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Quantum fluctuations of entropy production for fermionic systems in the Landauer-Büttiker state
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The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Büttiker
nonequilibrium steady state are investigated. The probability distribution, governing these fluctuations, is
explicitly derived by means of quantum field theory methods and analyzed in the zero frequency limit. It
turns out that microscopic processes with positive, vanishing and negative entropy production occur in the system
with nonvanishing probability. In spite of this fact, we show that all odd moments (in particular, the mean value
of the entropy production) of the above distribution are non-negative. This result extends the second principle of
thermodynamics to the quantum fluctuations of the entropy production in the Landauer-Büttiker state. The effect
of the time reversal is also discussed.
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I. INTRODUCTION

The entropy production is a measure for irreversibility and
represents an essential characteristic feature of nonequilibrium
systems. In the quantum context the entropy production is
fundamental for understanding the deep interplay between
microscopic and macroscopic physics and, in particular, the
second principle of thermodynamics. For this reason the study
of the entropy production is receiving a constant attention
[1–6]. A variety of off-equilibrium states [7–10] and different
physical systems [11–16] have been already analyzed. In
addition, the fluctuation relations which have been established
[17–23] provide universal information about the nature of the
entropy production and the related time reversal breaking.

In this article we investigate the entropy production in
quantum systems, which are schematically shown in Fig. 1.
Each of the two semi-infinite leads Li is attached at infinity
to a heat reservoir Ri with (inverse) temperature βi � 0 and
chemical potential μi ∈ R. The capacity of the reservoirs is
assumed to be large enough so that the processes of emission
and absorption of particles do not change the parameters of
Ri . A pointlike defect is localized at x = 0 and is described
by a unitary scattering matrix S.

The system in Fig. 1 models a quantum wire junction
[24–29]. The interest in such devices, which are essentially
one-dimensional systems whose transport properties are af-
fected by quantum effects, is largely motivated by the fact that
they would naturally appear in any quantum circuit. Triggered
by the remarkable progress in nanotechnology, the study of
quantum wire junctions nowadays dominates the experimental
activity in quantum transport. The focus is mainly on the
particle and heat transport, but recently the entropy production
in quantum circuits [30] and other mesoscopic systems [31]
has attracted much attention as well.

The basic physical processes, taking place in the system
in Fig. 1, can be summarized as follows. A nonvanishing

transmission probability |S12|2 drives the system away from
equilibrium, provided that the temperatures and/or chemical
potentials are different. The departure from equilibrium is
characterized by the presence of incoming and outgoing matter
and energy flows from the reservoirs Ri . The study of these
flows started with the pioneering work of Landauer [32] and
Büttiker [33], who developed an exact scattering approach,
going far beyond the linear response approximation. The
Landauer-Büttiker (LB) framework is the basis of modern
quantum transport theory and has been successfully gener-
alized [34–36] and applied to the computation of the noise
power [37–44] and the full counting statistics [45–50].

In what follows we apply the LB approach to the study
of the entropy production. We concentrate on fermionic
systems, discussing the bosonic case elsewhere [51]. The basic
ingredients of our investigation are

(1) a suitably defined field operator Ṡ(t,x), which describes
the entropy production, and

(2) a nonequilibrium steady state �LB , which captures the
physical properties of the system shown in Fig. 1.

With this input, all the information about the entropy
production is codified in the sequence of n-point correlation
functions (n = 1,2, . . .),

wn[Ṡ](t1,x1, . . . ,tn,xn) = 〈Ṡ(t1,x1) · · · Ṡ(tn,xn)〉LB , (1)

the expectation value 〈· · · 〉LB being computed in the LB
state �LB .

Previous research in the quantum context has been mainly
focused on w1[Ṡ], which describes the mean value of the
entropy production. Adopting quantum field theory methods,
we address in this paper the problem of the quantum fluc-
tuations, which are fully characterized by (1) with n � 2.
The correlation functions wn[Ṡ] depend on 2n space-time
variables, which complicate the analysis for large n. In order to
simplify the problem, we follow the standard approach [43–50]
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to full counting statistics and investigate the zero frequency
limit Wn[Ṡ] of wn[Ṡ], integrating the quantum fluctuations
over a long period of time. We show that in this limit Wn[Ṡ]
take the form

Wn[Ṡ] =
∫ ∞

0

dω

2π
Mn(ω), (2)

where ω is the energy andMn are the moments of a probability
distribution �. The derivation of � represents a key point
of our investigation. In fact, we extract from � the basic
information about the entropy production at the microscopic
level. The fundamental quantum process, which takes place in
our system, is the emission of a particle from the reservoir Ri

and the subsequent absorption by Rj . We derive from � the
probability pij for this event at any energy ω and determine
the corresponding entropy production

σij = [(βi − βj )ω − (βiμi − βjμj )]|S12|. (3)

In the absence of transmission (S12 = 0) one has σij = 0 in
agreement with the fact that the two heat reservoirs are dis-
connected and the system is in equilibrium. The antisymmetry
of σij implies furthermore that the entropy production for
emission and absorption of a particle by the same reservoir
vanishes, as expected on general grounds. Moreover, σ12

and σ21 have opposite sign, which, combined with the fact
that p12 �= 0 and p21 �= 0, leads to the conclusion that both
processes with positive and negative entropy production are
necessarily present at the microscopic level. Nevertheless,
we demonstrate below that the process with positive entropy
production dominates in the state �LB , implying that all
moments {Mn(ω) : ω � 0, n = 1,2, . . .} of � obey

Mn(ω) � 0, (4)

for any value of the temperatures and chemical potentials of Ri .
In addition, Mn(ω) vanishes for any ω only at the equilibrium
β1 = β2 and μ1 = μ2.

