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Partition function zeros of the p-state clock model in the complex temperature plane
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We investigate the partition function zeros of the two-dimensional p-state clock model in the complex
temperature plane by using the Wang-Landau method. For p = 5, 6, 8, and 10, we propose a modified energy
representation to enumerate exact irregular energy levels for the density of states without any binning artifacts.
Comparing the leading zeros between different p’s, we provide strong evidence that the upper transition at
p = 6 is indeed of the Berezinskii-Kosterlitz-Thouless (BKT) type in contrast to the claim of the previous Fisher
zero study [Phys. Rev. E 80, 042103 (2009)]. We find that the leading zeros of p = 6 at the upper transition
collapse onto the zero trajectories of the larger p’s including the XY limit while the finite-size behavior of p = 5
differs from the converged behavior of p � 6 within the system sizes examined. In addition, we argue that the
nondivergent specific heat in the BKT transition is responsible for the small partition function magnitude that
decreases exponentially with increasing system size near the leading zero, fundamentally limiting access to large
systems in search for zeros with an estimator under finite statistical fluctuations.
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I. INTRODUCTION

The Berezinskii-Kosterlitz-Thouless (BKT) transition [1,2]
has attracted steady attention because of its physical richness
and generality in explaining the stabilization of quasi-long-
range order in two-dimensional (2D) systems with continuous
symmetry [3]. The classical 2D XY model is probably the most
extensively studied example showing the BKT transition, often
being used as a reference of its peculiar critical behavior at the
transition point and universal features [3–7]. While continuous
symmetry is essential for the BKT transitions, it can also
emerge from a system without explicit continuous symmetry.
The p-state clock model is a cousin of the XY model with
discrete Zp symmetry. The Hamiltonian of the clock model is
written as

H = −J
∑

〈i,j〉
cos

(
θ

(p)
i − θ

(p)
j

)
, (1)

where J > 0 is the ferromagnetic coupling given between a
nearest-neighbor pair of spins with discrete angle variables
θ (p) = 2πn/p for n ∈ {0, . . . ,p − 1}. While the exact XY

model is recovered only in the limit of infinite p, it was found
that the BKT characters would appear in the Zp models when
p � 5 [8–11]. The nature of phase transitions in the general
clock model has been widely studied with different theoretical
and numerical approaches, which, however in some parts,
have given mixed results on the characterization of transitions
around the lower bound of p (for instance, see the summary
of the related debates in Ref. [12]).

The Villain formulation of the Zp model showed that
when p > 4, the phase diagram consists of three different
areas where the intermediate massless phase undergoes two
BKT transitions into the high-temperature disordered and
low-temperature ordered phases [8,13–15]. In the standard
clock model, the Monte Carlo (MC) simulations with the phe-
nomenological finite-size-scaling analysis [12,16–18] indeed
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found the critical exponents for p � 5 that are consistent with
the theoretical predictions [6,8]. On the other hand, differences
from the BKT transition of the XY limit have also been
argued in the studies of different measures. At p = 5, it was
observed that the helicity modulus does not vanish in the
disordered phase [19,20], which disagrees with the universal
jump from zero expected in the BKT transition [21,22] and
observed in the systems of p = 6 [23] and above [24]. Later,
the helicity modulus redefined with a finite twist matching
the discrete symmetry resolved this issue [25], providing
consistent estimates of the transition temperatures [25,26].

At p = 6, the disagreement that remains unresolved is
with the previous scaling tests of the leading Fisher zeros
of the partition function claiming that the transitions in the
six-state clock model may not be of BKT type [27]. While
this claim supported the earlier test of the helicity modulus
[24], the later calculations of the helicity modulus in larger
systems agreed on the existence of the BKT transitions at
p = 6 [20,23,25,26]. However, the Fisher zero issue raised
at p = 6 remains unexamined so far, and moreover there has
been no Fisher zero study attempted for other p’s at all. In
this paper, we report a comparative calculation of the leading
Fisher zeros for p = 5, 6, 8, and 10.

