)

Dynamic], an explicit
expression for the scattering frequency, necessary for the DH
limiting law to exactly hold.

Finally, to obtain a numerical insight into the present theory,
let us use the simplified expressions in Eqs. (127) to compute
the activity coefficient for potassium chloride (KCl) in aqueous
solution at 300 K. For simplicity, we use the scattering length
(a distance of closest approach), sk+Cl− , to be 0.267 nm,
which is a standard estimate for the equilibrium separation
of potassium and chloride ions. We consider the surrounding
water molecules to form a dipolar solvent medium, which
generates an electric field. To make an estimate for the electric
field arising due to the aqueous medium, we use a simple
expression from classical electrostatics as follows: 〈E(s)〉 =
〈E(H2O)〉 = μ(H2O)/(ε0εH2O〈nH2O〉), where μ(H2O) = 1.8546 D,
〈nH2O〉 = 3.3311508 × 1028 m−3, and εH2O = 80 respectively
stand for the dipole moment, number density, and the relative
permittivity of water, and ε0 is the permittivity of the free space.
Accordingly, we estimate, 〈E(H2O)〉 ≈ 2.909 × 108 V/m. For
further simplicity, we here consider collisions only between
K+ and Cl− ions; that is, we ignore the effects of K+-K+
and Cl−-Cl− collisions, and also assume that the scattering
length, sK+−Cl− , does not depend on the electrolyte (KCl)
concentration. Equation (127) then finally yields κ

(KCl)
Dynamic =

0.164 × 1017 m−1, 0.164 × 1014 m−1, and 0.164 × 1011 m−1

respectively for 0.01, 0.1, and 1 molar KCl solutions in water.
If this system is to behave normally (that is, ln γ for KCl
in Eq. (127) is to remain less than zero) then κ

(KCl)
Singular must be

greater than 0.164 × 1014 m−1 for 0.1 M aqueous KCl solution,
for example. In contrast, let us evaluate κ

(KCl)
Singular using the ionic

radius for K+ (RK+ = 0.138 nm) and Cl− (RCl− = 0.181 nm)
ions, which yields κ

(KCl)
Singular ≈ 0.38 × 1010 m−1, a value that is

smaller than κ
(KCl)
Dynamic for 0.1 M aqueous KCl solution. This

indicates, from Eq. (127), a positive value for ln γKCl, which
is possibly not a physically acceptable scenario. This then
implies that the typical ionic radii for the charged species tend
to overestimate the physical length scale of the singularity,
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associated with the longitudinal part of the electric field;
equivalently, the use of ionic radii possibly underestimates the
self-energy, which is otherwise infinite for point particles (cf.
Sec. VII). The conclusion then is that the idea of introducing
a simple correction for the finite size of ions in terms of
their ionic radii, which have frequently been used in earlier
theoretical works [2], to improve upon the activity coefficients
and equivalent conductivities for strong electrolytes in the high
concentration regime, may not always be sufficient to faithfully
capture the essence of physical reality. In fact, within the high-
concentration regime, sab, which through Eqs. (23) and (127)
defines κ

(KCl)
Dynamic, is itself expectedly concentration dependent,

which renders the subject of strong electrolytes even more
subtle in physical conception and the experimental realization.

C. Molar and equivalent conductivity

We here obtain a simple expression for the molar conductiv-
ity of electrolytes, which is expected to be useful for a variety
of electrochemical studies on chemical and biological systems.
We consider a z:z-valent electrolyte, embedded within an
explicit solvent. That is, the charge number of the molecular
species satisfy Za = z = −Zb and the corresponding number
densities are abbreviated as follows: 〈n(eq)

a 〉 = 〈n(eq)
b 〉 = 〈n〉.

The number density of the solvent molecules is denoted
by the symbol, 〈n(eq)

s 〉. The equivalent conductivity, �, of
the electrolyte is defined as follows: � = �m/z = σ/(cz) =
NAσ/(z〈n〉), where NA is the Avogadro number, �m is the
molar conductivity, σ stands for the (specific) conductivity of
the electrolyte, and c = 〈n〉/NA is the concentration of the
electrolyte. The total conductivity, σ , is defined as the sum
of the conductivities of all charged molecular species present
in the system, which we compute using Eqs. (72) and (92).
Finally, �m, takes the following form:

�m = NA

〈n〉
∑

α

σα

= NA

π

(ze)2

(kBT )1/2

(
1

(ma)1/2g
(a)
scat

+ 1

(mb)1/2g
(b)
scat

)
.