For even n the inequality (4) follows directly from the fact
that � is a true probability distribution on R, whereas for odd
n it is a consequence of the specific form of �. It generalizes
to the quantum fluctuations the result of Nenciu [7]

〈Ṡ(t,x)〉LB =
∫ ∞

0

dω

2π
M1(ω) � 0 (5)

about the mean value of the entropy production in �LB , which
provides a bridge between microscopic quantum physics and
the second law of thermodynamics. In this respect, the bound
(4) represents an extension of the second principle to the
quantum fluctuations of the entropy production. The result
(4) is an intrinsic characteristic feature of the LB state. To
our knowledge no other steady sates with this property are
presently known.

The paper is organized as follows. In the next section
we describe the basic physical properties of the system. We
also introduce the entropy production operator Ṡ and the
LB representation incorporating the nonequilibrium prop-
erties of the system in Fig. 1. The n-point correlation
functions of Ṡ in the LB state �LB are derived in Sec. III.
In Sec. IV we reconstruct the probability distribution �

associated with the entropy production, solving the corre-
sponding moment problem. The physical properties of � are

Sβ1, μ1 β2, μ2
...
L1

. . .
L2

FIG. 1. Two-terminal junction.

discussed, and the role of time reversal is elucidated. It is also
shown that the presence of a galvanometer in the system does
not modify the bound (4). Section V is devoted to our conclu-
sions. Finally, the appendices collect some technical details.

II. PRELIMINARIES

In this section we summarize the basic nonequilibrium
features of quantum systems of the type shown in Fig. 1.
Throughout the paper we adopt the coordinates {(x,i), : x �
0, i = 1,2}, where |x| denotes the distance from the defect and
i labels the lead.

A. Conserved currents and entropy production

Let us start by fixing the symmetry content. We consider in
this paper physical systems in which both the particle number
and the total energy are conserved. Accordingly, the correlation
functions are invariant under global U (1) transformations and
time translations. These symmetries imply the existence of a
conserved particle and energy currents (jt , jx) and (θtt , θxt ).
Local conservation implies

∂t jt (t,x,i) − ∂xjx(t,x,i) = 0, (6)

∂tθtt (t,x,i) − ∂xθxt (t,x,i) = 0. (7)

In order to generate global conserved charges from jt and θtt ,
which define the particle number and total energy respectively,
one must impose Kirchhoff’s rules,

2∑
i=1

jx(t,0,i) =
2∑

i=1

θxt (t,0,i) = 0, (8)

which are assumed in what follows.
The total energy of our system has two components: heat

energy and chemical energy. Since the chemical energy density
is given by μijt (t,x,i), for the heat density one has [52]

qt (t,x,i) = θtt (t,x,i) − μijt (t,x,i). (9)

Accordingly, the heat current reads

qx(t,x,i) = θxt (t,x,i) − μijx(t,x,i). (10)

Following [52], we introduce at this point the entropy produc-
tion operator [3,7]

Ṡ(t,x) = −
2∑

i=1

βi qx(t,x,i). (11)

The definition (11) involves the nonequilibrium heat currents
flowing in the leads Li and the equilibrium temperatures βi of
the heat reservoirs. The operator (11) will be the main subject
of our investigation below.

A simple but deep difference between the heat current
qx(t,x,i) and entropy production operator Ṡ(t,x) is worth
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stressing. The current qx(t,x,i) is a local observable, which
depends on the lead Li where it is observed or measured.
The entropy production operator Ṡ(t,x) concerns instead the
whole system and does not refer to a single lead. Accordingly,
the correlation functions (1), which describe the entropy
production fluctuations, take into account all the interference
effects between the heat currents in the two different leads L1

and L2. The contribution of the interference terms to (1) is
fundamental for proving the bound (4).

It is instructive at this stage to describe the basic physical
process taking place in the system in Fig. 1 and generating
the entropy production. The conservation laws (6) and (7)
obviously imply the local heat current conservation:

∂tqt (t,x,i) − ∂xqx(t,x,i) = 0. (12)

However, if μ1 �= μ2 the heat current violates the Kirchhoff
rule. One has in fact

2∑
i=1

qx(t,0,i) = (μ1 − μ2)jx(t,0,1). (13)

Since the total energy is conserved, both the heat and
chemical energies are in general not separately conserved.
Therefore, for μ1 �= μ2 the junction in Fig. 1 operates as
energy converter without dissipation [53]. The two possible
regimes are controlled by the expectation value of the operator

Q̇ = −
2∑

i=1

qx(t,x,i) (14)

in the underlying nonequilibrium state. If 〈Q̇〉 < 0 the junction
transforms heat to chemical energy. The opposite process takes
place if instead 〈Q̇〉 > 0. A detailed study of this phenomenon
of energy transmutation in the LB state �LB has been performed
in Ref. [53].

