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We investigate in detail the process of adiabatic cooling in the framework of the exactly solvable
antiferromagnetic spin- 1

2 Ising model in the presence of the external magnetic field on an approximate lattice
with pyrochlore structure. The behavior of the entropy of the model is studied and exact values of the residual
entropies of all ground states are found. The temperature variation of the system under adiabatic (de)magnetization
is investigated and the central role of the macroscopically degenerated ground states in cooling processes is
explicitly demonstrated. It is shown that the model parameter space of the studied geometrically frustrated
system is divided into five disjunct regions with qualitatively different processes of the adiabatic cooling. The
effectiveness of the adiabatic (de)magnetization cooling in the studied model is compared to the corresponding
processes in paramagnetic salts. It is shown that the processes of the adiabatic cooling in the antiferromagnetic
frustrated systems are much more effective especially in nonzero external magnetic fields. It means that the
frustrated magnetic materials with pyrochlore structure can be considered as very promising refrigerants mainly
in the situations with nonzero final values of the magnetic field.
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I. INTRODUCTION

Magnetic systems with pyrochlore structure attract intense
interest recently due to their intriguing low temperature prop-
erties such as the formation of macroscopically degenerated
ground states, unusual entropy behavior, the existence of large
magnetocaloric effect (MCE), anomaly behavior of the specific
heat capacity, etc. [1–21]. These experimentally measured and
theoretically described properties of the pyrochlore magnetic
systems are usually related to the phenomenon of strong
geometric frustration [22].

From a technological and an application point of view,
maybe the most important thermodynamical property of such
kind of magnetic materials is the MCE, i.e., cooling or heating
of the material under variation of the external magnetic
field, related to the changes of the magnetic entropy upon
application of the magnetic field. The importance of the MCE
is given especially by its great potential for using in mag-
netic refrigeration at low temperatures through the adiabatic
(de)magnetization processes. Such kind of cooling seems to be
very efficient energetically and that is why the intensive search
for valid novel candidates for magnetic refrigeration is very
important. Examples of such candidates are, e.g., Dy2Ti2O7

[6,10,11,13,17], Gd2Ti2O7 [5,14], Nd2Pb2O7, Gd2Pb2O7 [19],
CePdAl [20], and Er2Ti2O7 [21], which exhibit giant MCE.

Although the magnetic cooling in frustrated magnetic
systems can be a very effective process, as we shall show, it is
also a rather sophisticated process and for its effective realiza-
tion one needs to have deep knowledge of thermodynamical
properties of used material to be able to take use fully of its
promising cooling potential. This is also the main reason why
deep theoretical understanding of thermodynamical properties
of various geometrically frustrated magnetic systems is really
very needful. In this respect, it is always helpful if the
theoretical background is based on an exactly solvable model
in the framework of which the basic peculiarities of the
frustrated systems can be understood on the exact fundamental
level.

However, the set of even classical exactly solvable spin
models on regular lattices is restricted to the one- and two-
dimensional models [23–25] and, at the same time, there
does not exist any relevant classical spin model on a regular
two-dimensional lattice which would be exactly solved in
the nonzero external magnetic field. On the other hand, the
presence of the external magnetic field is crucial for the
very existence of the MCE. Here, investigations of standard
spin models on adequate approximate lattices, which, on one
hand, take into account basic geometrical structure of the
corresponding regular two- and three-dimensional lattices and,
on the other hand, on which exact analysis of the models can
be performed, are without doubt very helpful. Examples of
such lattices are the so-called Husimi-type recursive lattices
[26–28] on which the models can be always investigated by
using the recursive relations technique (see, e.g., Refs. [29–31]
and references cited therein). Moreover, in some special cases,
models on recursive lattices are exactly solvable in fully
analytic form [32–34]. Among such exactly solvable models
belongs the antiferromagnetic spin- 1

2 Ising model on the
tetrahedron recursive lattice [34] (see Fig. 1), which represents
an appropriate approximation of the three-dimensional lattice
with pyrochlore structure shown explicitly in Fig. 2, and which
takes into account its basic geometrical structure responsible
for strong geometrical frustration. Note that some exact results
on the tetrahedron recursive lattice were obtained early in
the framework of the investigation of the spin ice problem
[35,36]. It is also worth mentioning that the classical spin
models very often represent very good approximation of real
frustrated systems (see, e.g., Refs. [4,16,20]). Nevertheless,
it is still necessary to bear in mind that the classical Ising
and Ising-type models even on real lattices represent rather
rough approximation of real magnetic materials, therefore,
one can usually expect only qualitative accordance with real
experiments.