The main question that we address here is how the leading
Fisher zeros evolve with increasing p, and more specifically
how different the zeros of p = 6 are from those of large p’s
that are known to exhibit the BKT transitions. We perform
extensive numerical calculations based on the Wang-Landau
(WL) sampling of the density of states (DOS). We find that
at the upper transition, the leading zeros of p = 6 are in fact
collapsed onto the trajectory of the larger p’s including the XY

limit, providing strong evidence that the transition at p = 6 is
indeed of BKT type in contrast to the claim based on the
previous scaling tests within the six-state clock model [27].

For the limited system sizes that are accessible in numer-
ically finding the Fisher zero within the WL DOS samples,
finite-size corrections naturally affect the analysis at the level
of an individual p, which is apparent in the previous test
at p = 6 [27] and in our observation of the distinguished
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finite-size behavior at p = 5. Remarkably, the collapsed Fisher
zero trajectory that we observe for p � 6 indicates that
the finite-size effect becomes also well converged between
different p’s when p � 6, demonstrating the advantage of the
comparative approach that allows us to infer the transition
class of p = 6 deductively from the known BKT character of
the larger p’s.

On the numerical side, we provide a modified representation
of the Hamiltonian for the considered group of p’s that enables
exact energy enumeration, which is crucial to our application
of the WL method [28,29] to the Fisher zero problem in the
p-state clock model. The usual WL approach benefits from
regularly spaced energy levels, which, however, is not the case
in the cosine energy of the clock model except for the very
special case of p = 6. Here we find that for a group of p’s,
the irregular energy structure can be decomposed into two
regular parts, allowing full energy resolution in building the
DOS by using the 2D WL procedures without any necessity
of introducing artificially binned energy space.

This paper is organized as follows. Section II describes
our method of the exact energy enumeration and the details
of the WL procedures. The two-step method of the Fisher
zero finder is also briefly explained. In Sec. III, we present
our main results of a comparison between the leading zeros
computed for p = 5, 6, 8, and 10. The implications of the
collapsed leading zero trajectories that are found for p � 6
are discussed. An analysis of numerical uncertainty is also
given in this section, and the connection with the specific heat
at the BKT transition is argued. Finally, conclusions are given
in Sec. IV.

II. NUMERICAL METHODS

The connection between the singular behavior of free en-
ergy and the zeros of the partition function was first formulated
by Yang and Lee in the plane of complex fugacity [30], and
then the Fisher zero that we focus on here was proposed for
a canonical partition function in complex temperature [31].
Their usefulness has been demonstrated in various model
systems and was recently also emphasized by experimental
observations [32,33]. Although the behavior of the leading
zeros closest to the real axis is well established in the second-
and first-order phase transitions (see, for instance, Ref. [34]
and references therein), it has been extended to the BKT
transition only very recently with the XY model by using
the higher-order tensor renormalization group (HOTRG) [35]
and the WL method with energy binning [36,37].

In this section, we present our extension of the WL method
to the leading zero calculations for the p-state clock models,
which is designed to avoid the energy binning.

A. Wang-Landau formulation of the p-state clock model

While the WL method in conjunction with a polynomial
solver has often been used to calculate the Fisher zeros in spin
models [36–40], it cannot be directly applied to a general p-
state clock model. Irregularly spaced energies from the sum of
cosines in the clock model cause a large numerical challenge in
the WL sampling, and a polynomial expansion of the partition
function is simply not possible with this exact energy structure

TABLE I. Two-term representation of the Hamiltonian for p = 5,
6, 8, and 10. The index n represents the possible values of |ni − nj |
where the spin angle variable ni,j ∈ {0, . . . ,p − 1}.

n 0 1 2 3 4 5 6 7 8 9 J (1)
p /J

E (1)
5 (n) 4 −1 −1 −1 −1 1/4

E (1)
6 (n) 2 1 −1 −2 −1 1 1/2

E (1)
8 (n) 1 0 0 0 −1 0 0 0 1

E (1)
10 (n) 4 1 −1 1 −1 −4 −1 1 −1 1 1/4

n 0 1 2 3 4 5 6 7 8 9 J (2)
p /J

E (2)
5 (n) 0 1 −1 −1 1

√
5/4

E (2)
6 (n) 0 0 0 0 0 0 0

E (2)
8 (n) 0 1 0 −1 0 −1 0 1 1/

√
2

E (2)
10 (n) 0 1 1 −1 −1 0 −1 −1 1 1

√
5/4

being kept. Note that the previous case of p = 6 [27] is an
exception since its energy is given as an integer multiple of
J/2. Probably the easiest way to deal with the irregularity is to
introduce an extra energy binning step, which, however, comes
with an unavoidable loss of spectral resolution.