The above general considerations apply to the system in
Fig. 1 with any dynamics preserving the particle number and
total energy. In this sense they are universal. For concretely
evaluating the quantum fluctuations associated with Ṡ, one
should fix the dynamics and the nonequilibrium state. This is
done in the next subsection.

B. Dynamics and the LB state: The Schrödinger junction

Nonequilibrium systems of the type in Fig. 1 behave in a
complicated way, and the linear response or other approx-
imations are usually not enough for fully describing their
complexity. For this reason the existence of models, which
incorporate the main nonequilibrium features, while being
sufficiently simple to be analyzed exactly, is conceptually
very important. One such example is provided by particles,
which are freely moving along the leads and interact only
in the junction x = 0. This hypothesis accounts remarkably
well [54] for the experimental results [55] about the noise in
mesoscopic conductors and has been recently confirmed [56]
even in the case of fractional charge transport in quantum
Hall samples. At the theoretical side, our previous analysis
in Refs. [41,42,50,53] shows that this setup represents an
exceptional testing ground for exploring general ideas about
quantum transport.

One concrete realization of the above scenario is the
Schrödinger junction, where the dynamics along the leads
is fixed by (the natural units h̄ = c = kB = 1 are adopted
throughout the paper)(

i∂t + 1

2m
∂2
x

)
ψ(t,x,i) = 0, (15)

supplemented by the standard equal-time canonical anti-
commutation relations. The junction represents physically a
pointlike defect localized at x = 0. The associated interaction
determines the scattering matrix S, which is fixed by requiring
that the bulk Hamiltonian −∂2

x /2m admits a self-adjoint
extension in x = 0. All such extensions are defined [57–59]
by the boundary condition

lim
x→0−

2∑
j=1

[λ(I − U)ij + i(I + U)ij ∂x]ψ(t,x,j ) = 0, (16)

where I is the identity matrix, U is a generic 2 × 2 unitary
matrix, and λ > 0 is a parameter with dimension of mass.
Equation (16) guaranties unitary time evolution and implies
[57–59] the scattering matrix

S(k) = − [λ(I − U) − k(I + U)]

[λ(I − U) + k(I + U)]
, (17)

k being the particle momentum. Equation (17) defines a
meromorphic function in the complex k-plane.

Since scale invariance preserves the universal features of
one-dimensional quantum transport [60] and leads at the same
time to relevant simplifications, it is instructive to characterise
explicitly the scale-invariant elements in the family (17). For
this purpose we first diagonalize U:

U∗ UU = Ud = diag
(
e−2iα1 ,e−2iα2

)
, − π

2
< αi � π

2
,

(18)

where ∗ stands for Hermitian conjugation. It follows from (17)
that the unitary matrix U diagonalizes S(k) for any k as well.
In fact,

Sd(k) = U∗S(k)U = diag

(
k + iη1

k − iη1
,
k + iη2

k − iη2

)
, (19)

where

ηi ≡ λ tan(αi). (20)

At this point scale invariance implies [29,61] the following
alternative:

ηi =
{

0 (αi = 0), Neumann b.c.,
∞ (αi = π/2), Dirichlet b.c. (21)

Accordingly, the scale-invariant scattering matrices, called
also critical points, are k-independent and are given by the
family

S = U Sd U∗, U ∈ U (2), Sd = diag(1,−1), (22)

supplemented by the two isolated elements S = ±I. The latter
are not interesting because there is no transmission between
the two leads and the system is therefore in equilibrium. We
adopt (22) in Sec. III A for deriving the mean value 〈Ṡ(t,x)〉LB

at criticality in explicit form.
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The scattering states associated to (17) read [62]

χ (k; x) = [e−ikx I + eikx S∗(k)], k � 0. (23)

Postponing the discussion of the general case, let us assume for
the moment that S(k) has no bound states. Then, the solution
of the quantum boundary value problem (15) and (16) is given
by

ψ(t,x,i) =
2∑

j=1

∫ ∞

0

dk

2π
e−iω(k)t χij (k; x)aj (k), (24)

where ω(k) = k2/2m is the dispersion relation and the
operators {ai(k), a∗

i (k) : k � 0, i = 1,2} generate a standard
anticommutation relation algebra A+.

Both (15) and (16) are invariant under global U (1) phase
transformations and time translations. The relative conserved
particle and energy currents have the well-known form

jx(t,x,i) = i

2m
[ψ∗(∂xψ) − (∂xψ

∗)ψ](t,x,i) (25)

and

θxt (t,x,i) = 1

4m
[(∂tψ

∗)(∂xψ) + (∂xψ
∗)(∂tψ)

− (∂t∂xψ
∗)ψ − ψ∗(∂t∂xψ)](t,x,i), (26)

respectively. Plugging the solution (24) in (25) and (26), one
can express the heat current (10) and therefore the entropy
production field operator in terms of the generators of A+.
The result is

Ṡ(t,x) = i

4m

∫ ∞

0

dk

2π

∫ ∞

0

dp

2π
eit[ω(k)−ω(p)]

×
2∑

l,j=1

a∗
l (k)

2∑
i=1

βi[2μi − ω(k) − ω(p)]

×{χ∗
li(k; x)[∂xχij ](p; x)