In this paper, namely, the antiferromagnetic spin- 1
2 Ising

model in the presence of the external magnetic field on
the tetrahedron recursive lattice will be used for an exact
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FIG. 1. The structure of the tetrahedron recursive lattice with
coordination number z = 6.

theoretical investigation of the adiabatic (de)magnetization
cooling processes and for an estimation of the efficiency of
frustrated magnetic materials with pyrochlore structure for
magnetic cooling at low temperatures in comparison to the
paramagnetic salts which are standardly considered and used
for magnetic refrigeration (see, e.g., Refs. [14,37–39] and
references cited therein). As we shall see, the central role in
the adiabatic (de)magnetization cooling processes is played by
highly macroscopically degenerated ground states especially
by the so-called single-point ground states, which are realized
for exactly defined values of the external magnetic field and
in the vicinity of which the adiabatic cooling is the most
pronounced with potential possibility of obtaining ultralow
temperatures.

The paper is organized as follows. In Sec. II, the model is
briefly introduced. The properties of the entropy per site of the
model are discussed and the residual entropies of all ground
states of the model are found in Sec. III. Detailed analysis of
adiabatic cooling processes in the framework of the studied

FIG. 2. The pyrochlore lattice structure.

model is performed in Sec. IV. Finally, obtained results are
briefly reviewed and discussed in Sec. V.

II. DESCRIPTION OF THE MODEL

Thus, let us consider the classical antiferromagnetic spin- 1
2

Ising model in the external magnetic field on the corner-sharing
tetrahedron recursive lattice with coordination number z = 6
shown explicitly in Fig. 1 (see Ref. [34] for all details), which
represents a suitable approximation of real three-dimensional
pyrochlore structure demonstrated in Fig. 2, and which, as
was already mentioned in the Introduction, properly takes into
account its basic geometric structure responsible for strong
geometric frustration.

The model is described by the following Hamiltonian:

H = −J
∑
〈i j〉

sisj − H
∑

i

si , (1)

where each variable si acquires one of two possible values ±1,
J < 0 is the nearest-neighbor antiferromagnetic interaction
parameter, and H represents the external magnetic field.
Standardly, in Eq. (1) the first sum runs over all nearest-
neighbor spin pairs and the second sum runs over all spin
sites.

The model can be analyzed numerically by using the
recursion relations technique (see, e.g., Ref. [24]) but, as was
shown and discussed in detail in Ref. [34], the exact analytic
solution of the model exists. It was proven in Ref. [34] that the
model exhibits exactly one unique solution for all values of
the model parameters and the explicit form of the solution was
found. In addition, a detailed analysis of the magnetization
properties of the model was performed together with the
analysis of the system of all ground states of the model. It was
shown that the model exhibits the existence of the so-called
single-point ground states, which are realized for some exact
values of the external magnetic field, and which exist along
with the well-known standard plateau ground states.

As we shall see in this paper, the existence of a degenerated
system of single-point and plateau ground states in the
frustrated antiferromagnetic materials with well-defined ther-
modynamical properties plays a crucial role in their adiabatic
(de)magnetization processes and therefore for understanding
of potential effectiveness of their use for magnetic cooling.

III. ENTROPY AND RESIDUAL ENTROPIES
OF THE MODEL

The analysis of cooling processes in frustrated systems is
based on the behavior of the entropy per site defined through
the free energy per site of the studied model which in our case
has the following explicit form:

βf = − ln(x3e3h + 3x2eh−2K + 3xe−h + e6K−3h)

+ 1
2 ln(x4e4h+6K + 4x3e2h + 6x2e−2K

+ 4xe−2h + e6K−4h), (2)

where β = 1/(kBT ), T is the temperature, kB is the Boltzmann
constant, K = βJ , h = βH , and x is the exact solution of the
corresponding recursion relation (see Ref. [34] for all details),
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FIG. 3. Dependence of the entropy per site on the external
magnetic field for various nonzero values of the reduced temperature.