Nevertheless, we find that for a group of p’s including 5, 8,
and 10, the energies can be mapped onto the two-dimensional
regular grids where the dimensions represent the rational and
irrational parts of the cosine energy [41]. The Hamiltonian is
accordingly decomposed into two terms as

H = −J (1)
p

∑

〈i,j〉
E (1)

p (nij ) − J (2)
p

∑

〈i,j〉
E (2)

p (nij ), (2)

where nij ≡ |ni − nj | is the spin angle difference. The
functions E (1)

p and E (2)
p are integer-valued as tabulated in

Table I. Therefore, for such p’s, one finds H ≡ H(E1,E2) =
−J (1)

p E1 − J (2)
p E2 being represented by two integers of

E1 ≡ ∑
〈i,j〉 E (1)

p and E2 ≡ ∑
〈i,j〉 E (2)

p , which allows efficient
numerics using a standard array for random walks in energy
space without loss of precision.

The joint DOS g(E1,E2) for the combinations of E1

and E2 is then evaluated by the WL sampling through the
2D random-walk processes [42–46]. Although the increased
dimensionality requires a long computational time in exchange
for having an exact access to the energy levels, our implemen-
tation handles about three million energy levels in the largest
calculation performed for L = 20 at p = 10. The system size
is denoted by L representing L2 sites of our square lattices.
In the WL procedures, we follow the standard strategy to
decrease the modification factor (see, for instance, Ref. [46]).
We set the histogram flatness criterion to be 0.99 for all p = 6
cases and for small systems of other p’s; it is lowered to 0.95
when L > 12 for p = 5 and 8; for p = 10, it is 0.95 when
8 < L < 16 and 0.9 when L is larger. We obtain 30 samples
of the WL DOS from independent runs at each p to evaluate
the uncertainty of estimates through a resampling process.

B. Partition function zero calculations

Since the WL method provides unnormalized samples of
the DOS, we consider the normalized partition function Z̃(β)
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in complex inverse temperature β ≡ βR + iβI , defined as

Z̃(β) ≡ Z(β)

Z(βR)
=

∑

E1,E2

P (E1,E2; βR)e−iβIH, (3)

where the energy distribution at a real temperature βR is

P (E1,E2; βR) ≡ 1

Z(βR)
g(E1,E2)e−βRH(E1,E2). (4)

The partition function Z(βR) ≡ ∑
g exp(−βRH) at a real

temperature βR is nonzero in a finite system. An arbitrary
normalization of a WL DOS sample g(E1,E2) is then canceled
out, and thus it has no effect on the energy distribution and the
normalized partition function. Using multiple WL samples of
g(E1,E2), we replace P (E1,E2; βR) with the sample-averaged
one 〈P (E1,E2; βR)〉WL. The uncertainty is estimated with
respect to this average over the WL samples for a 95%
confidence interval from the bootstrap resampling processes
repeated 1000 times.

Once the WL samples of DOS g(E1,E2) are obtained, one
can compute the normalized partition function for any given
complex temperature without restriction, which is a numerical
advantage of the WL method over the histogram reweighting
MC calculations. Since the polynomial expansion is not simple
with two variables, the complex plane of β is searched for the
zeros of the partition function by using the two-step method
[35,47,48].

For a given βR , the real and imaginary parts of Z̃ are smooth
oscillating functions of βI , and thus a set of the zeros in the
axis of βI can be easily found for each oscillation, constructing
a map of the zeros of Re[Z̃] and Im[Z̃] in the complex β plane.
First, an intersection point between the zero curves of Re[Z̃]
and Im[Z̃] on this map is graphically located. Second, the
function |Z̃|2 is numerically minimized around the graphical
intersection to precisely locate the zero of Z̃(β). Through these
steps, the leading zero β1 with the smallest imaginary part is
identified in each area of the upper and lower transitions [49].

