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The self-organized criticality on the random fractal networks has many motivations, like the movement pattern
of fluid in the porous media. In addition to the randomness, introducing correlation between the neighboring
portions of the porous media has some nontrivial effects. In this paper, we consider the Ising-like interactions
between the active sites as the simplest method to bring correlations in the porous media, and we investigate
the statistics of the BTW model in it. These correlations are controlled by the artificial “temperature” T and
the sign of the Ising coupling. Based on our numerical results, we propose that at the Ising critical temperature
Tc the model is compatible with the universality class of two-dimensional (2D) self-avoiding walk (SAW).
Especially the fractal dimension of the loops, which are defined as the external frontier of the avalanches, is very
close to DSAW

f = 4
3 . Also, the corresponding open curves has conformal invariance with the root-mean-square

distance Rrms ∼ t3/4 (t being the parametrization of the curve) in accordance with the 2D SAW. In the finite-size
study, we observe that at T = Tc the model has some aspects compatible with the 2D BTW model (e.g., the
1/ log(L)-dependence of the exponents of the distribution functions) and some in accordance with the Ising
model (e.g., the 1/L-dependence of the fractal dimensions). The finite-size scaling theory is tested and shown to
be fulfilled for all statistical observables in T = Tc. In the off-critical temperatures in the close vicinity of Tc the
exponents show some additional power-law behaviors in terms of T − Tc with some exponents that are reported
in the text. The spanning cluster probability at the critical temperature also scales with L

1
2 , which is different

from the regular 2D BTW model.

DOI: 10.1103/PhysRevE.96.052127

I. INTRODUCTION

The notion of critical phenomena on the fractal lattices
is a long-standing problem in the literature. Gefen et. al.
were the first who systematically studied the problem [1].
Experimental motivations for such a study can be found in
some works like Refs. [2–8], in which the voids of percolating
clusters were filled by (commonly magnetite) nanoparticles of
a ferromagnetic fluid. For such problems the Ising model in
the percolation clusters is the best and simplest realization
[9] (should not be confused with the Ising model as the
metric space in the current paper). There are also some
other dynamical processes in the fractal systems, such as the
propagation of fluids in the reservoirs in the displacement
method of the oil recovery. In this approach, the water or the
gas is injected into a well so that the percolation theory (as
the host space) can be employed to find the percentage of the
injected fluid which is percolated to the production well [10].
This movement shows degrees of (self-organized) criticality
[11,12], which can be shown by employing the Darcy model
[13] as a powerful tool that has the potential to bring most
parameters of the reservoirs in the calculations [14]. Such
natural processes have the chance to be described in terms
of self-organized criticality (SOC), which is a large class
of critical phenomena containing the systems that organize
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themselves in a critical state. The concept was invented by
Bak, Tang, and Wiesenfeld [18,19] (known as the BTW model)
who mentioned that this self-organization needs some energy
input and output to be balanced and explained the well-known
1/f noise in the natural processes. The connection of the
reservoirs with the SOC was made by connecting the water
saturation threshold in the Darcy model, and the critical height
in the sandpile model. The other important example of the
SOC on the random systems is the experiment by Beggs
et al. [15], in which it was shown that the propagation of
spontaneous activity in cortical networks is self-organized
critical phenomena described by neuronal avalanches just
like the sandpile models. This motivates one to theoretically
investigate the sandpile models in the random networks [16]
and in the two- and three-dimensional small-world networks
[17] as the models for the neuronal activity. Many analytical
and theoretical aspects of the BTW model are known [20–24],
containing different height and cluster probabilities [25],
avalanche distribution [26–28], the connection of the model
to spanning trees [29], ghost models [30], and q-state Potts
model [31,32]. For a good review see Ref. [33]. One of the
first examples of the SOC phenomena on the fractal lattices
was mentioned by Najafi et al., who realized the movement
pattern of fluid in the two-dimensional (2D) porous media
by implementing the BTW model on the 2D uncorrelated
percolation lattice [34,35]. The most important reason for this
connection was claimed to be the existence of the saturation
threshold phenomenon in the real porous media, which was
realized by the toppling threshold in the BTW model on
the percolation lattice [34]. It was also claimed that this
model right at the percolation threshold corresponds to the
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Ising universality class [34,35], which is consistent with the
results of the geometrical properties of the Darcy’s reservoir
model [13]. Especially the fractal dimension of the frontier of
the avalanches was shown to be compatible with the fractal
dimension of the geometrical spin clusters of the critical Ising
model DF = 11

8 . By using the Schramm-Loewner evolution
technique, it has also been shown that this model is consistent
with the Ising model with the diffusivity parameter κ = 3. All
of these results show that the BTW model is a good candidate
for simulating the movement pattern of the fluid in the porous
media. This becomes more worthy when one considers the
fact that the other common statistical models, such as invasion
percolation [36], do not include the saturation threshold for
overflowing of the fluid to the neighboring regions. The BTW
on the three-dimensional uncorrelated percolation lattice is the
more realistic problem, which is done in Ref. [17], in which
it is shown that the exponents out of the percolation threshold
p > pc is logarithmically corrected in terms of p − pc.