the explicit form of which is given as

x = − b

4a
+ A + 1

2

(
−4A2 − B − C

A

)1/2

, (3)

where

A = 1

2
√

3

[
−B + 1

a

(
D + E

D

)]1/2

, (4)

B = 8ac − 3b2

4a2
, (5)

C = b3 − 4abc + 8a2d

8a3
, (6)

D =
[
F + (F 2 − 4E3)1/2

2

]1/3

, (7)

E = c2 − 3bd + 12ae, (8)

F = 2c3 − 9bcd + 27b2e + 27ad2 − 72ace, (9)

and

a = e2(3h+K), b = e4h[3 − e2(h+4K)], (10)

c = 3e2(h+K)(1 − e2h), d = e8K − 3e2h, (11)

e = −e2K. (12)

For completeness, let us note that the free energy per site
(2) can be derived, e.g., by using the technique described in
Ref. [40] (see also Ref. [41]).

The entropy per site is then standardly defined as follows:

s = − ∂f

∂T
, (13)

and its dependence on the external magnetic field for various
nonzero values of the reduced temperature is shown explicitly
in Fig. 3. The entropy is a continuous function of the nonzero
temperature as well as of the external magnetic field and, at the
same time, one can immediately observe the formation of the
system of nontrivial residual entropies for low enough values
of the temperature for all ground states except of the saturated

FIG. 4. The system of residual entropies of the model. The
filled circles represent the residual entropies of the single-point
ground states which are realized for |Hsp1/J | = 2 and |Hsp2/J | = 6,
respectively.

ground states with magnetization m = ±1 which are realized
for H/J > 6 and H/J < −6, respectively (see Ref. [34]).
It means that the model exhibits a highly macroscopically
degenerated system of ground states with discrete values of the
residual entropy per site shown explicitly in Fig. 4. Further,
the model contains two plateau ground states with absolute
values of magnetization m = 0 and |m| = 1

2 (see Ref. [34] for
details). The plateau ground state with m = 0 is realized for
|H/J | < 2 and its exact residual entropy, which we denote as
spl1 for convenience, is equal to

spl1 = ln (3/2)/2 kB ≈ 0.202733 kB. (14)

It is worth mentioning that this exact theoretical result for
the residual entropy is in perfect accordance with experi-
mental measurements on the magnetic materials with py-
rochlore structure, e.g., such as pyrochlore titanates Dy2Ti2O7

[6,15,17]. Besides, this residual entropy is equal to the
well-known Pauling entropy for the water ice, i.e., for the
pyrochlore spin ice [42]. Thus, the studied model on the tetra-
hedron recursive lattice can be considered as very suitable
for theoretical description of basic properties of pyrochlore
magnetic systems. In this respect, let us note that this residual
entropy on the real tetrahedron lattice was also estimated by
Monte Carlo simulation [43] and the obtained result 0.20309kB

is in very good agreement with exact Pauling entropy value
(14).

On the other hand, the plateau ground states with |m| = 1
2

which are realized for the values of the external magnetic field
2 < |H/J | < 6 (see Ref. [34] for details) are less macroscop-
ically degenerated in comparison to the zero magnetization
plateau ground state and have the residual entropy per site
equal to

spl2 = ln(3
√

3/4)/2 kB ≈ 0.130812 kB. (15)

As was already mentioned, the model also exhibits the
presence of two additional well-defined so-called single-point
ground states, existence of which was proven in Ref. [34],
which have unique thermodynamical properties and which
are realized for exactly given absolute values of the external
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magnetic field. (Note that the existence of the single-point
ground states was exactly proven for the first time in
Refs. [32,33] in the framework of the antiferromagnetic spin- 1

2
Ising model on the kagomelike recursive lattice and later their
existence was also proven in the antiferromagnetic models
on geometrically frustrated one-dimensional systems [44,45].)
These ground states play the role of the separating points
between neighboring plateau ground states. As it follows from
Figs. 3 and 4, they are highly macroscopically degenerated,
i.e., with large values of the residual entropies in comparison
to the plateau ground states, and, as we shall see in what
follows, namely, this property of the single-point ground states
is principal for proper understanding of the process of adiabatic
cooling in magnetic frustrated systems. It is worth mentioning
that the formation of the single-point ground states is very
often visible in real experiments, e.g., in the behavior of the
magnetization curves (see, e.g., Refs. [10,11]).