− [∂xχ
∗
li](k; x)χij (p; x)}aj (p). (27)

This equation defines Ṡ(t,x) as a quadratic element of the
algebra A+. In order to extract the physical information we are
interested in, one must fix a representation ofA+. The physical
setup in Fig. 1 suggests adopting the LB representation of A+,
which generalizes the equilibrium Gibbs representation to the
case of systems driven away from equilibrium by a particle
and energy exchange with more then one heat reservoir. A
field theoretical construction of the Hilbert space {HLB, (·, ·)}
of this representation is given in Ref. [62]. For deriving the
expectation values of (27) one can concentrate on the 2n-point
function

(�LB , a
∗
l1

(k1)am1 (p1) · · · a∗
ln

(kn)amn
(pn)�LB )

≡ 〈a∗
l1

(k1)am1 (p1) · · · a∗
ln

(kn)amn
(pn)〉LB , (28)

which can be represented as a kind of Slater determinant,
whose explicit form (A3) is given in Appendix A. Using
(A3) we derive in what follows the correlation functions of
the operator Ṡ in the LB representation HLB and discuss the
physical implications.

III. ENTROPY PRODUCTION CORRELATION
FUNCTIONS

A. The one-point function

It is natural to start with the one point function 〈Ṡ(t,x)〉LB ,
which gives the mean value of the entropy production in the
LB state �LB . Using (27) and (A3) for n = 1, one easily obtains
the integral representation (5) with

M1(ω) = τ (ω) [γ2(ω) − γ1(ω)][d1(ω) − d2(ω)]. (29)

Here

τ (ω) = |S12(
√

2mω)|2 (30)

is the transmission probability

γi(ω) = βi(ω − μi), i = 1,2, (31)

and di(ω) is the Fermi distribution

di(ω) = 1

1 + eγi (ω)
(32)

of the reservoir Ri . One can easily check now that both square
brackets [· · · ] of (29) have always the same sign or vanish
simultaneously. Therefore,

M1(ω) � 0, (33)

which proves (4) for n = 1. In addition, M1(ω) = 0 for any
ω implies the equilibrium regime β1 = β2 and μ1 = μ2.

It is worth mentioning that 〈Ṡ(t,x)〉LB , given by (5)
and (29), is both time and position independent. The t-
independence follows from the energy conservation, whereas
the x-independence is a consequence of the heat current
conservation (12). Clearly these are peculiar properties of the
one-point function w1[Ṡ]. The study of {wn[Ṡ], : n � 2} in
the next subsection reveals a more complicated behavior.

Let us explore in conclusion the scale-invariant regime.
At criticality the transmission probability τ is constant and
plugging (29) in (5) one can perform the ω-integration
explicitly. The result is

〈Ṡ(t,x)〉LB = (λ2 − λ1)
τ

2π

[
1

β2
ln(1 + eλ2 ) − 1

β1
ln(1 + eλ1 )

]

+(β1 − β2)
τ

2π

[
1

β2
1

Li2(−eλ1 ) − 1

β2
2

Li2(−eλ2 )

]
,

(34)

where λi ≡ βiμi are dimensionless parameters and Li2 is the
dilogarithm function.

The mean value the entropy production (34) is generated
by both the temperature and the chemical potential differences
of the heat reservoirs. In order to get an idea about the separate
effect of these two independent sources, it is instructive to
consider the limiting regimes β1 = β2, μ1 �= μ2 on one hand
and β1 �= β2, μ1 = μ2 on the other. These ranges of parameters
are interesting also from the experimental point of view.

Let us assume first that that the heat reservoirs have the same
temperature β1 = β2 = β. In this regime the dilogarithms in
(34) do not contribute, and at high temperature one finds

lim
β→0

〈Ṡ(t,x)〉β1=β2
LB

= 0. (35)
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FIG. 2. Entropy production (in temperature units) for β1 = β2 =
β and τ = 1 with (μ1,μ2) = (−30,−10) (red continuous line),
(−5,0) (blue dashed line), and (4,6) (black dotted line).

The behavior at low temperature depends on μi . Observing
that 〈Ṡ(t,x)〉β1=β2

LB
is a symmetric function of (μ1,μ2), one can

assume without loss of generality that μ1 < μ2 and obtain

lim
β→∞

〈Ṡ(t,x)〉β1=β2
LB

=
⎧⎨
⎩

0, for μ2 < 0,
−μ1τ ln 2

2π
, for μ2 = 0,

∞, for μ2 > 0,

(36)

as shown in Fig. 2.
In the second case we set μ1 = μ2 = μ. The origin of

the entropy increase is therefore exclusively the difference
between the temperatures β1 �= β2 of the two heat reservoirs. In
this case the dilogarithms in (34) have a relevant contribution,
〈Ṡ(t,x)〉μ1=μ2

LB
is a symmetric function of (β1,β2), and one has

lim
μ→−∞〈Ṡ(t,x)〉μ1=μ2

LB
= 0,

lim
μ→∞〈Ṡ(t,x)〉μ1=μ2

LB
= π (β1 − β2)2(β1 + β2)τ

12β2
1β2

2

, (37)

as displayed in Fig. 3.
Finally, for τ = 1 the defect at x = 0 is absent and one

obtains from (34) the mean entropy production of two heat
reservoirs connected with a homogeneous infinite lead.