III. RESULTS AND DISCUSSIONS

Figure 1 displays the leading Fisher zeros identified at the
upper transition area in the p-state clock models of p = 5,
6, 8, and 10. We find that the calculated leading zeros of
p � 6 collectively move in the complex temperature plane.
We also compare the leading zeros of finite p’s with the
data points of the 2D XY model that are available in the
previous higher-order tensor renormalization-group (HOTRG)
calculations [35]. Notably, it turns out that for p � 6, the
locations of the zeros become well collapsed onto the leading
zeros of the XY model. The converged trajectory observed
at p � 6 strongly suggests that the upper transition at p = 6
indeed belongs to the same BKT transition of the XY model.

This is in clear contrast to the claim in the previous Fisher
zero study of the six-state clock model [27], which argued
that the transitions at p = 6 may not be of the BKT type. The
previous work was based on the finite-size-scaling analysis on
the leading zeros that actually fitted well into either ansatz
of the BKT or second-order transitions. Our approach is
different in the following sense. Instead of trying to distinguish
the order of a transition based on the finite-size-scaling
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FIG. 1. Leading Fisher zeros at the upper transition in the p-state
clock model with p = 5, 6, 8, and 10. The uncertainty shown by
the error bar is given as a 95% confidence interval estimated from
the bootstrap resampling with the WL DOS samples. The error bar is
omitted if it is smaller than the symbol size. The data points for the XY

limit are from the previous higher-order tensor renormalization-group
(HOTRG) calculations [35].

analysis on a model of an individual p, we compare the
leading-zero trajectories between different p’s to find their
converged behavior. Given that the common nature of their
BKT transitions at p = 8 and 10 and in the XY model is well
established, the observed convergence can lead us to infer that
the model of p = 6 is in the same class of the larger p’s.

The same BKT character of p � 6 is supported by the
mutual collapse of their leading-zero trajectories onto a com-
mon power-law curve shifted by the known transition points.
Extending the finite-size-scaling ansatz of the correlation
length to the complex temperature domain, the analysis for
the XY model [35] suggested that the leading zero moves
toward the real axis along the power-law trajectory,

βI ∝ (βc − βR)1+ν, (5)

in the area of small βI . In Fig. 2, we examine this power-law
relation for the common BKT exponent ν = 0.5 by using the
transition temperatures provided by the previous MC results.
We find that the upper transition points of βc ≈ 1.110 for p =
6 [18] (see also [23,25]) and βc ≈ 1.119 for p � 8 [18] lead
to good collapse of the data points falling onto the power-law
curve with exponent ν = 0.5.

The universal behavior observed for p � 6 implies that
their finite-size influences are also indistinguishable between
those p’s. This fast convergence of the finite-size effects is
remarkable considering the limited accessible system sizes in
our calculations. Although it is natural to anticipate that the
finite-size corrections play a role in such small systems, the col-
lapse of the leading-zero trajectories suggests that the finite-
size effect becomes nearly independent of p when
p � 6.
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FIG. 2. Scaling relation between the real and imaginary parts
of the leading Fisher zero. The power-law relation Im[β1] ∝ (βc −
Re[β1])1+ν is examined with the previous estimates of critical points
βc [12,18]. The arbitrary factor bp is adjusted for a graphical
comparison between the data points of different p’s.

On the other hand, the leading-zero trajectory of p = 5
shows an apparent deviation from those of the larger p’s, which
indicates a very different type of finite-size effects appearing in
its transition point and the scaling exponent. With the transition
point being fixed at the previous MC estimate of βc 	 1.051
[12], the leading-zero trajectory of p = 5 does not fall onto the
curve with ν = 0.5, giving a better fit to the one with ν 	 0.32
within the system sizes that are accessible. The other estimates
from the helicity modulus with finite twist, βc 	 1.059 [25]
and 1.058 [26], provide a larger value of ν 	 0.38. Adjusting
a transition point to be 1.075 causes the curve to get closer to
the one with ν = 0.5, but the curve still deviates from the line
of the larger p’s.