The first single-point ground state with exact magnetization

|m| = y2 − 1

y2 + 1
, (16)

where

y = −1 + 2
√

2 cos[(π − arctan
√

7)/3], (17)

and with approximate value |m| ≈ 0.228438 (see Ref. [34]
for details), is realized for the absolute value of the external
magnetic field |Hsp1/J | = 2. Its exact residual entropy is equal
to

ssp1 = kB

2
ln

[
y2(y + 3)2

4y + 6

]
, (18)

where y is given in Eq. (17) and its approximative numerical
value is ssp1 ≈ 0.481144kB . Let us note that this single-point
ground state is the most macroscopically degenerated ground
state of the model, i.e., with the maximal value of the residual
entropy, and represents the boundary (separating) ground state
between the plateau ground states with magnetization m = 0
and |m| = 1

2 .
On the other hand, the second nontrivial single-point ground

state with magnetization

|m| = 8 + √
13

17
≈ 0.682679, (19)

(again see Ref. [34] for details) emerges on the border between
the plateau ground states with |m| = 1

2 and saturated ground
states with |m| = 1 for the absolute value of the external
magnetic field |Hsp2/J | = 6. Its residual entropy is equal to

ssp2 = kB

2
ln

[
19 + 13

√
13

34

]
≈ 0.330678kB. (20)

The hierarchy of residual entropies of all ground states of
the model is demonstrated in Fig. 4, where the filled circles
represent the residual entropies of the single-point ground
states.

FIG. 5. The cooling rate Cr defined in Eq. (21) as the function
of the absolute values of the external magnetic field for various
temperatures.

IV. ANALYSIS OF ADIABATIC COOLING PROCESSES
OF THE MODEL AND THEIR EFFICIENCY

The main aim of this paper is to perform detailed theoretical
analysis of the adiabatic cooling processes, such as cooling
through the adiabatic (de)magnetization, in the frustrated
antiferromagnetic systems with pyrochlore structure in the
framework of the studied exactly solvable model. The adiabatic
magnetic cooling is standardly characterized by the cooling
rate Cr defined as follows:

Cr ≡
(

∂T

∂H

)
S

= − T

cH

(
∂s

∂H

)
T

= − (∂s/∂H )T
(∂s/∂T )H

, (21)

where s is the entropy per site discussed in the previous section
and cH is the specific heat per site in a constant external
magnetic field.

The dependence of the cooling rate (21) on the absolute
value of the external magnetic field for various temperatures
and on the reduced temperature for various absolute values
of the external magnetic field are shown in Figs. 5 and 6,

FIG. 6. The cooling rate as the function of the temperature for
various absolute values of the external magnetic field.
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FIG. 7. The cooling rate as the function of the temperature for
various absolute values of the external magnetic field in the vicinity
of |Hsp1/J | and |Hsp2/J |. Rapid increasing of the cooling rate as
well as its universal behavior for the magnetic fields very close to
|Hsp1/J | and |Hsp2/J | is demonstrated. The solid curves correspond
to the external magnetic fields from the vicinity of |Hsp2/J | = 6 and
the dotted curves are related to the magnetic fields near |Hsp1/J | = 2.
The values of the external magnetic fields for dotted curves are placed
into the parentheses.

respectively. Looking at these figures it is clear that, depending
on the value of the external magnetic field, the cooling
rate for small enough temperatures exhibits two different
behaviors (see, e.g., the curves kBT /|J | = 0.25, 0.5, and 1
in Fig. 5) related to the existence of highly macroscopically
degenerated single-point ground states realized in the external
magnetic field with the absolute values |Hsp1/J | and |Hsp2/J |
discussed in the previous section. First, it is evident that
when one decreases the intensity of the absolute value of
the external magnetic field towards |Hsp2/J | = 6 as well as
towards |Hsp1/J | = 2 the cooling rate increases rapidly, i.e.,
the system passes through strong cooling processes what is
explicitly evident from Fig. 6 (see the curves for |H/J | = 6.2
and |H/J | = 2.2, respectively). Besides, the cooling effects
become more intensive when the absolute values of the external
magnetic field are very close to the |Hsp1/J | or |Hsp2/J | which
are manifested themselves through the rapid increase of the
cooling rate values (see curves |H/J | = 2.01 and 6.01 in
Fig. 7). Moreover, as it follows from Fig. 7, the behavior of the
cooling rate exhibits strong universality in the close vicinity
of both |Hsp1/J | and |Hsp2/J |. For low enough temperatures,
the corresponding curves become almost indistinguishable.