FIG. 3. Entropy production (in temperature units) for μ1 = μ2 =
μ and τ = 1 with (β1,β2) = (1,2) (red continuous line), (1,3) (blue
dashed line), and (1,4) (black dotted line).

B. The n-point function

First of all we observe that the correlation function wn[Ṡ]
depends on the time differences

t̂k ≡ tk − tk+1, k = 1, . . . ,n − 1, (38)

which is a consequence of the time translation invariance of
�LB . Since the defect at x = 0 violates translation invariance
in space, wn[Ṡ] depends on all the coordinates {xl : l =
1, . . . ,n} separately. In order to simplify the analysis and avoid
those variables, which are marginal for the entropy production,
we introduce the Fourier transforms

Wn[Ṡ](x1, . . . ,xn; ν) =
∫ ∞

−∞
dt̂1 · · ·

∫ ∞

−∞
dt̂n−1e−iν(t̂1+···t̂n−1)wn[Ṡ](t1,x1, . . . ,tn,xn), n � 2,

(39)

and perform the zero-frequency limit

Wn[Ṡ] = lim
ν→0+

Wn[Ṡ](x1, . . . ,xn; ν). (40)

This limit has been adopted already in the classical studies
[37–41] of quantum noise produced by the particle current
for n = 2. It has been extended in Ref. [48] to the current
cumulants with n > 2 and applied in the framework of full
counting statistics [43–50] as well. The zero frequency regime
has a well known physical meaning and is mostly explored in
experiments. As mentioned in the introduction, in the range
of low frequencies all quantum fluctuation are integrated over
long period of time. It is evident from (39) that in the limit
ν → 0 this period becomes actually the whole line. We show
in Appendix B that the structure of wn[Ṡ] greatly simplifies
in this case. In fact, using the definition (27) of Ṡ and the
correlation function (A3), one finds

Wn[Ṡ] =
∫ ∞

0

dω

2π
[γ2(ω) − γ1(ω)]nDn(ω). (41)

The basic steps in deriving the representation (41), as well
as the explicit form (B2) of the factor Dn(ω) in the integrand,
are given in Appendix B. Dn(ω) is a sum of determinants,
which depend on the scattering matrix (17) and the Fermi
distribution (32), in other words on τ (ω) and (βi,μi). It has
been shown in Ref. [42] that the bound states of S, if they
exist, do not contribute in the limit (40) as well. Despite these
significant simplifications, at the first sight the integrand of
(41) for generic n might look still complicated. As shown
in Appendix B, however, this is not the case, and the final
expression reads

Wn[Ṡ] =
∫ ∞

0

dω

2π
Mn(ω), (42)

with

M2k−1 = τ k(γ2 − γ1)2k−1 c1, (43)

M2k = τ k(γ2 − γ1)2k c2. (44)
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Here k = 1,2, . . . , the ω-dependence of all factors has been
suppressed for conciseness, and the combinations

c1 ≡ d1 − d2, c2 ≡ d1 + d2 − 2d1d2 (45)

have been introduced for convenience.
The explicit form (43) and (44) of the integrands Mn

represents a key point of our analysis of the fluctuations
of the entropy production. First, from (43) and (44) one
infers the result (4) announced in the introduction, namely,
that all Mn are non-negative. In fact, the argument about
the positivity of M1 applies actually for all odd values of
n. The inequality (44) for even values of n follows instead
from

c2 = eγ1 + eγ2

(1 + eγ1 )(1 + eγ2 )
� 0. (46)

Our goal in the next section will be to show that the integrands
(43) and (44) represent indeed the moments of a probability
distribution and to reconstruct this distribution.

IV. PROBABILITY DISTRIBUTION GOVERNING
THE ENTROPY PRODUCTION

The fluctuations of a quantum observable give rise in
general to a quasiprobability distribution. Familiar examples
are the Wigner function [63], some distributions stemming
from coherent states in quantum optics [64,65], and more
recent examples associated with time-integrated observables
[66,67] in the context of full quantum statistics [43–47]. In this
section we show that Ṡ generates in the LB state �LB a true
probability distribution �. The idea is to reconstruct � from
the moments (43) and (44), solving the underlying moment
problem.

A. Solution of the moment problem

We are looking for a function � with domain D such that

Mn =
∫
D

dσ σn�(σ ), n = 0,1, . . . , (47)

where Mn are given for n � 1 by (43) and (44), and

M0 = 1 (48)

provides a normalization condition. The parameter σ de-
scribes the entropy production. There exist [68] three possible
choices for the domain D of σ : the whole line D = R,
the half line D = R+, and a compact interval D = [a,b].
In order to determine D we have to investigate the Hankel
determinants

Hn ≡

∣∣∣∣∣∣∣∣
M0 M1 · · · Mn

M1 M2 · · · Mn+1
...

...
...

