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Roughness-enhanced transport in a tilted ratchet driven by Lévy noise

Yongge Li,1 Yong Xu,1,2,3,* and Jürgen Kurths2,3

1Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China
2Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany

3Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
(Received 21 August 2017; published 14 November 2017)

The enhanced transport of particles by roughness in a tilted rough ratchet potential subject to a Lévy noise
is investigated in this paper. Due to the roughness, the transport process exhibits quite different properties
compared to the smooth case. We find that the roughness on the potential wall functions like a ladder to provide
the convenience for particles to climb up but hinder them to slide down. The mean first passage time from one
well to its right adjacent well and the mean velocity are, respectively, calculated versus the roughness, the external
force, and the Lévy stability index. Our results show that the roughness is able to induce an enhancement on
the mean velocity of particles and accelerate the barrier crossing process. The general conditions require a small
external force and a small Lévy stability index. We find that with increasing external forces, the enhancement areas
of roughness and Lévy stability index both shrink. However, for the Lévy stability index within the enhancement
area, its increase will enlarge the enhancement area of roughness. On the contrary, under the same conditions we
observe that for a Gaussian noise the roughness always reduces the corresponding mean velocity which is very
different from the case of Lévy noise.
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I. INTRODUCTION

Energy landscapes are typically constructed to understand
the spatial position distribution of particles and the correspond-
ing potential energy level in systems of biology, chemistry, and
physics, such as silicon nanocluster, protein folding, and spin
glasses [1–3]. A common feature of such an energy landscape
is its multimodalilty and metastability, and the distance of
two adjacent stable points is large enough to gain a flat
potential surface. However, in some specific cases the potential
surface varies frequently with small potential wells within
large potential wells, i.e., the system exhibits a rough energy
landscape rather than a metastable one. A typical example in
protein folding shows that the potential surface of a protein
may exhibit a hierarchical structure containing a number of
minima and maxima, which indicates that the underlying
energy landscape is spatially rough due to multiple energy
scales associated with the building blocks of proteins [4,5].
Besides the protein folding dynamics, a similar phenomenon
has been found in other prominent systems such as activation
gating of ion channels [6,7], diffusions in structural glasses
[8,9], and supercooled liquids [10,11]. Motivated by the
property of roughness, Zwanzig proposed to describe the rough
potential by superimposing a fast oscillating trigonometric
function onto the background potential function [12]. The
amplitude of the trigonometric function is assumed to be
small as a perturbation on the smooth background. This rough
model provides an analytical tool to describe the properties of
roughness. A typical application in biology is to measure the
energy landscape roughness of proteins and RNA [13,14]. The
deep and wide applications in various systems have motivated
us to consider the exploration of properties of a rough potential.

Understanding the dynamical influences of roughness is
one of the most challenging problems in related subjects.
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However, the dynamics and theories induced by roughness
are still quite close compared to the general smooth potential.
In this seminal paper Zwanzig found that the roughness could
reduce the effective diffusion coefficient as compared to the
smooth potential [12]. Mondal showed that the superimposing
of roughness decreases the current significantly for Gaussian
noise [15]. Besides Zwanzig’s rough model, another popular
rough model is based on random or disordered potentials,
whose roughness is dominated by the distribution of spatial
noises. Relevant studies can be found in [16,17], and references
therein. In this paper, however, we mainly consider Zwanzig’s
rough model.

Ratchet potential has applications in various fields such as
molecular motors, optical lattices, quantum dot arrays, and
pendulum motions [18–21] (and references therein). Besides
the rich Brownian ratchet work, the Lévy ratchet has been
analyzed and explored theoretically and numerically in many
aspects, including the probability density function (PDF), bar-
rier crossing, directional motion, and fractional Fokker-Planck
equations [22–28]. As known, Lévy noise has a heavy tail of
the probability density function and contains more large jumps
than Gaussian noise. Various applications for Lévy noise have
been found, in particular, in gene networks [29,30], neuron
models [31], molecular motors [32], quantum dynamics [33],
millennial climate changes [34], or insurance risks [35,36].
In addition, we have observed α-stable Lévy noise in laser
gyroscope data with a stability index staying between 1.96 and
1.985 [37]. Recently, we investigated the dynamics of particles
in a rough triple-well potential; interestingly, we found that
the roughness helps particles to climb up the potential barriers
[38]. Inspired by this, the mean velocity, splitting probability,
and mean first passage time are analyzed in an asymmetric
ratchet potential. The results show that with proper parameters,
roughness is able to accelerate the transport of particles
[39]. However, as mentioned above, the roughness leads to
a reduction of the current in a Brownian ratchet [15]. Thus, the
roughness does function differently with Lévy noise compared
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to the Gaussian case. Then the combination of roughness and
Lévy noise in a ratchet potential will induce various interesting
phenomena. After superposition of roughness and the smooth
tilted ratchet potential, we will demonstrate that the roughness
has the ability to enhance the transport of particles in a tilted
rough ratchet potential.