The realization of the porous media with the uncorrelated
percolation lattice seems to be ad hoc, since the permeable
pores of the porous media are not completely independent in
the natural systems. As an example, consider the sedimentation
process of the reservoir rock in which some parts of the
reservoir rock become impermeable to flow [14]. This usually
happens because of some impermeable objects, such as shale
bodies, resulting to the formation of unoccupied or inactive
sites in the porous media. Therefore, the correlation of the
unoccupied sites depends on the dynamics of the sedimentation
process. Many models to bring the spatial correlations in
the simulations have been proposed. For example, a long-
range correlation was considered in Ref. [37] that comes
from fracture surfaces. Also, in Ref. [38], correlations are
considered by fractional Brownian motion. More recently, a
finite-range correlation was also studied and the effect on the
drying process of the correlation length was investigated [39].
The aim of the present paper is to realize the dynamics of
the fluid by means of the BTW model and take the spatial
correlations [of occupied (or unoccupied) sites] into account
by minimally manipulating the percolation theory. One (and
presumably easiest) way to model the correlations in the
(porous) host media is to use the Ising interactions. If we
choose ferromagnetic interactions, then in the original model
the occupied sites have constructive correlations, meaning
that two disjoint impermeable regions favor to get closer to
each other, or equivalently impermeable rocks absorb each
other in the sedimentation processes. In the antiferromagnetic
case, however, the interactions are repulsive. We model the
correlation of the occupied sites by the ferromagnetic Ising
model. In this approach, a site can have two states: occupied
and unoccupied corresponding to spin up and spin down
states in the dual Ising model respectively. The strength of
the correlations is controlled by the Ising coupling constant
and the artificial temperature T . Therefore by varying the
artificial temperature, we actually control the correlations
and the ordinary uncorrelated percolation system is expected
to be reached as the temperature goes to infinity. Our
results show that at T = Tc the self-avoiding universality
class is obtained. Also the exponents near the critical
temperature show additional power-law behaviors in terms
of T − Tc.

Mixing of two conformal symmetric models is also of in-
terest in the theoretical side. Mathematically this problem can
be tracked in terms of the Zamolodchkiv’s c-theorem, in which
knowing the scaling perturbing filed, one can obtain the change
of central charge of the conformal field theory δc = cIR − cUV

[40]. In this language the effect of the second CFT model
can presumably codded in a scaling field from the operator
content of the original (first) CFT model, which we name the
perturbing field. However, this approach is not practical for
the less-known models since determining the structure of the
renormalization group flows minimally needs the knowledge
of the perturbing field, which is generally not known. In
these situations the statistical methods can be useful by which
the critical model can be characterized and the corresponding
universality class can be obtained.

The paper has been organized as follows: In Sec. II, we
motivate this study and introduce and describe the model.
The results are presented in Sec. III, which contains two
subsections: Sec. III A, in which the critical results are
presented, and Sec. III B, in which the power-law behaviors in
the off-critical temperatures are presented. We end the paper
with a conclusion in Sec. IV.

II. THE CONSTRUCTION OF THE PROBLEM

The dynamics of particles or spins in the porous media is
the main motivation for the statistical models in the fractal
lattices as the host. These host systems should involve some
stochasticity to be a true realization of the real systems.
Examples of the spin dynamics in the porous media can be
found in Refs. [2–8], which are theoretically considered in
Ref. [9], in which the porous media has been simulated as
the uncorrelated percolation lattice. The dynamics of particles
(and fluids in the continuum limit) in the porous media is more
important in the petroleum engineering since the knowledge
of the propagation pattern of the fluid in these systems is vital
in extracting oil [34]. The similarity of some aspects of the
local rules of the fluid propagation in real systems and the
toppling rules in the sandpile models encourages one to apply
the sandpile models in the percolation lattice as the realization
of the porous media. It has been shown that some geometrical
properties of the latter is similar to the ones for the real systems
which is modeled by the Darcy’s reservoir model, e.g., the
fractal dimension of the frontiers of the avalanches in both
cases is the same in p = pc and is equal to the loops of the spin
clusters of the critical Ising model; i.e., D

Ising
f = 11

8 [13,34].
Considering the uncorrelated percolation lattice as the

realization of the porous media is a crude assumption and
may not be justified for all systems, since in the sedimentation
process of the reservoir rocks, the impermeable objects can
affect each other. To realize the interactions in the sedimen-
tation process, one should use a two-state model with short
range interactions, since the sedimentation (and generally the
presence) of a rock can only affect its neighborhood sites in
the close vicinity of that region. In the present paper we model
the impermeability-permeability configuration of the rocks
by the Ising model to realize the interactions and correlations in
the sedimentation process. This assumption is not phenomeno-
logical and is a physical assumption regarding the interactions
in sedimentation. It has three benefits: firstly it is a two-state

052127-2



MAPPING OF THE BAK, TANG, AND WIESENFELD . . . PHYSICAL REVIEW E 96, 052127 (2017)

model, secondly it contains short-range interactions and thirdly
it is simple for simulation. The spins of the employed Ising
model play the role of the field of presence or absence of
the permeable rocks. More precisely, if we show the spins
by σ , then σ = +1 (σ = −1) are attributed to the permeable
(impermeable) sites. The positive-correlated case is realized
by the ferromagnetic Ising model (positive coupling constant),
whereas the negative-correlated case is realized by the antifer-
romagnetic one (negative coupling constant). The correlations
of our zero-magnetic field Ising system is controlled by the
temperature T which has nothing to do with the real tem-
perature. Therefore, we should mention that T is an artificial
temperature. We use this word without “artificial” throughout
this paper, having in mind that we mean the control parameter,
which tunes the correlations of the host system. To this end,
we use the Ising Hamiltonian (H ) in the zero magnetic field:

H = −J
∑
〈i,j〉

σiσj − h
∑

i

σi, σi = ±1, (1)

in which J is the coupling constant, h is the magnetic field, and
σi and σj are the spins at the sites i and j , respectively, having
the values ∓1 (as introduced above). 〈i,j 〉 shows that the sites
i and j are neighbors. J > 0 corresponds to ferromagnetic
system (positively correlated host lattice), whereas J < 0 is
for antiferromagnetic ones (negatively correlated host lattice).
We emphasize that in this paper we use the Ising model as the
metric space and our model is not a magnetic one; instead,
the spins show the state of the pores the porous media.
The artificial temperature T controls the population of the
permeable rocks relative to the total number of rocks and also
controls the heterogeneity and correlations of the host system.
On the other hand, h, which controls the preferred direction for
the spins in the Ising model, shows the tendency of the porous
media for having permeable (h > 0) or impermeable (h < 0)
sites. For h = 0 the model is well-known to exhibit a nonzero
magnetization per site M = 〈σi〉 at temperatures bellow the
critical temperature Tc. Although we set h = 0 throughout
this paper, we prefer to mention some points concerning this
parameter here. In the Ising model the magnetization has a
discontinuity at h = 0 along the T < Tc line, i.e., for h = 0+
and T < Tc we have M > 0, whereas for the case h = 0− and
T < Tc we have M < 0. We can have a percolation description
of the Ising model which is controlled by T and h as follows:
In each T and h the system is composed of some spin clusters.
Let us consider only up-spin clusters, having in mind that the
system has the symmetry h → −h and σi → −σi . We define
hth(T ) as the magnetic field threshold below which there is no
spanning cluster of the parallel spins and above which some
spanning clusters appear. Apparently, for T = 0 all spins
align in the same direction and Hth(T = 0) = 0+. Also, for
T = ∞ the spins are uncorrelated and take the up direction
with the probability 1

2eh/ cosh h. Therefore, the percolation

threshold p
Ising
c in the case T → ∞ is

pIsing
c = ehth(∞)

2 cosh [hth(∞)]
. (2)

Although this picture helps to understand the percolation
aspects of the Ising model, it has nothing to do with the
case h = 0. There are two transitions in the Ising model: the

magnetic (paramagnetic to ferromagnetic) transition and the
percolation transition (in which the connected geometrical spin
clusters percolate). For the 2D regular Ising model at h = 0,
these two transitions occur simultaneously [41], although it is
not the case for all versions of the Ising model, e.g., for the
site-diluted Ising model [9]. For the details of the percolation
transition associated with the critical point of the 2D Ising
model see Refs. [42] and [43].

Before describing the dynamics in this type of porous
media, let us first briefly introduce the standard BTW model
on a regular d-dimensional hypercubic lattice [18]; each site
i has an integer height (energy) Ei � 1. At initial state, one
can set randomly the height of each site in which Ei � Ec.
Ec is the threshold height equal to the number of nearest
neighbors of each site (e.g., for hypercubic lattice Ec = 2d).
At each time step a grain is added on a randomly chosen
site (Ei → Ei + 1). If the height of this site exceeds Ec,
a toppling occurs: Ei → Ei + �i,j in which �i,j = −Ec if
i = j , �i,j = 1 if i and j are neighbors and zero otherwise.
A toppling may cause the nearest-neighbor sites to become
unstable (have hight higher than Ec) and topple in their own
turn and so on, until all of the lattice sites are below the critical
threshold (stable state). The total process, which starts by a
local perturbation (making the first site unstable) until reaching
another unstable configuration, is called an avalanche. The
model is conservative and the energy is dissipated only from
the boundary sites. The properties of the model in d = 2
has been investigated extensively and well understood in the
literature [33], as well as d = 3 [21,28,44]. The simple rule
for the dynamics of the sand grains on the Ising correlated
percolation lattice is that the energy is allowed to pass only
through the permeable (σ = +1) sites. In fact, we use the
following simple rules:

We define the Ising model on the L × L square lattice.
After acquiring a spin configuration by solving the Eq. (1)
for h = 0 at a given temperature, a spanning Ising cluster is
chosen as the host media. This is defined as the connected spin
cluster which contains the same spin sites and also connects
opposite boundaries of the system. Let us name this host area
as the active space. After identifying the active space, the sand
grains are restricted to move on it and can be dissipated through
the boundaries to which the active space is connected. Let us
define the active-space coordination number as

zj ≡
∑

i∈neighbors of j

δσi ,1 + δj,bndry, (3)

in which δ is the Kronecker δ function and δj,bndry is unity if the
site j is a boundary site and zero otherwise. Then the toppling
rule for the sand grains in the site j is simply Ej → Ej + �i,j ,
in which

�i,j =
⎧⎨
⎩

δσj ,1 if i and j are neighbors
−zi if i = j

0 other
. (4)