...
Mn Mn+1 · · · M2n

∣∣∣∣∣∣∣∣. (49)

A necessary and sufficient condition for the existence of �

on R is [68]

Hn � 0, ∀ n = 1,2, . . . . (50)

Using (43), (44), and (48) one gets

H0 = 1, H1 = τ (γ1 − γ2)2
(
c2 − τc2

1

)
, (51)

H2 = τ 3(γ1 − γ2)6(1 − c2)
(
c2

2 − τc2
1

)
, Hn�3 = 0. (52)

Combining the inequalities

0 � c2 � 1, c2
2 − c2

1 � 0, (53)

which follow directly from the explicit form (45) of ci

and using 0 � τ � 1, one gets that both H1 and H2 are
non-negative. Since in addition,

H′
2 ≡

∣∣∣∣M1 M2

M2 M3

∣∣∣∣ = τ 2(γ1 − γ2)4
(
c2

1τ − c2
2

)
� 0, (54)

the domains R+ and [a,b] are excluded [68].
Summarizing, the entropy production σ in the LB state

�LB gives rise to the so-called Hamburger moment problem
D = R. Moreover, since Hn�3 = 0 the general theory [68]
implies that � is fully localized at three different values of σ .

Once the domain D has been determined, the explicit form
of the distribution � can be recovered [68] by performing the
Fourier transform

�(σ ) =
∫ ∞

−∞

dλ

2π
e−iλσ ϕ(λ) (55)

of the generating function

ϕ(λ) =
∞∑

n=0

(iλ)n

n!
Mn. (56)

Employing (43), (44), (48) one finds

ϕ(λ) = 1 + i c1
√

τ sin[λ(γ2 − γ1)
√

τ ]

+ c2{cos[λ(γ2 − γ1)
√

τ ] − 1}, (57)

whose Fourier transform reads

�(σ ) = 1
2 (c2 − c1

√
τ )δ[σ − (γ1 − γ2)

√
τ ] + (1 − c2)δ(σ )

+ 1
2 (c2 + c1

√
τ )δ[σ − (γ2 − γ1)

√
τ ]. (58)

Equation (58) confirms that the entropy production is indeed
localized in three points on the σ -line. It is convenient to adopt
at this stage the variables σij defined by (3), which read

σij = (γi − γj )
√

τ (59)

in terms of γi and τ . Then � can be rewritten the form

�(σ ) = p12 δ(σ − σ12) + p δ(σ ) + p21 δ(σ − σ21) (60)

with

p12 = 1
2 (c2 − c1

√
τ ), p21 = 1

2 (c2 + c1
√

τ ), p = 1 − c2.

(61)

Here pij is the probability of emission of a particle by the
reservoir Ri and absorption by Rj , whereas p is the probability
for emission and absorption by the same reservoir R1 or R2.
One can easily show in fact that

p12 + p + p21 = 1, pij ∈ [0,1], p ∈ [0,1], (62)

implying that � is a true probability distribution.

052124-6



QUANTUM FLUCTUATIONS OF ENTROPY PRODUCTION . . . PHYSICAL REVIEW E 96, 052124 (2017)

FIG. 4. The smeared distribution �ν with ν = 2/3, γ1 = 21, γ2 =
1 and τ = 1/4.

It is worth stressing that the probabilities (62) refer to
arbitrary but fixed energy ω ∈ [0,∞). At this energy the
probabilities for n-particle emission and absorption with n � 2
vanish because of Pauli’s principle. This is not the case for
the bosonic junctions discussed in [51], where multiparticle
emission and absorption processes with the same energy are
allowed.

As anticipated in the introduction, we have shown that
both processes with positive and negative entropy production
appear at the quantum level. It is quite intuitive that if the
transport of a particle from the red to the blue reservoir in the
isolated system in Fig. 1 increases the entropy, the opposite
process is decreasing it. The crucial point is that according to
(61) both these events have a nonvanishing probability and are
present without invoking any time reversal operation.

Since � is not smooth but a generalized function, in order to
illustrate graphically its behavior it is convenient to introduce
the δ-sequence

δν(σ ) = ν√
π

e−ν2σ 2
, ν > 0, (63)

and consider the smeared distribution

�ν(σ ) = p12 δν(σ − σ12) + p δν(σ ) + p21 δν(σ − σ21). (64)

As is well known, for ν → ∞ one has �ν → � in the sense
of generalized functions. The plots of �ν for finite values of
ν nicely illustrate the physics behind the distribution �. One
example is reported in Fig. 4. The shape of �ν depends on ν, but
the events with positive entropy production always dominate
those with negative one. This feature is a consequence of the
property

σij > 0 =⇒ pij > pji, (65)

which is ν-independent and holds therefore also in the limit
ν → ∞.

It is instructive in this point to derive the ratio P+/P− where
P+ and P− are the probabilities to have positive and negative
entropy production respectively. Without loss of generality one

can assume for this purpose that σ12 > 0. Then

P+
P−

= p12

p21
= c2 − c1

√
τ

c2 + c1
√

τ

= (1 − √
τ ) + (1 + √

τ ) eσ12/
√

τ

(1 + √
τ ) + (1 − √

τ ) eσ12/
√

τ
. (66)

Equation (66) generalizes the fluctuation relation, discussed in
Refs. [17–23], to the case in which space translation invariance
is broken by a quantum pointlike defect with transmission
probability τ . In the limit τ → 1 the defect disappears, the
system becomes homogeneous, and one recovers from (66)
the result of Crooks [17],

lim
τ→1

P+
P−

= eσ12 , (67)

originally obtained in the context of stochastic dynamics.
Summarizing, the probability distribution (58) fully de-

scribes the entropy production zero-frequency fluctuations in
the LB state �LB . It is natural to expect that the behavior
of � depends on the choice of this state. This expectation is
confirmed in the next subsection, where the Ṡ fluctuations in
the state generated from �LB by time reversal are explored.