Second, the opposite situation is observed for the absolute
values of the external magnetic field from the left vicinity of
|Hsp1/J | and |Hsp2/J |. Here, the cooling rate obtains negative
values as it follows from Figs. 5–7. It means that decreasing of
the absolute values of the external magnetic field leads to the
rapid heating of the system. In this case, the cooling effects
are obtained by increasing of the absolute value of the external
magnetic field towards |Hsp1/J | and |Hsp2/J |.

Thus, in general, the most intensive cooling processes in
the studied antiferromagnetic frustrated system are observed
by the magnetic field changes towards the nearest single-point
ground state magnetic field, i.e., towards |Hsp1/J | or |Hsp2/J |.

FIG. 8. The normalized cooling rate Cr,norm as the function of
the absolute value of the external magnetic field for various reduced
temperatures.

Let us also compare the efficiency of the magnetic cooling
in the present antiferromagnetic frustrated system with the
effectiveness of the magnetic cooling in the paramagnetic salts,
which are considered and used as standard refrigerant materials
for the low temperature magnetic cooling. It is well known
that the cooling rate of the ideal paramagnetic salt is simply
given as follows: Cr,par = T/H . Therefore, the effectiveness of
our frustrated system for the magnetic cooling in comparison
to the ideal paramagnetic salt is given by the normalized
cooling rate

Cr,norm ≡ Cr/Cr,par. (22)

It is clear that in the region of the model parameters for
which Cr,norm > 1, the magnetic cooling by the studied
antiferromagnetic frustrated system is more effective than the
magnetic cooling by the ideal paramagnetic salt.

In Figs. 8–10 the normalized cooling rate is demonstrated
as the function of the absolute value of the external magnetic
field for various temperatures and as the function of the
reduced temperature for various absolute values of the external
magnetic field. Everywhere where the absolute value of the
normalized cooling rate is greater than one, the antiferromag-
netic system with pyrochlore structure cools down faster than
the ideal paramagnetic salt for the same model parameter
values. As follows from Figs. 9 and 10, the normalized
cooling rate increases rapidly when the external magnetic
field approaches values |Hsp1/J | = 2 or |Hsp2/J | = 6 for
low enough temperatures. Again, this behavior is directly
related to the existence of two single-point ground states, the
macroscopic degeneracies of which are sufficiently larger than
macroscopic degeneracies of the plateau ground states which
are separated by them.

It is also worth to mention that although the cooling rates
near both single-point ground state values of the external
magnetic field have a universal character (see Fig. 7) the
effectiveness of the adiabatic cooling in comparison to the ideal
paramagnetic salt is much larger in the vicinity of the single-
point ground state with larger intensity of the external magnetic
field, i.e., near |Hsp2/J | = 6. The difference is explicitly
shown in Fig. 10, where the solid curves correspond to the
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FIG. 9. The normalized cooling rate as the function of the
temperature for various absolute values of the external magnetic field.
The dashed lines correspond to |Cr,norm| = 1.

external magnetic fields from the vicinity of |Hsp2/J | = 6
and the dotted curves are related to the magnetic fields near
|Hsp1/J | = 2.

Now, let us discuss in detail the temperature variation under
adiabatic (de)magnetization processes in the framework of the
present model which is given by the adiabatic temperature
change �Tad defined as follows:

�Tad ≡
∫ Hf

Hi

Cr dH, (23)

where Cr is the cooling rate defined in Eq. (21) and Hi and
Hf are initial and final values of the external magnetic field,
respectively, during the studied adiabatic process. At the same
time, the character of the adiabatic cooling processes strongly
depends on the initial values of the external magnetic field as
well as on the initial values of the temperature. Here, the key
role is played by the residual entropies of all ground states of
the model which divide the |H/J | versus kBT /|J | plane into

FIG. 10. The normalized cooling rate as the function of the
temperature for the absolute values of the external magnetic field close
to |Hsp1/J | and |Hsp2/J |, respectively. The solid curves correspond
to the external magnetic fields from the vicinity of |Hsp2/J | = 6 and
the dotted curves are related to the magnetic fields near |Hsp1/J | = 2.