The random nature of the host system implies some serious
changes in the sandpile model. For the case T → 0, which
is the regular lattice, one retrieves the results of the ordinary
BTW model.
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Numerical details

At T = Tc for which the Ising model becomes critical,
some power-law behaviors emerge. The method to simulate
the system in the vicinity of this point is important, due to
the problem of critical slowing down. To avoid this problem
we have used the Wolff Monte Carlo method to generate
Ising samples. Our ensemble averaging contain both sandpile
avalanche as well as Ising-percolation lattice averaging. For the
latter case we have generated 102 Ising uncorrelated samples
for each temperature and lattice size. To control the finite-size
effects we have generated and analyzed the samples for various
rates of lattice size, namely L = 128, 256, 512, 1024, and
2048. To make the Ising samples uncorrelated, between each
successive sampling, we have implied L2/3 random spin flips
and let the sample to equilibrate by 500L2 Monte Carlo steps.
The main lattice has been chosen to be square, for which the
critical temperature of the Ising model is Tc ≈ 2.269. Only
the samples with temperatures T � Tc have been generated,
since the spanning clusters (active space) are present only
for this interval. As stated in the previous section, the sand
grains move only on the active space, which is defined as
the set of connected sites of the same spin that connects
two opposite boundaries. The temperatures considered in
this paper are T = Tc − δt1 × i (i = 1,2,...,5 and δt1 = 0.01)
to obtain the statistics in the close vicinity of the critical
temperature Tc � 2.269 (note that the model shows nontrivial
power-law behaviors in the vicinity of the critical temperature)
and T = Tc − δt2 × i (i = 1,2,...,10 and δt2 = 0.05) for the
more distant temperatures. To equilibrate the Ising sample
and obtain the desired samples we have started from the high
temperatures (T > Tc). For each temperature and lattice size
107 avalanche samples were generated for 100 Ising samples
(for each Ising sample 105 avalanche samples were generated
and each Ising sample had its own particle dynamics to reach
a steady state). We have used the Hoshen-Kopelman [45]
algorithm for identifying the clusters in the lattice.

Once a spanning Ising percolation cluster (containing N

active sit3ses) is obtained, the simulation of sandpiles on
this cluster begins. We first attribute some random integers
{Ei}Ni=1 to the active sites (permeable sites whose dual spins are
positive), so that 1 � Ei � 4 and σi = +1. A random active
site is chosen and a sand grain is added, i.e., Ei → Ei + 1.
If the site becomes unstable, i.e., Ei > 4, then it topples
according to the rule Eq. (4). In this rule, the sand grains
are no allowed to enter the inactive (impermeable) sites. As a
results of this toppling the neighboring active sites may become
unstable and topple. Therefore, a chain of topplings occurs
until a stable height configuration is reached. Just like the
original regular BTW model, we have transient configurations
(the primitive configurations which occur in the first stages
of the grain injection and do not appear again) and recurrent
configurations (the configurations which occur in the steady
states and repeatedly happens) here. In the transient states the
average grows linearly by the number of injections, whereas for
the recurrent states it is nearly constant. All of our analysis are
restricted to the steady states. Figure 1 is a 512 × 512 sample
at T = Tc in which the red (white) sites show the inactive
(active) sites and the set of gray sites show an avalanche which
moves on the white sites. The exterior frontier of the avalanche

FIG. 1. A avalanche sample in an Ising sample media in a 512 ×
512 lattice at T = Tc. The red sites represent the forbidden (inactive)
sites, and the white sites are representative of the active ones. The
toppled sites in an avalanche have been shown by the gray ones.

has been identified by a black loop whose statistical properties
as one of the geometrical quantity is investigated in this paper.

One of the important geometrical quantities in this paper
is the spanning cluster probability (SCP) which is defined
as the probability that an avalanche connects two opposite
boundaries. This probability depends on the temperature (T )
and the lattice size L, i.e., SCP(T ,L).

The quantities studied in this paper are as follows: the
number of topplings in an avalanche n; the size (mass) of
the connected component of an avalanche m; the loop lengths
l, which is the length of the loop that is the external perimeter
of an avalanche; the loop gyration radius r , which is defined
as r2 ≡ 1

l

∑l
i=1 (�ri − �rcom)2, which is the gyration radius of

the points involved in the perimeter of the avalanche. In
this formula, �ri is the position vector of the ith point and
�rcom ≡ 1

l

∑l
i=1 �ri is the center of mass of the avalanche. It is

notable that n, m, l, and r are observables related to the size
of the avalanches.