B. Impact of time reversal

As before, we consider the field ψ defined by (24) in the
LB representation {HLB, (·, ·)} of the algebra A+. The time
reversal operation acts as usual,

T ψ(t,x,i)T −1 = ηT ψ(−t,x,i), (68)

where |ηT | = 1 and T is an antiunitary operator in HLB with
T 2 = I. Using (25) and (26) one easily gets

T jx(t,x,i) T −1 = −jx(−t,x,i), (69)

T θtx(t,x,i) T −1 = −θtx(−t,x,i). (70)

Since 〈jx(t,x,i)〉LB �= 0 and 〈θtx(t,x,i)〉LB �= 0, the overall
minus signs in the right-hand side of (69) and (70) imply
that T �LB �= �LB . Therefore, T generates another state �T

LB
=

T �LB ∈ HLB of the system. The entropy fluctuations in this
new state are described by

wT
n [Ṡ](t1,x1, . . . ,tn,xn) = 〈Ṡ(t1,x1) · · · Ṡ(tn,xn)〉T

LB

≡ (T �LB ,Ṡ(t1,x1) · · · Ṡ(tn,xn) T �LB ),

(71)

where (·, ·) is the scalar product in HLB . Using (69) and (70)
one finds that

wT
2k−1[Ṡ] = −w2k−1[Ṡ], wT

2k[Ṡ] = w2k[Ṡ], (72)

with k = 1,2, . . .. Therefore, the momenta MT
n of the prob-

ability distribution �T (σ ) in the time reversed LB state �T
LB

satisfy

MT
2k−1 � 0, MT

2k � 0, (73)

which is the mathematical consequence of the physical fact
that the processes of emission and absorption are inverted
with respect to those in �LB .
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C. Comment

In the context of particle full counting statistics the
possibility to equip the system in Fig. 1 with a measuring
device, representing a kind of galvanometer, has been also
considered in the literature [46–49]. Following Ref. [46], this
alternative scenario can be implemented by introducing in (15)
the minimal coupling i∂x �−→ i∂x + A(x) with the external
field A(x) ∼ δ(x). The physical differences between the two
setups have been discussed in detail in Ref. [47]. Working
out the moments of the entropy production distribution in the
presence of a galvanometer, one finds (k = 1,2, . . .)

M′
2k−1 = τ (γ2 − γ1)2k−1 c1, (74)

M′
2k = τ (γ2 − γ1)2k c2, (75)

which differ from (43) and (44) only by the power of τ . Since
0 � τ � 1 one concludes that M′

n satisfy the bound (4) as
well.

The function, generating (74) and (75), is given by

ϕ′(λ) = 1 + i c1τ sin[λ(γ2 − γ1)]

+ c2τ {cos [λ(γ2 − γ1) ] − 1} (76)

and leads to the following probability distribution:

�′(σ ) = p′
12 δ(σ − σ ′

12) + p′ δ(σ ) + p′
21 δ(σ − σ ′

21), (77)

with

p′
12 = τ

2
(c2 − c1), p′

21 = τ

2
(c2 + c1), p′ = 1 − c2τ

(78)
and

σ ′
ij = (γi − γj ). (79)

One can easily verify that (78) satisfy also in this case (62)
and define therefore the relative probabilities controlling the
particle emission-absorption processes. This feature provides
a nice check on the whole setup with a measuring device.

In conclusion, the bound (4) is preserved in the presence of
a galvanometer as well.

V. OUTLOOK AND CONCLUSIONS

The present paper pursues further the quantum field theory
analysis of the physical properties of the LB nonequilibrium
steady state. It focuses on the quantum fluctuations of the
entropy production in the fermionic system shown in Fig. 1.
The junction acts as a nondissipative converter of heat to
chemical potential energy and vice versa. During the energy
transmutation, particles are emitted and absorbed by the heat
reservoirs, which induces a nontrivial entropy production.
Processes with positive, vanishing, and negative entropy pro-
duction occur at the quantum level. In order to characterize the
relative impact of these events, we investigate the correlation
functions of the entropy production operator in the LB state.
The one-point function describes the mean entropy production,
whereas the n-point functions with n � 2 capture the relative
fluctuations. We discover that in the zero frequency limit these
fluctuations generate a true probability distribution, whose
moments are all positive. Since the first moment describes
the mean entropy production, this remarkable property can be
interpreted as a kind of extension of the second principle of

thermodynamics to the nonequilibrium quantum fluctuations
in the LB state. The search for other nonequilibrium states,
which share the same entropy production properties with the
LB state, is a challenging open problem.