(132)

To obtain a simple numerical test for Eq. (132), let us consider
the molar conductivity of 0.01 M solution of potassium
chloride (KCl) in water at 300 K temperature. To compute
an approximate value for g

(Cl−)
scat form Eq. (26), we obtain an

estimate for sCl−H2O from ab initio quantum chemical studies
[91,92], which is about 0.25 nm. Accordingly, then, Eq. (26)
yields g

(Cl−)
scat = 0.29 × 1012 m−1. Using an ab inito quantum

chemical estimate of 0.165 nm for sK+H2O, the value for g
(K+)
scat ,

from Eq. (26), is equal to 0.13 × 1012 m−1, as obtained earlier
(see Sec. IV A). Finally, �m from Eq. (132), is 3.41 × 10−3 S
m2 mol−1, which compares well with the experimental value
[93], 15.46 × 10−3 S m2 mol−1. Accordingly, the specific
conductivity of aqueous KCl, σKCl, is 3.41 × 10−2 S m−1

(theory) / 15.46 × 10−2 S m−1 (expt) [93]. The apparent
discrepancy between the present theoretical estimate and the
experiment values for the specific conductivity is attributed

to the approximate evaluation of g
(a)
scat, which is possibly an

overestimate here.
To get physical insight, let us, for simplicity, assume that

the scattering length, sas, involving the solvent molecule s does
not depend on the electrolyte concentration, 〈n〉, and evaluate,
using Eqs. (33) and (132), the slope of the �m versus 〈n〉 curve
as follows: ∂�m/∂〈n〉 = C × (θav − θc), where C > 0, θc =
1/2 and θav is as given in Eq. (29). This is revealing because
it shows that the dimensionless (positive-valued) quantity θav,
which measures the average fluctuation of the scattering length
in a given complex molecular environment, plays the role of
a tuning variable. For example, when θav < θc the slope is
negative and therefore �m decreases with the increase of 〈n〉,
which is fully consistent with the DHO phenomenology. This
is the low-concentration region, which we here designate as
the Onsager regime. Next, �m reaches a minimum at θav = θc.
For θav > θc, the slope is positive and therefore �m increases
with the increase of 〈n〉. This is the high-concentration region,
which is not covered under the original DHO phenomenology
and therefore we designate this as the non-Onsager regime.
Notably, the location of the critical point, θav = θc = 1/2,
here is only an estimate, which should be improved by more
elaborate computations. In general, as we have discussed in
Sec. IV A, the system may possess a number of critical points,
which are to be determined as the solutions of Eq. (29). In
such a situation, the �m versus 〈n〉 curve would exhibit an
oscillatory behavior, superimposed over a decaying amplitude.
Physically, this situation may be attributed to the existence of
dynamical association and dissociation of electrolyte as one
changes the electrolyte concentration. A schematic plot of the
�m versus 〈n〉 curve for various physical scenarios is shown
in Fig. 1 (curve d).

D. Current-voltage characteristics

Using results of Sec. V, we here obtain a simple expression
for the current-voltage curve, useful to study various ion-
transport processes in biological channels and pumps. The
component of the current vector along the j th direction of an
orthogonal coordinate system, I

(a)
j (�g,ω), belonging to molec-

ular species a is defined as follows: I
(a)
j (�g,ω) = SjJ

(a)
j (�g,ω),

where J
(a)
j (�g,ω) is the current density along the j th direction.

Sj stands for the cross-sectional area perpendicular to the
direction of the j th unit vector. Using Eqs. (64), (76), and
(78) to the leading order, we obtain the following expression
for the current:

I
(a)
j (�g,ω)

= SjZae

{
(1 + x2)

gj

g2
(ω̃a − ω)n(eq)

a (�g,ω)

+Zae

2

〈
n

(eq)
a

〉
maω̃a

∑
l

[(
5 − 1

x2

)
δjl − 3gjgl

g2

(
1 − 1

x2

)]

× [
glφ

(ext)(�g,ω) − ωA
(ext)
l (�g,ω)

]}
(133)

⇒ 〈�Ia〉 = S �Ia

(Zae)2
〈
n

(eq)
a

〉
π (makBT )1/2g

(a)
scat

〈 �E(ext)〉, (134)
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where x = v
(a)
th g/ω̃a and gj is the j th Cartesian component of

�g. φ(ext)(�g,ω) and A
(ext)
l (�g,ω) are the externally applied scalar

and the lth component of the vector potential respectively.
In Eq. (133), the first term is the diffusion current whereas
the second term is the conduction current, arising due to
the external 4-potentials. In Eq. (134), S �Ia

is the cross-

sectional area, perpendicular to the direction of the current, �Ia.