Let us mention some points concerning the distribution
functions of the statistical observables. For any critical system
in the thermodynamic limit L → ∞, one expects that the
distribution function of any statistical observable x (=one of
the observables of the above list) behaves like P (x) ∼ x−τx ,
in which τx is the exponent corresponding to the observable
x = n, m, l, and r . For the finite systems, the finite-size scaling
theory predicts that [21]

P (x,L) = L−βx gx(xL−νx ), (5)

in which gx is a universal function and β and ν are the
exponents corresponding to x. A simple dimensional analysis
shows that τx = βx

νx
, which will be tested for all observables

in the remaining of the paper. The exponent νx determines
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FIG. 2. The fitted plot of the distribution function of the (a) loop length (b) gyration radius with their β, ν, and τ exponents for various
rates of lattice sizes. (c) The fractal dimension Df ≡ γlr at T = Tc as the slope of the 〈log(l)〉 − 〈log(r)〉 plot. Inset: the exponent γmr .
(d) root-mean-square distance Rrms of the cut curves in terms of t (t ≡ the time parametrization of the curve) with the exponent 3

4 which is
compatible with νSAW = 0.75.

the characteristic scale of the probability distribution function
above which the distribution functions fall off more rapidly
than a power law. If the finite-size scaling (FSS) theory
works, the distributions Px(x,L) for various system sizes have
to collapse to a single one, by tunning their characteristic
scales. Then the argument of the universal function g has to
be constant. For a critical system one may expect that the
characteristic length, scale with the system size L as r∗ ∼ L,
i.e., νr = 1.

An important relation appears for the fractal dimensions
defined by y ∼ xγxy in which y and x are the statistical
observables. In fact, using the relation px(x)dx = py(y)dy

for the corresponding distribution functions then leads to the
scaling relation

γxy = τy − 1

τx − 1
. (6)

It is notable that this is the case only when the conditional
probability P (x|y) is a narrow function of both x and y. As an

important example, by considering the fact that νr = 1, after
some straightforward scaling analysis one finds νx = γxr [21].

III. RESULTS

The critical behaviors of the ordinary BTW model on
the regular lattice is retrieved in the limit T → 0. For all
temperatures in the range T < Tc the critical behaviors have
been observed, like the power-law behaviors as well as the FSS.
We consider the critical case T = Tc and T < Tc separately
since it is believed that there are two fixed points in the
problem, namely T = 0 (the IR fixed point) and T = Tc

(the UV fixed point) [34]. In this expression we have used
the terminology of the renormalization group in which the
small scales are named as the UV limit, whereas the large
scales are named as IR limit. The critical behaviors of the
system in the vicinity of the critical temperature is reported
for the maximum lattice size in this paper, i.e., L = 2048,
although calculated for all lattice sizes.
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A. Critical temperature

As stated in the previous section, the Ising model can
be seen as the percolation lattice. The percolation transition
in the Ising model is along with the magnetic transition,
which is second order with its own critical behaviors and
exponents. Our model involves some fixed points in the
parameter space T . The characterization of the fixed points
in any perturbed statistical models is very important, since
it yields information about its large-scale behaviors. For the
uncorrelated percolation lattice, it has been shown that p = pc

is the UV fixed point, which is unstable toward the p = 1 IR
fixed point [34,35]. In the renormalization group language,
the properties of the BTW model on uncorrelated percolation
lattice for p > pc is described by the IR fixed point in the
thermodynamic limit, i.e., p = 1, and only the p = pc case do
not run by zooming out of the system (or equivalently sending
the lattice size to infinity).

In this section, we concentrate on the critical temperature
case T = Tc. The identification of the universality class in
which the model lies, in T = Tc, needs a detailed characteri-
zation of the model and the corresponding exponents and the
finite size analysis. Due to the high diluteness of the host media,
i.e., correlated percolation lattice with T = Tc the number of
the boundary sites from which the sand grains can dissipate is
low, which causes the run time for the samples becomes large.

The first result has been shown in Fig. 2(a) in which the
data collapse for the distribution function of loop lengths p(l)
has been sketched for various rates of lattice sizes L. We
see that the graphs satisfy properly the FSS (relation 5) with
βl = 1.7 ± 0.1 and νl = 1.35 ± 0.1 The slope of this graph
is τl = 1.23 ± 0.1, which is consistent with τ = β

ν
, which is

necessary for the FSS hypothesis. This exponent is far from the
same exponent for the geometrical spin clusters for the Ising
model, i.e., τ Ising

l � 2.75 [9], but is close to the exponent for the
2D BTW model τ 2DBTW

l � 1.28 [46]. In this sense our model is
something between the Ising model and the 2D BTW models.
The same analysis for the gyration radius of loops yields βr =
1.4 ± 0.1, νr = 1 ± 0.01, and τr = 1.38 ± 0.02 ≈ βr

νr
. For the

comparison, we note that τ 2DBTW
r � 5

3 [21] and τ
Ising
l � 3.4

[13]. The fact that νr = 1 is expected and signals the fact that
the characteristic radius scales linearly with the system size L

which is a property of the critical systems.
The more important exponent in this system is γlr , which

is known as the fractal dimension of the loops, sometimes
represented by Df . The importance of this exponent has roots
in its relation to the diffusivity parameter (κ) in the Schramm-
Loewner evolution (SLE) theory [47,48]. SLEκ aims to classify
the 2D critical models into one parameter classes, which are
identified by κ [48]. It is well-known that there is a deep
connection between this parameter and Df , via the relation
Df = 1 + κ

8 . Therefore, one may interpret this as the fact that
the 2D statistical models can be classified via the determination
of Df . In fact, there are some other measures for identifying
the diffusivity parameter via winding angle statistics [48], left
passage probability [49,50] and direct SLE mapping [51,52].
Since the determination of Df is one of the most reliable
methods, we have calculated it as precisely as possible. The
result has been shown in Fig. 2(c) for various system sizes. The

size dependence of this exponent also appears in the inset of
Fig. 4(a), which will be described in the next section. The anal-
ysis of the slope in this figure shows that Df = 1.317 ± 0.005.
The most compatible fractional value to this result is 4

3 , which
corresponds to the SLE universality class κ = 8

3 . This is the
universality class of self-avoiding walk (SAW) whose fractal
dimension is DSAW

f = 4
3 � 1.33. In the inset of this figure, γmr

has been shown to be 1.962 ± 0.005. This amount is apparently
lower that γ 2DBTW

mr = 2 for the BTW model on the regular
2D lattice. This is because of the presence of impermeable
(inactive) sites inside the avalanches which cause it to be less
compact than the regular case in which no hallow is present.