The results of this paper persists even after introducing a
galvanometer in the system and can be generalized in several
directions. Along the above lines one can study multiterminal
systems as well as the Tomonaga-Luttinger liquid away from
equilibrium [69,70]. The effect of the quantum statistics on
the entropy production represents also a deep question, which
deserves further study. We are currently investigating [51] this
effect in the bosonic version of the fermion system studied
above.
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APPENDIX A: CORRELATION FUNCTIONS IN THE LB
REPRESENTATION

In their original work [32,33] Landauer and Büttiker derived
the two- and four-point correlation functions of {ai(k), a∗

i (k) :
k � 0, i = 1,2} in the LB representation {HLB, (·, ·)} using
quantum mechanical tools. If one is interested in generic
n-point functions, it is more convenient to adopt the formalism
of second quantisation developed in Ref. [62]. The correlation
function (28), needed for the derivation of the entropy
production fluctuations, is defined in this formalism by

〈a∗
l1

(k1)am1 (p1) · · · a∗
ln

(kn)amn
(pn)〉β,μ

= 1

Z
Tr[e−Ka∗

l1
(k1)am1 (p1) · · · a∗

ln
(kn)amn

(pn)],

ki > 0, pi > 0, (A1)

where

K =
∫ ∞

0

dk

2π

2∑
i=1

γi[ω(k)]a∗
i (k)ai(k), Z = Tr(e−K ). (A2)

Referring for the details to Refs. [50,62], we report the final
result

〈a∗
l1

(k1)am1 (p1) · · · a∗
ln

(kn)amn
(pn)〉LB

=

∣∣∣∣∣∣∣∣∣

�l1m1 (k1,p1) �l1m2 (k1,p2) · · · �l1mn
(k1,pn)

−�̃l2m1 (k2,p1) �l2m2 (k2,p2) · · · �l2mn
(k2,pn)

...
...

...
...

−�̃lnm1 (kn,p1) −�̃lnm2 (kn,p2) · · · �lnmn
(kn,pn)

∣∣∣∣∣∣∣∣∣
.

(A3)

Here

�lm(k,p) ≡ 2πδ(k − p)δlm dl[ω(k)], (A4)

�̃lm(k,p) ≡ 2πδ(k − p)δlm d̃l[ω(k)], (A5)
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where dl(ω) is the Fermi distribution (32) and

d̃l(ω) = 1 − dl(ω) = eγl (ω)

1 + eγl (ω)
. (A6)

APPENDIX B: DERIVATION OF Dn

We summarize first the main steps in deriving the integral
representation (41). Using (27) and (A3) one gets a representa-
tion of the correlation function wn[Ṡ](t1,x1, . . . ,tn,xn) which
involves n integrations over ki and n integrations over pj . Then
one proceeds as follows:

(1) By means of the delta functions in ((A4), (A5)) one
eliminates all n integrals in pj

(2) Plugging the obtained expression in (39), one performs
all (n − 1) integrals in t̂l

(3) At ν = 0 the latter produce (n − 1) delta functions,
which allow to eliminate all the integrals over ki except one,
for instance, that over k1 = k

(4) Now the curly bracket factor {· · · } in (27) gives the
x-independent expression

i{χ∗
li(k; x)[∂xχij ](k; x) − [∂xχ

∗
li](k; x)χij (k; x)}

= −2ik[δliδij − Sli(k)Sji(k)], (B1)

the bar indicating complex conjugation and
(5) Finally, in the integral over k one switches to the

variable ω = k2/2m.
Following the above steps, one arrives at the integral

representation (41) with

Dn =
2∑

i1,...,in=1

∣∣∣∣∣∣∣∣∣

Ti1i1di1 Ti2i1di2 · · · Tini1din

−Ti1i2 d̃i1 Ti2i2di2 · · · Tini2din

...
...

...
...

−Ti1in d̃i1 −Ti2in d̃i2 · · · Tinindin

∣∣∣∣∣∣∣∣∣
.

(B2)

Here and to end of this appendix the ω dependence is omitted
for conciseness. The factors di and d̃i are given by (32) and
(A6), and the matrix T, generated by (B1), is defined in terms

of S by

T11 = −T22 = |S12|2 ≡ τ, (B3)

T12 = T21 = −S11S21. (B4)

In order to compute Dn we introduce an auxiliary algebra
of fermionic oscillators generated by {ai,a

∗
i : i = 1,2}, which

satisfy

[ai, a
∗
j ]+ = δij , [ai, aj ]+ = [a∗

i , a
∗
j ]+ = 0. (B5)

Let us consider the quadratic operators

L =
2∑

i=1

γi a
∗
i ai, J =

2∑
i,j=1

a∗
i Tij aj . (B6)

The key observation now is that Dn can be represented in the
form

Dn = Tr(e−LJ n)

Tr(e−L)
, (B7)

which can be verified by explicit computation using (B5) and
(B6). One has at this point that

∞∑
n=0

(iη)n

n!
Dn = Tr(e−L eiηJ )

Tr(e−L)
. (B8)

The right-hand side of (B8) has been previously computed
[50] for the full counting statistics of the particle current (25).
Using the result of Ref. [50], one finds

∞∑
n=0

(iη)n

n!
Dn = 1 + ic1

√
τ sin(η

√
τ ) + c2[cos(η

√
τ ) − 1],

(B9)
where ci are defined by (45). From (B9) it follows that

Dn =
⎧⎨
⎩

1, n = 0,

τ k c1 n = 2k − 1, k = 1,2, . . . ,

τ k c2, n = 2k, k = 1,2, . . .

(B10)

implying the result (43) and (44).
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