In order to transform Eq. (134) to the potential (voltage) form,
we now consider, as a specific example, the circular cylindrical
geometry with coordinate variables as (R,φ,z) and imagine
that the transport of ions is taking place in the z direction, in
which circumstance, we may take 〈 �E(ext)〉 = �φext/L, where
�φext is the average potential difference (external voltage)
across the cylinder of length, L. Accordingly, Eq. (134) yields
the following expression for the average current-voltage curve:

〈Ia〉 = Ga�φext = ∣∣T (a)
scat

∣∣2 e2

h̄
�φext (135)

where
∣∣T (a)

scat

∣∣2 =
[

(ZaR)2
〈
n

(eq)
a

〉
k

(a)
th g

(a)
scatL

]
(136)

≈ 1

8
√

π

(ZaR)2

L

⎧⎨
⎩
∑

β

(
1 + ma

mβ

)〈
n

(eq)
β

〉
〈
n

(eq)
a

〉 [1 − 1F1(2; 1/2; −ξ0)]

k
(aβ)
th

⎫⎬
⎭

−1

, (137)

where 〈Ia〉 is the average current and Ga is the conductance
for molecular species a. The summation in Eq. (137) spans
over all charged molecular species present in the system. To
pass from Eq. (136) to Eq. (69), we have used Eqs. (23)–(26)
for g

(a)
scat. To examine the numerical performance of Eq. (136),

we here consider the flow of potassium ions, embedded in
the aqueous environment (0.1 M aqueous solution), along
a circular cylindrical channel (length, L = 4 nm, and the
cross-sectional radius, R = 0.2 nm) at 300 K. Also, we use
an approximate value for g

(K+)
scat , which is equal to 0.1295 ×

1012 m−1 (cf. Sec. IV A). Accordingly, the conductance, GK+ ,
from Eq. (135), is 7.28 pS. As we have noted in Sec. VIII C,
the value of g

(K+)
scat used here is possibly an overestimate and

therefore we expect 7.28 pS for GK+ to be an underestimate
here. Notably, most ion channels in biological cells have a
conductance in the range of 1 to 150 pS [4]. This gives
us confidence in the present theoretical formulation on the
characteristics of the current-voltage curve.

Interestingly, the expression for Ga, in Eq. (135), general-
izes the work, originally due to Landauer and subsequently
extended by others [32–34], that views conductance as the
transmission processes. Following this viewpoint, the coef-

ficient of transmission, |T (a)
scat|

2
, here is, inter alia, intimately

related to the collisional events, through saβ . Thus, Eqs. (135)–
(137) present a nontrivial unification of quantum scattering
with the conduction processes, which may be fruitfully used
to study a variety of chemical, biophysical, and mesoscopic
systems. To gain a qualitative insight on the current-voltage
curve, let us recall (Sec. IV A) that saβ may potentially depend
upon the density, 〈n(eq)

a 〉, as well as the external voltage, �φext.
Let us examine the behavior of the current, 〈Ia〉, as a function of
〈n(eq)

a 〉. Using Eqs. (29) and (135)–(137), we obtain the slope
of the 〈Ia〉 versus 〈n(eq)

a 〉 curve as follows: d〈Ia〉/d〈n(eq)
a 〉 ≈

(1 + 2θav)〈Ia〉/〈n(eq)
a 〉 where the dimensionless θav, which

defines the derivative dsaβ/d〈n(eq)
a 〉 through Eq. (29), is a

positive number (see Sec. IV A), meaning the 〈Ia〉 versus 〈n(eq)
a 〉

curve possesses no extremum. From Eqs. (135)–(137), Ga is

also a positive definite quantity. That means that the current
will always increases with the increase of concentration of
molecular species a, as we normally expect. Next, let us
examine the behavior of the current, 〈Ia〉, as a function of
the external voltage, �φext, at a given concentration. Using
Eqs. (29) and (135)–(137), we compute the slope of the 〈Ia〉
versus �φext curve as follows:

d〈Ia〉
d(�φext)