To be more precise, we have also calculated a more
direct measure for testing the SAW. It is well-known
that for a 2D SAW which starts from the origin and
ends on an arbitrary point on the boundary, the dis-
tance Rrms (= root-mean-square distance) as a function
of the number of taken steps t (which is referred to
as the time) scales as Rrms ∼ tνR in which νR = 0.75.
To test this in our case we should force the stochastic path
to start from the boundary and end on a uniformly random
chosen point on the boundary. To this end we use the common
strategy in the loop analysis of 2D critical systems [46,51]. In
this approach one cuts the loops by a horizontal line (along
the x or y axis), which passes the center of mass of the loop
and sends its end point to a uniformly random chosen point at
infinity. Suppose that the curve path composed of N points is
{0,Z1,Z2,Z3,...,ZN }, in which Zi ≡ xi + iyi is the position of
the ith point in the upper half plane and ZN = xN shows that
the curve ends on the real axis. Then the map Wi ≡ xN

Zi

Zi−xN

transforms the curve to the one that goes from the origin to
a random point at infinity. After this process, one can plot
ensemble averaged R in terms of the number of steps to extract
the corresponding νR . To avoid any possible statistical error the
walk is truncated if the length of the single walk become more
that a threshold which has been set to 10 in our case. The result
has been shown in Fig. 2(d) in which Rrms has been drawn in
terms of t in a log-log plot. It is seen that νR = 0.78 ± 0.05,
which is in agreement with the result of SAW.

Before closing this section let us mention some points
concerning the conformal Mobius map w(Z), which has
been introduced above. In general, one may expect that the
fractal dimension of free SAW is the inverse of νR by some
scaling arguments. The above results show that the statistical
properties of the random curves has not been changed by
applying the w(Z) map. It is the finger print of the conformal
invariance of the model in hand, since after a this Mobius map
the properties of the original model and the mapped model
is not changed. One concludes that at T = Tc the model has
conformal invariance.

B. Off-critical temperatures

In this section we consider the problem in the more
general case, i.e., all temperatures involved. This study is
more interesting since it shows the total structure of the
system in hand. The exponents have been reported for the
maximum system size (L = 2048) in this section. The finite-
size dependence of the exponents are also reported. For a
single lattice size the exponents of the distribution functions
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FIG. 3. (a) The plot of the distribution function of the gyration radius for various rates of the temperature T . Inset: the collapse graphs of
the main graph. The exponents of the distribution functions of (b) the gyration radius r (c) the number of topplings in an avalanche n, (d) the
mass of the avalanches m, and (e) the loop length l length of the frontier of avalanche in terms of T for various system sizes. Insets: The linear
fits of the exponents at T = Tc in terms of 1/ log(L), L being the lattice size, from which the thermodynamic values can be extrapolated, and
the power-law behaviors of exponents near the critical temperatures with the exponents represented by γx (x ≡ r, n, m, and l).

have been calculated by the linear fitting of the log-log plot
of the figures. For distinguishing the linear part of the graph,
we have used the R2 test. The linear part of each graph has
been determined up to a scale above which the R2 of the linear
fit becomes less than 0.99. One may be concerned about the
criticality of the system in these off-critical temperatures. In

fact, we have observed that for all temperatures in this interval
the system shows power-law behaviors with some well-defined
exponents. We notice that at T = 0 the regular BTW model
is obtained which is critical. Our observations support the fact
that the exponents are rapidly saturated and become nearly
constant with small fluctuations for low-temperatures towards
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TABLE I. The exponents of distribution functions of x = n, m, l,
and r at model T = Tc. The first column shows the thermodynamic
value of the exponents, obtained form finite-size analysis. The last
two columns show the corresponding values for the 2D BTW and
Ising models for comparison. The data for the BTW has been written
from Ref. [21], and the data for the Ising model has been written from
Ref. [52].