FIG. 11. The adiabatic curves for the residual entropy values
which divide |H/J | − kBT /|J | plane into five disjunct regions in
which the adiabatic curves have different properties (see the text).

five specific disjunct regions (see Fig. 11) and in which the
adiabatic curves have different behavior with different final
cooling result, i.e., with different reached final temperature.

In the region of the model parameters denoted as I in
Fig. 11 (the region below dotted curve), the entropies of the
corresponding states are always less than the residual entropy
of the plateau ground state with absolute value of magneti-
zation |m| = 1

2 , i.e., s/kB < spl2/kB ≈ 0.130812. Note that
such states exist only for |H/J | > 6. All adiabatic curves
from this region end arbitrarily close to zero temperature
when the external magnetic field decreases to |Hsp2/J | = 6.
Thus, starting in this region of model parameters the system
can be cooled down to the final state with arbitrarily low
nonzero temperature and with the absolute value of the external
magnetic field close but always larger than |Hsp2/J | = 6. This
behavior is shown in Fig. 12 (see the adiabatic curves with
s/kB = 0.065 and 0.13), where various adiabatic curves of
the model are shown (solid lines with explicit values of the
entropy) together with the residual entropy adiabatic curves
denoted as red dotted lines which correspond to the adiabatic
curves shown in Fig. 11.

FIG. 12. Adiabatic curves for various values of the entropy per
site s/kB (solid lines). The dotted curves represent the adiabatic
curves with the corresponding residual entropy values (see Fig. 11).
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The states from the second region of model parameters,
denoted as II in Fig. 11, have values of entropy between
the residual entropies of two plateau ground states of the
model, i.e., between spl1 and spl2 , and such kind of states
are present in the model for 2 < |H/J | < 6 (only below the
dashed-dotted curve in Fig. 11) as well as for |H/J | > 6.
In this case, it is evident that the process of adiabatic cooling
depends on the initial value of the external magnetic field Hi . If
|Hi/J | > 6, then decreasing of the temperature is obtained by
decreasing of the absolute value of the external magnetic field
to |Hsp2/J | = 6 in an analogous way as in the previous case.
However, the adiabatic cooling process is different when 2 <

|Hi/J | < 6. Here, the cooling down to very low temperatures
can be realized by increasing of the absolute value of the
magnetic field towards |Hsp2/J | = 6 or by decreasing of the
absolute value of the magnetic field towards |Hsp1/J | = 2 (see
the adiabatic curve with s/kB = 0.19 in Fig. 12).

The third region denoted as III in Fig. 11 represents the
region of the model parameters for which the states of the
system have entropy values between spl1 and ssp2 (in Fig. 11
it is given by the region between the dashed curve and
dashed-dotted curve for |H/J | > 2 and by the region below
the dashed curve for |H/J | < 2). One can immediately see
that it is the first region of parameters for which such states
exist for arbitrary values of the magnetic field for nonzero
temperatures. Here, again the adiabatic cooling process to very
low temperatures strongly depends on the initial absolute value
of the magnetic field, namely, it can be realized by changing of
the value of the magnetic field towards the nearest single point
value of the external magnetic field, i.e., towards Hsp1/J = ±2
or Hsp2/J = ±6 (see the adiabatic curves with s/kB = 0.26
and 0.32 in Fig. 12).

The region of model parameters for which the values of
the entropy are between the residual entropies ssp1 and ssp2 is
denoted as IV in Fig. 11. Here, it is evident that the cooling
down to very low temperatures is surely possible only when the
absolute values of the magnetic field tend to |Hsp1/J | = 2 (by
decreasing or increasing of the absolute value of the external
magnetic field towards |Hsp1/J | = 2). On the other hand, the
very low temperatures can be also obtained when |H/J | tends
to |Hsp2/J | = 6 but only when the initial state has the entropy
value very close to the residual entropy ssp2 . Typical adiabatic
curves from this region are shown in Fig. 12 (see the adiabatic
curves with s/kB = 0.39 and 0.45).