≈ 2(θav + θc)Ga (where θc = 1/2), (138)

where θc is a number, independent of the external voltage,
�φext. Notably, as we have discussed in Sec. IV A, the
dimensional quantity θav in Eq. (138), which defines the
derivative dsaβ/d(�φext), like Eq. (29), may now admit all
possible values (negative, zero, and positive). In fact, as we
will see presently, θav is never positive. Now, let us consider
Eq. (135), which is essentially a statement of the well-known
Ohm’s law, provided the conductance, Ga, is simply a constant;
that is, Ga does not depend on the external voltage, �φext.
In the Ohmic conduction regime (the low-voltage regime,
that is), therefore, if Ga happens to be independent of the
voltage, so must be the case with ξ0 and thence the scattering
length, sab, as Eqs. (23) and (135)–(137) clearly reveal, which,
in turn, implies, from Eq. (29), that θav must be identically
zero. Next, the expression for the slope in Eq. (138) indicates
the existence of three distinct regions for the current-voltage
curve, as schematically shown in Fig. 2. In region I, where
the magnitude of the current increases with the increase of the
voltage, we have θav > −θc, from Eq. (138). That means that
region I, which includes the pure Ohmic regime, is bounded
by the inequality, −θc < θav � 0. We designate region I as
the normal conduction regime. In region II, which is here
characterized by the condition θav = −θc, the current no longer
depends on the external voltage. We designate this as the
saturation current regime, within which the scattering length,
sab, as Eq. (29) reveals, simply exhibits a power-law behavior;
that is, sab ∝ (�φext)θc . This power-law behavior of sab may
thus be taken as a defining characteristic for the existence of the
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I a

I(s)
a

−θc < θav ≤ 0 θav = −θc θav < −θc

0 Δφext

FIG. 2. A schematic representation for the current-voltage char-
acteristics. The behavior of θav in Eq. (138), which encodes the
average variation of the scattering length with the external voltage,
clearly differentiates the saturation regime (the middle region) from
the normal (the left region) and the anomalous (the right region)
conduction regimes.

saturation current regime in the system. Region III is defined
by the inequality θav < −θc, which implies that the slope in
Eq. (138) is negative and therefore the current will decrease
with the increase of the external voltage. We designate this
as the anomalous conduction regime. The scattering length,
sab, would increase with the increase of the external voltage
in both regions I and III, but the increase in region I, because
of the inequality, −θc < θav � 0, will be slower, whereas the
increase in region III, because of the inequality, θav < −θc, will
be faster, in comparison to the power law behavior of region II.
As sab measures the distance of closest approach for the pair of
species involved in collision, the three regimes of the current-
voltage curve, as discussed above and schematically displayed
in Fig. 2, unfolds the possible physical mechanisms for the
role of the external voltage on the microscopic dynamics of
charged molecular species, eventually leading to a rich variety
of conduction scenarios. The existence of the anomalous con-
duction region may be rationalized for the circumstance when
the dynamic charged molecular species undergo nontrivial
chemical reactions forming a variety of long-lived molecular
species, thereby decreasing the population of charged species
available for the conduction processes. The presence of the
anomalous conduction region is a prediction here, which may
be verified in experiments.

E. Concentration dependence of the diffusion coefficient

We here address the following question: How does the co-
efficient of diffusion behave as a function of the concentration
of the diffusing molecular species in a complex molecular
environment? This is important because the diffusive transport
processes are frequently found to be anomalous, meaning they
deviate from the standard linear law for the mean square dis-
placement versus time curve due to Einstein, Smoluchowski,
and others [85,94–100], particularly for the molecular ions
within the crowded environment of biological cells. To obtain
a qualitative understanding, let us, for simplicity, consider
Eq. (87), which expresses the diffusion coefficient in terms
of g

(a)
scat, which may be a function of the concentration of

the molecular species a, particularly when there is a complex
molecular environment present in the system (cf. Sec. IV A).
We now use Eqs. (26)–(29) and (87) and evaluate the slope of
the D