τL→∞ τL=2048 ν β
β

ν
τ2DBTW τIsing

n 1.1(2) 1.15(2) 1.1(2) 1.27(2) 1.15(2) 1.293 −
m 1.1(2) 1.15(2) 1.11(2) 1.28(2) 1.15(2) 4

3 3.31
l 1.2(2) 1.23(1) 1.35(1) 1.7(1) 1.25 1.28 2.75
r 1.27(2) 1.38(2) 1.0(1) 1.4(1) 1.4 5

3 3.4

the T = 0 results. This behavior is stronger for larger lattice
sizes which shows that the dominant behavior of the system is
that of T = 0 case in the thermodynamic limit for T < Tc. The
distribution function of the gyration radius for various rates of
temperature T has been shown in Fig. 3(a). As is seen the
slopes change slightly by varying T . In the inset the collapsed
graphs have been shown. The corresponding exponents have
been appeared in Fig. 3(b) for various rates of lattice sizes.
The exponents monotonically decrease from 1.43 ± 0.02 for
low temperature to 1.37 ± 0.02 for T = Tc and L = 2048. The
dashed line has been drawn for helping eye. As is seen in this
figure the data points for the temperatures near the critical one
is considered to be more than others to track the power-low
behaviors in this interval. The left inset shows the finite-size
amounts of the exponent at T = Tc. A good linear behavior is
seen with respect to 1/(log10(L)). In fact, we see that

τx(L,T = Tc) = τx(L = ∞,T = Tc) + ax

log10(L)
(7)

for all x’s, namely, x = n,m, l, and r , and τx(L= ∞,T = Tc)
and ax are the fitting parameters to be determined. The
parameters of this equation have been obtained using the
least squares estimator (LSE) method. The dependence to

1
log10(L) has also previously seen for regular BTW models [21].
τx(L = ∞,T = Tc) is interpreted as the thermodynamic value
of the exponents which have been reported in the Table I. The
other exponents have been shown in Figs. 3(c)–3(e) in which
μ ≡ an, η ≡ am, α ≡ al , and ζ ≡ ar that are of the secondary
importance in our analysis. It is seen that τn and τm are nearly
the same in contrast to the regular 2D BTW model. Note that
for the three- and four-dimensional BTW model τm and τn are
approximately equal. The equality of these exponents reflects
the fact that avalanches and the waves are the same. More
precisely, in a single avalanche, each site maximally topples
one time; i.e., no site can topple more than one time. It is
interesting that this is also the case for the system in hand, i.e.,
BTW on the Ising-diluted square lattice for which the fractal
dimension is lower than two.

The behavior of the model in the vicinity of the critical
temperature is also seen to be power-law. The corresponding
analysis has been performed for L = 2048 in the mentioned
figures. The observed power-law behaviors are described by
the following relation:

|τx(T ) − τx(Tc)| ∝ |T − Tc|γx , (8)

TABLE II. The exponents of the off-critical temperature. The
second row shows the closest fractional values.

γn γm γl γr κlr κmr

Exponent 0.48(1) 0.61(1) 0.61(1) 0.26(2) 0.47(3) 0.82(2)
Fractional val. 1

2
3
5

3
5

1
4

1
2

4
5

in which γx is the corresponding exponent. The numerical
values of the exponents have been presented in Table II. The
fractional values are γn � 2γr � 1

2 and γm � γl � 3
5 .

The same analysis has been done for the fractal dimensions
which has been presented in Figs. 4(a) and 4(b) for various sys-
tem sizes. We see that γlr is an increasing function of T starting
at γ T =0

lr � 1.25 (compatible with regular BTW model) and
ending at γ

T =Tc

lr � 1.32, whereas γmr is decreasing function
starting at γ T =0

mr � 2 (compatible with the regular BTW model)
and ending at γ T =Tc

mr � 1.96. The finite-size dependence of the
exponents has been shown in the lower insets. Interestingly,
we have observed that the fractal dimensions scale with 1

L
in

sharp contrast to the 1
log10(L) for the exponents of the distribution

functions presented above. In fact, for the fractal dimensions
the relation is

γxy(L) = γxy(L = ∞) + σxy

L
, (9)

in which γxy(L = ∞) and σxy are the fitting parameters. We
see that γ

L=∞,T =Tc

lr = 1.32 ± 0.005 and γ L=∞,T =Tc
mr = 1.96 ±

0.005. Also in the vicinity of the critical temperature we see
that the following relation is satisfied:∣∣γxy(T ) − γxy(Tc)

∣∣ ∝ |T − Tc|κxy , (10)

in which κxy is its exponent. From the upper insets of these
figures we see that κlr � 1

2 and κmr � 4
5 . Before further

analysis let us present some scaling arguments concerning
the fractal dimension of loops Df (T ) and the exponent τl(T ).
Let us abbreviate lT (r) ≡ 〈l(r)〉|T . From the scaling relation

lT (r)
lTc (r) = rDf (T )−Df (Tc) one easily finds that lTc

= l
2− Df (T )

Df (Tc )

T . Using
this, and the the equality of the distribution probabilities
(pT (l)dlT = pTc

(l)dlTc
) we obtain

pT (l) = pTc
(l)

dlTc

dlT
= pTc

(l)

[
2 − Df (T )

Df (Tc)

]
l
1− Df (T )

Df (Tc )

T . (11)

Using the fact that pT (l) ∼ l−τl (T ) and pTc
(l) ∼ l−τl (Tc) one

finally finds that

τl(T ) − τl(Tc) =
[
τl(Tc) − 1

Df (Tc)

]
[Df (Tc) − Df (T )], (12)

showing that the exponents κlr and γl should be the same.
The 23% discrepancy is due to the fact that the relation
pT (l)dlT = pTc

(l)dlTc
is not that exact, since p’s belong to

different samplings. The power-law behavior in the vicinity of
the critical temperature has been gathered in the Table II.