While these strong finite effects at p = 5 are distinguished
from the well-converged behavior in the trajectories of the
larger p’s, this deviation should not be misinterpreted as
evidence of a different transition nature. Indeed, a strong
finite-size effect at p = 5 has also been witnessed with a
different measure. In the previous study of the helicity modulus
with a finite twist, the finite-size behavior of the helicity
modulus was indicated at p = 5 in the intermediate BKT
region, while at p = 6 it was almost independent of the system
size as predicted in the BKT phase [25].

In addition, we also calculate the leading zeros in the
lower-temperature side of the two transitions. Figure 3 presents
the p dependence of the leading zeros with rescaling. We
show that the trajectory of the corresponding leading zeros
moves systematically toward the zero-temperature limit of the
complex β plane as p increases. In the Peierls argument [11],
the transition temperature would scale as Tc ∼ (1 − cos 2π

p
),

which recovers the 1/p2 behavior in the limit of large
p. For the leading zeros, we find that both the real and
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FIG. 3. Leading Fisher zeros at the lower transition. The real
and imaginary parts of the leading zeros are rescaled with the factor
(1 − cos 2π

p
). The system sizes are limited to L � 16 for reliable

identification of the leading zeros.

imaginary parts of the zeros scale roughly with the same
factor 1/(1 − cos 2π

p
), showing a trend in which the trajectory

of the leading zeros approaches a common curve as p

increases.
While the converged trajectory of the leading zeros that

we have found for p � 6 at the upper transition is already
clear within the system sizes examined, it is still important to
precisely know the numerical limitations encountered when
simulating larger systems. This would clarify the challenge
in performing a conventional finite-size-scaling analysis of
an explicit system-size dependence, which is avoided in our
present study. For instance, it is expected that the imaginary
part of the leading zero scales with system size L as βI ∼
(ln bL)−q̃ , where q̃ = 1 + 1/ν for small βI in the BKT
transition [35]. Comparing such a logarithmic form with the
power-law ansatz of the second-order transition would hardly
be conclusive in small systems, as was already noticed in the
previous Fisher zero study of the six-state clock model [27].

The numerical bottleneck is twofold in our calculations.
The obvious one is the well-known large cost in computational
time required for the 2D WL procedures that are essential for
p = 5, 8, and 10. It is hard in practice to go beyond a system
of a few million energy levels. This might be improved in the
future by a proposed extension of the parallel WL algorithm
[50,51] to 2D energy space [52–54]. In addition, the special 1D
WL case of p = 6 does not suffer from a such problem since
the number of energy levels scales linearly with the number of
lattice sites. We have been able to reach easily up to L = 128
in the case of p = 6.

The more critical issue is the explosively growing uncer-
tainty in locating the leading Fisher zeros as the system size
increases. This can be best seen in the larger-system calcu-
lations at p = 6 where a sudden increase of the uncertainty
occurs at L = 32 (see Fig. 1) and is generally observed in
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FIG. 4. Reliability test of the leading-zero identification for the
upper transition in the six-state clock model. (a) The normalized
partition function Z̃(β) is evaluated for L = 28 as a function of βI at
βR = Re[β1]. The leading zero is marked by the square symbol. The
error bar displayed at the points along the oscillations presents the
statistical fluctuation measured by bootstrap resampling, indicating
that its magnitude is typical in the range of βI for both Re[Z̃] and
Im[Z̃]. The envelope function f (βI ) is obtained from the Gaussian
approximation [48]. (b) The maximum oscillation amplitude of Re[Z̃]
for βI > Im[β1] is shown for comparison with its fluctuation as a
function of system size L.

all calculations that we have done. While the only source
of the errors in our numerics is the stochastic WL process
itself, below we explain how the small stochastic noises can
be amplified quickly in the Fisher zero calculations for the
p-state clock model and its fundamental connection to the
BKT transition.