(a)
|| versus 〈n(eq)

a 〉 curve as follows:

dD
(a)
||

d
〈
n

(eq)
a

〉 ≈ 2D
(a)
||〈

n
(eq)
a

〉 (θav − θc), (139)

where θc = 32
√

π (saa)2〈n(eq)
a 〉/g(a)

scat and θav, a positive and
dimensionless number, approximately defines the derivative of
the scattering length with respect to the density of molecular
species a, as shown in Eq. (29). It is also clear from
Eqs. (26) and (139) that the critical value θc is a positive
and dimensionless number. Furthermore, as we have argued
elsewhere [see the discussion after Eq. (128)], θav is expected
to be vanishingly small in the low-concentration region.
Equation (139) then implies that the slope would be negative
in the low-concentration region, until θav reaches the critical
value θc. That means the coefficient of diffusion, D

(a)
|| , in

the low-concentration region, is expected to decrease as we
increase 〈n(eq)

a 〉. Beyond the critical point, θav = θc, lies the
high-concentration region, wherein D

(a)
|| is expected to increase

with the increase of 〈n(eq)
a 〉. In fact, the critical point θav = θc

may be satisfied by a number of densities, 〈n(eq)
a 〉 = 〈n(j)

a 〉, of
the molecular species a, in which case the D

(a)
|| versus 〈n(eq)

a 〉
curve would manifest an oscillatory behavior, as schematically
shown in Fig. 1 (curve d). This oscillatory behavior may
be attributed to the possibility of continuous transitions of
molecular species from the state of solvation and caging
to the state of desolvation and decaging, as we increase
the density of the molecular species. The oscillation in the
D

(a)
|| versus 〈n(eq)

a 〉 curve, as we have predicted here, may be
verified in experiments. Such behavior of the coefficient of
diffusion would provide necessary physical reasons for the
existence of anomalous diffusion phenomena [85,96–100] that
one frequently encounters in biological systems, in particular.

IX. CONCLUSIONS

We have presented a complete theoretical framework to
understand a wide variety of experiments on equilibrium
and nonequilibrium behaviors of charge carriers, which are
embedded within a complex molecular atmosphere, such as
the solvents and the crowded environment of biological cells,
in the presence of electromagnetic potentials. Present elabo-
ration transcends the well-known Debye-Hückel-Onsager and
Poisson-Nernst-Planck phenomenologies and their variants,
which have frequently been used to study strong electrolytes
and the flow of ions in transmembrane protein channels in
biological cells. We now briefly outline how the present theo-
retical framework may be further extended and utilized to study
the equilibrium and the transport processes, involving charged
molecular species, in chemical and biophysical sciences. An
important outcome of the present discourse, as discussed
in Sec. VI, is a conceptually new theoretical setting that
manifestly is cognizant of microscopic molecular scattering
events, for diffusive transport, and which generalizes the
traditional framework of the diffusion equation. This may be
fruitfully used to rationalize and understand the anomalies in
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diffusive transport, frequently encountered, particularly within
the environment of biological cells. As yet another important
development, the present work has established a nontrivial
connection between the current-voltage characteristics of ions
in a complex molecular environment and the Landauer’s
viewpoint on electrical conduction in mesoscopic systems (see
Sec. VIII D), which may be used to conceptually link important
physical ideas across the apparently two disjoint fields of re-
search in physical science and beyond. The present theoretical
structure may be further extended and enriched in a number
of ways. First, we have considered only binary quantum
elastic collisions, involving a simplified mathematical form
for the intermolecular potential, to obtain a mathematically
tractable yet physically realistic expression for the Boltzmann
collision operator. A better description for quantum collisions
is certainly warranted here. Next, the present mathematical
solution of the Boltzmann transport equation is necessarily ap-
proximate. A rigourous and mathematically enriched approach
to the Boltzmann equation would be needed to improve upon
the necessary quantitative predictions. The electromagnetic
properties of charged entities constituting the system as well
as the complex molecular environment have been studied here
by assuming them to be point particles. In specific situations,

for a more realistic physical description, the present work
may be updated by incorporating, for example, an elaborate
multipole expansion of the electromagnetic fields. The present
work may also be extended to obtain an analytical expression
for frequency- and wave-vector-dependent viscosity and study
the phenomenon of glass transitions. Furthermore, the present
work has not explicitly explored the role, if any, of quantum
statistics. For example, quantum statistics for indistinguishable
molecular objects, particularly at low temperatures, have
important consequences, which may unravel yet unexplored
regimes of new phenomena involving charged molecular
species in biological settings. An investigation along this
direction should be enriching. We will present such studies
in future publications.
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