The other important test is the hyper-scaling relation 6
which is investigated for T = Tc for γlr and γmr . The total
information concerning these exponents has been shown in
Table III. For the comparison the corresponding exponents for
the regular 2D BTW and 2D Ising models have been shown in
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FIG. 4. (a) The γlr and (b) the γmr in terms of T for various system sizes. The lower insets show the finite-dependence of the exponents
in terms of 1/L at T = Tc, L being the system size, from which the thermodynamic values can be extrapolated. The upper insets show the
power-law behavior of the exponents in the vicinity of the critical temperature with the exponents shown by κ .

this table. The numerical values of the exponents are between
the corresponding exponents of BTW and Ising models, e.g.,
γ

2DIsing
mr � 1.85 < γmr � 1.96 < γ 2DBTW

mr = 2.
An interesting question in this system is the following:

What is the probability that an avalanche connects two
opposite boundaries, i.e., percolates? It is the spanning cluster
probability (SCP). This probability is a measure of how the
particles are free to reach the boundaries and how large the
avalanches can be. These probabilities have been drawn in
Fig. 5 as a function of T and L. For each amount of L, SCP
is nearly constant for the most (low) temperature interval and
decreases as the temperature approaches Tc from below. In
the vicinity of Tc, SCP behaves in a power-law fashion, but
due to large statistical fluctuations, we could not extract the
exponent. The L dependence at T = Tc is, however, power
law with a well-defined exponent. As is seen in this figure
SCP is a decreasing function of L for all temperatures.
In the left inset of this figure we have shown the plot of
log10 SCP(T = Tc,L) in terms of log10 L from which it is seen
that SCP(T = Tc,L) ∼ L−γp with γp � 1

2 . For the comparison
we have also calculated the same for the low temperatures
which has been shown in the right inst for T = 1.768, from
which we see a same dependence on L with the exponent
γp(T = 1.768) = 0.42 ± 0.02, which is an estimation for the
regular BTW model. Therefore, this exponent is different from
the regular BTW model.

We close this section by concluding that the behavior of the
statistical observables near the critical temperature is power

TABLE III. The fractal dimensions (γlr and γmr ) of the model.
The last two columns show the corresponding values for the 2D BTW
and Ising models for comparison. The second row shows the obtained
values from hyperscaling relation.

γ L→∞
lr γ 2DBTW

lr γ
Ising
lr γ L→∞

mr γ 2DBTW
mr γ

2DIsing
mr

Num. value 1.32(1) 5
4

11
8 1.96(1) 2 1.85

γ h.s.
xy ∼ τy−1

τx−1 1.34 — — 1.93 — —

law. The exponents of the distribution functions are linear
with respect to 1/ log10 L, whereas the fractal dimensions are
linear with respect to 1/L and SCP(T = TC,L) ∼ L

1
2 .

IV. DISCUSSION AND CONCLUSION

Many features of the sandpile models on the random fractal
lattices are known. Since these host systems are commonly
considered to be uncorrelated, introducing correlation in them
is important and interesting and is shown to have nontrivial
effects. In this paper, we have considered the BTW-type
sandpile model on the Ising-correlated porous media whose
correlations are controlled by an artificial temperature T .

At T = TC the statistical properties of the self-avoiding
walk has emerged, mainly the fractal dimension of the external
frontiers of the avalanches are like self-avoiding walks with
Df = 4

3 . Applying a conformal transformation of the cut
curves reveals that Rrms ∼ tν with ν = 3/4 and t being the

FIG. 5. The spanning cluster probability SCP(T ,L) in terms of
T for various rates of lattices sizes. The inset shows the power-law
behavior of this function in terms of L at the critical temperature with
the exponent 1

2 .
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parametrization (time) of the curve, in agreement with SAW.
The fact that ν = 1/Df shows that the curves at T = TC

have conformal invariance. We conclude that introducing the
Ising-like site-dilution causes the c = −2 CFT (BTW fixed
point) to cross to the c = 0 CFT (SAW fixed point). The result
that at T = Tc the exponents of the distribution functions are
linear with respect to 1/ log L (as the famous feature of the
regular BTW model), whereas the fractal dimensions are linear
with respect to 1/L (like the regular Ising model), shows that
our model is an intermediate one between the regular BTW and
the critical Ising models. One of the most important findings of
the present work is the fact that SCP(T = Tc,L) ∼ √

L, which
should be compared with the result for the low temperature
result (corresponding to the 2D regular BTW model), which
is SCP(low T ,L) ∼ L0.42±0.02. This shows that the rate of the
fluid (oil) production depends on the square root of the linear
extent of a reservoir, and when the correlations weaken, then
this dependence also weakens; i.e., the correlations favor the
lower extent of the fluid propagation.

To conclude, our results show that at T = Tc the properties
of the model is most compatible with SAW. Finite-size scaling
theory has also been shown to be fulfilled for all of the
observables investigated in this paper. Importantly, it is seen
that some exponents act like the BTW and some like the 2D
critical Ising model, showing that the model is interpolation
between these models. The statistical observables show also
power-law behaviors in terms of T − TC in the vicinity of
the critical temperature with well-defined exponents, which
was reported in the text. The fact that spanning cluster
probability scales with

√
L is of practical importance, since

it is directly related to the fluid production in the petroleum
engineering.
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