Finally, there exists the region of the model parameters
in which the entropy of the system is always larger than
the residual entropy of the most macroscopically degenerated
ground state of the model, i.e., larger than ssp1 . This region,
denoted as V, is placed over the solid curve in Fig. 11. Here, the
adiabatic cooling down to very low temperatures is possible
only when the initial state has the entropy value very close
to the residual entropy ssp1 and the corresponding cooling
process is realized near the single-point absolute value of the
magnetic field |Hsp1/J | = 2. Each adiabatic curve from this
region obtains a minimal value of the adiabatic temperature
for some value of the external magnetic field which represents
the minimal value of the temperature which can be reached
by given cooling process. Again, typical adiabatic curves from
this region can be seen in Fig. 12 (see the adiabatic curves with
s/kB = 0.52 and 0.58, respectively).

FIG. 13. Comparison of adiabatic curves from different regions
I–V (see Fig. 11) with the corresponding adiabatic curves of the ideal
paramagnetic salt (dotted lines). The initial absolute value of the
magnetic field is fixed and equal to |Hi/J | = 12.

As it follows from the above discussion, the adiabatic
cooling in the framework of frustrated antiferromagnetic
systems is a rather complicated but very sophisticated process
which strictly depends on the initial conditions before cooling.
It means that to be able to use effectively such materials for
cooling to very low temperatures it is necessary first to know
their basic thermodynamical properties, such as the system
of all ground states with their residual entropies which, as
was shown above, play the key role in the adiabatic cooling
processes. Then, the most effective strategy of cooling can be
chosen depending on the initial conditions of the system or,
contrariwise, the suitable initial conditions can be adjusted for
the experimentally realizable effective process of adiabatic
cooling. It is worth mentioning that the processes of the
adiabatic cooling are the most effective for such initial states of
the system which have values of the entropy very close to the
corresponding residual entropy of some model ground state.

Let us also note that, from a pure theoretical point of view,
the absolute zero temperature can be in principle reached only
when the entropy of an initial state is exactly equal to one of
the residual entropies of the ground states of the model and the
corresponding cooling process is realized towards the nearest
possible single-point value of the external magnetic field, i.e.,
towards |Hsp1/J | = 2 or |Hsp2/J | = 6.

It is also instructive to compare the efficiency of the
adiabatic cooling in the framework of the present frustrated
antiferromagnetic system with the corresponding cooling
processes in standardly used paramagnetic salts. In this respect,
in Fig. 13 the corresponding comparison is performed for
fixed initial absolute value of the external magnetic field
(|Hi/J | = 12) and for various initial values of the reduced
temperature chosen such that the initial conditions belong into
different regions I−V discussed above (see Fig. 11). In Fig. 13,
the solid lines correspond to the adiabatic temperature of the
studied pyrochlore system and the corresponding adiabatic
temperature curves for the ideal paramagnetic salt with the
same initial conditions are demonstrated by dotted lines.
It is evident from this figure that the adiabatic cooling of
the paramagnetic salts is more effective only for relatively
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FIG. 14. The isothermal magnetic change �sM defined in
Eq. (24) for Hi = 0 as the function of the reduced temperature and
of the absolute value of the final magnetic field |Hf /J |.

small absolute values of the external magnetic field. This
fact is obvious because the paramagnetic salts have unique
macroscopically degenerated single-point ground state with
residual entropy per site equal to kB ln 2 which is realized
directly in zero external magnetic field, i.e., the process of the
adiabatic cooling (as well as the MCE) is the most pronounced
in the vicinity of the zero external magnetic field. On the
other hand, as for the studied antiferromagnetic system with
pyrochlore structure, the processes of the adiabatic cooling are
significantly more effective in comparison to the analogous
processes in paramagnetic salts for higher absolute values of
the external magnetic field and the effectiveness is largest
for magnetic fields in the vicinity of the single-point ground
state magnetic field values |Hsp1/J | = 2 and |Hsp2/J | = 6.
Note that this conclusion is valid regardless of the region from
which the initial conditions are chosen.

Finally, let us also briefly discuss another important
quantitative characteristic of the MCE, namely, the isothermal
magnetic entropy change �sM defined as follows:

�sM (T ,�H ) =
∫ Hf

Hi

(
∂s

∂H

)
T

dH, (24)

where Hi and Hf are again initial and final values of
the external magnetic field, respectively. Its simultaneous
dependence on the absolute value of the final external magnetic
field |Hf /J | and on the temperature is shown in Fig. 14
for Hi = 0, i.e., �H = Hf . At the same time, in Figs. 15
and 16, the dependence of �sM on the |Hf /J | for various
values of the temperature and on the temperature for various
values of |�H/J | is shown. All these figures also demonstrate
the central role of the highly macroscopically degenerated
single-point ground states of the model for the existence
of giant MCE which manifest themselves in magnetic field
induced large changes in the magnetic entropy in the vicinity
of the single-point ground state absolute values of the magnetic
field.