Figure 4 demonstrates how the uncertainty develops in
finding the leading zero at p = 6, where the WL simulations
can be done for relatively large systems while maintaining
the accuracy of the DOS samples at the same high level.
In the system of L = 28 shown in Fig. 4(a), the fluctuation
of the partition function Z̃ turns out to be almost comparable
to the maximum oscillation amplitude in the region of βI >

Im[β1]. This implies that for smaller oscillation amplitude, the
oscillatory behavior could be completely buried in the scale of
the fluctuation, making our zero search unreliable. Therefore,
the accuracy of the zero identified is guaranteed only when the
WL estimate of Z̃ has an oscillation amplitude larger than its
statistical fluctuation in the vicinity of the zero.

We find that in the p-state clock model, the oscillation
amplitude of Z̃ near the leading zero decreases exponentially
with increasing system size L, as shown in Fig. 4(b) for the case
of p = 6. The zero search in this case undergoes a crossover
around L = 28 above which the fluctuation gets larger than
the oscillation amplitude. This implies that considering a

larger system for proper finite-size-scaling analysis would
require extreme accuracy of a DOS estimate to cope with the
exponentially decreasing oscillation amplitude of Z̃ . In the
p-state clock model that we consider, this can be an important
issue for the Fisher zero search within the MC methods that
essentially come with statistical noises.

The exponential system-size scaling of Z̃ and the resulting
tight bound of the accessible system size is perhaps a
consequence of the BKT transition where the specific heat
is nondivergent [7,12,16]. In the Gaussian approximation of
energy distribution [48], at a given βR , the envelope function
of Z̃(βI ) is calculated as f (βI ) = exp[−Cβ2

I /2β2
R], where C

denotes heat capacity at βR . While the Gaussian approximation
is not valid at the zero, it may still work as an upper bound
of the oscillation amplitudes in its vicinity, as indicated in
Fig. 4(a). From the scaling forms βI ∼ (ln bL)−q̃ and C ∼ L2,
one can see that f (βI ) behaves as exp[−aL2(ln bL)−2q̃]
near the zero, which provides a rough sketch of the
extreme accuracy requirement to increase the system
size.

IV. CONCLUSIONS AND REMARKS

We have investigated the leading Fisher zeros of the
p-state clock model in square lattices by introducing the
Wang-Landau formulation with exact energy enumeration
for p = 5, 6, 8, and 10. We have found that the leading
Fisher zeros show a converged trajectory at the upper tran-
sition when p � 6 including the XY limit, providing strong
evidence that the model with p = 6 is in the same class,
with the larger p’s exhibiting the BKT transition. This is
in contrast to the claim of the previous Fisher zero study
for the six-state clock model [27], which argued that the
transitions may not be of BKT type. Indeed, our findings are
consistent with all up-to-date helicity modulus calculations
[20,23,25,26], which would help to resolve the remaining
discrepancy between different numerical approaches charac-
terizing the transitions in the six-state clock model in two
dimensions.

It is also interesting to see a possibility that the converged
behavior with increasing p could be a general feature of the
p-state clock models in different settings [55]. For instance, it
was recently reported that in the spin glass p-state clock model
on diluted graphs, a physical observable converges quickly
to the XY limit as p increases [56]. The spin glass clock
models on different underlying geometries have been argued
to be indeed in the same class of their XY limits when p � 5
[57–59], suggesting a very similar role of the discrete symme-
try existing in general clock models.

We have also argued that the numerical accessibility to the
leading zero is closely related to the characteristic specific
heat at a phase transition. For a divergent specific heat at
the first- or second-order transition, the decreasing behavior
of the imaginary part of the zero βI is canceled out by the
divergence of the heat capacity. In the case of the first-order
transition in d dimensions, the factor exp[−Cβ2

I ] becomes
O(1) since heat capacity C ∼ L2d while βI ∼ L−d ; in the
second-order transition, the scaling forms C ∼ Lα/ν+d and
βI ∼ L−1/ν provide the same result through the hyperscaling
relation when α > 0. The system-size dependence of the
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uncertainty in the zero finder could be further quantifiable
by the confidence range for βI [48]. Although it is necessary
to examine this expectation numerically in real models, as it is
based on the Gaussian approximation, it raises a possibility
that the range of system sizes accessible with estimates
under statistical noises is much wider for the ordinary phase
transitions than for the BKT transitions in the search for Fisher
zeros.
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