FIG. 15. The isothermal magnetic change �sM for Hi = 0 as the
function of the absolute value of the final magnetic field |Hf /J | for
various values of the reduced temperature.

V. CONCLUSION

In this paper, we have investigated in detail adiabatic
(de)magnetization cooling processes in the geometrically
frustrated antiferromagnetic spin- 1

2 Ising model with the
presence of the external magnetic field on the tetrahedron
recursive lattice which represents a suitable approximation
of real systems with pyrochlore structure and which takes into
account its basic geometrical structure responsible for strong
frustration.

First of all, using the exact expression for the free energy
per site of the model, the behavior of the entropy is investigated
and the exact expressions for the residual entropies of all
ground states of the model are found (see Figs. 3 and 4). It
is shown that the model exhibits the presence of two unique
highly macroscopically degenerated single-point ground states
with well-defined thermodynamical properties along with the
existence of two plateau ground states which also have nonzero
residual entropies.

The cooling rate, i.e., the adiabatic change of the temper-
ature as a response on the variation of the magnetic field,

FIG. 16. The isothermal magnetic change �sM for Hi = 0 as the
function of the reduced temperature for various absolute values of the
final magnetic field |Hf /J |.
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is studied as the function of the temperature and of the
external magnetic field and it is shown that the adiabatic
magnetic cooling is most pronounced in the vicinity of
the single-point ground state values of the magnetic fields:
|Hsp1/J | = 2 and |Hsp2/J | = 6. This is manifested explicitly
by the rapid changes of the cooling rate near these special
values of the external magnetic field (see Figs. 5–7). At
the same time, it is also shown that the cooling processes
exhibit almost universal behavior in the near vicinity of both
single-point ground state values of the external magnetic field
(see Fig. 7). The efficiency of the cooling processes in the
studied antiferromagnetic frustrated system is compared to
the corresponding processes in the ideal paramagnetic salt. It
is shown that the geometrically frustrated antiferromagnetic
system with the pyrochlore structure cools down much more
faster than the ideal paramagnetic salts especially near the
nonzero single-point ground state values of the external
magnetic field (see Figs. 8–10).

The sensitivity of the adiabatic temperature to field vari-
ations in the processes of the adiabatic (de)magnetization
cooling is investigated and it is shown that the model parameter
space is divided into five disjunct regions with specific
behavior of the adiabatic curves (see Figs. 11–13) which are
defined by the adiabatic curves corresponding to the nontrivial
residual entropies of all ground states of the model. It means
that the results (reached low temperatures) and effectiveness of
the adiabatic cooling processes in frustrated antiferromagnetic
systems strongly depend on the chosen initial conditions
as well as on the cooling strategy. Thus, the adiabatic
cooling in this case represents a sophisticated process, unlike
the straightforward cooling process in paramagnetic salts.
Therefore, it is necessary first to know basic thermodynamical
characteristics of the system (especially the system of all

ground states of the model, the positions of all single-point
ground states of the model, as well as their residual entropies)
to be able to use effectively such materials with great potential
for adiabatic cooling to ultralow temperatures.

Finally, let us also note that our theoretical results obtained
in the framework of the classical antiferromagnetic model
on the recursive lattice with pyrochlore structure are in very
good qualitative agreement with recent experimental results
obtained on the pyrochlore material Er2Ti2O7 (see, e.g.,
Figs. 2 and 3 in Ref. [21]). It means that even classical
spin systems represent a suitable platform for investigation
of fundamental physical properties of real frustrated magnetic
materials. However, on the other hand, it is also necessary
to bear in mind that there exist materials which, despite the
fact that they have the same pyrochlore structure, under the
influence of the magnetic field in some special direction exhibit
thermodynamical properties of magnetic systems with two-
dimensional kagomelike structure (see, e.g., Refs. [10,11]),
i.e., for description of their properties the kagome lattice
represents much more appropriate basis [46,47].
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[32] E. Jurčišinová, M. Jurčišin, and A. Bobák, Phys. Lett. A 377,

2712 (2013).
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