As the main quantitative characteristics in this paper, we
will concentrate on the mean velocity(MV) and the mean first
passage time (MFPT). The paper is organized as follows. In
Sec. II, we introduce a tilted rough ratchet potential model
excited by a Lévy noise. In Sec. III, we calculate MVs with
respect to the roughness, the external force, and the Lévy
index to examine enhancement effects of the superimposed
roughness. In Sec. IV, the MFPTs as a function of the
roughness under different Lévy parameters are explored.
Finally, the conclusion is presented.

II. MODEL DESCRIPTION

We consider the motion of a particle in a periodic potential
U0(x) subject to a constant external force F and Lévy noise
ξ̇ (t),

γ ẋ = − d

dx
[U0(x) − Fx] + ξ̇ (t). (1)

Here, the overdot is the derivative with respect to time
t . The friction coefficient γ can be omitted by rescaling the
Langevin equation, thus for simplicity γ is assumed unity. ξ (t)
is a symmetric α-stable Lévy motion, with its characteristic
function

E[eikξ (t)] = exp[−tD|k|α], (2)

where α [α ∈ (0,2]] is the stability index of the distribution
describing the power-law tail of the PDF. D denotes the noise
intensity. The formal derivative of ξ (t) is defined as Lévy noise.
When α = 2.0, the Lévy noise reduces to the Gaussian case.

The periodic potential is taken as U0(x) = −cos(2πω0x),
and ω0 is the frequency, thus the period is L = 1/ω0. To
get a rough potential, we superimpose a rapidly oscillating
trigonometric function U1(x) on the background potential
U0(x). U1(x) can be regarded as a perturbation on the relative
slowly varying U0(x). The superimposed perturbed function
U1(x) is defined as

U1(x) = ε sin(ω1x), ε � 1.0, (3)

where ε is the amplitude of the roughness which is assumed to
be far below 1.0. ω1 determines the frequency of the roughness
which is required to be ω0 � ω1 to ensure that U1(x) oscillates
rapidly. Typically we assume ω1 = 100 and ω0 = 1 in this
work. The superposition of U0(x) and U1(x) leads to a rough
ratchet potential with multiple small wells. By coupling with
the external force F , we obtain the new Langevin equation as

ẋ = − d

dx
Ueff(x) + ξ̇ (t),

Ueff(x) = −Fx − cos(2πx) + ε sin(100x), (4)

in which Ueff(x) is the effective tilted rough ratchet potential.
An illustration of Ueff(x) is shown in Fig. 1. In the absence
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FIG. 1. An illustration of the effective rough potential Ueff (x) in
Eq. (3). The period length of U0(x) is taken as L = 1.0, and the
external force F = 2.0. The two labeled stable points of U0(x) − Fx

are x0 = arcsin(F/2π)/2π and xL = L + x0.

of roughness, the stable points of the tilted ratchet locate at
xnL = nL + arcsin(F/2π )/2π ; n is an integer. F affects
the steepness and locations of stable points. To ensure that
U0(x) − Fx has stable points, we restrict F < 2π and in this
paper we only consider the case F > 0. The superposition
of roughness introduces a number of small wells on the tilted
ratchet potential which look like ladders on the potential walls.
The larger the ω1 the denser the ladderlike wells. In addition,
with increasing ε the small wells become deeper, making it
much easier to trap particles or slow down the transport.

In a tilted ratchet potential, there are several ways to
accelerate the transport of particles, such as increasing the
external force F , enlarging the noise intensity D, and lowering
the barrier height h [18,40,41]. For a Lévy noise, it is
additionally possible to get a faster MV with a smaller Lévy
stability index α [25]. However, we find that the superimposed
roughness on the tilted ratchet potential is able to enhance the
transport in a different regime under Lévy noises. Next, we
will analyze how roughness induces an enhancement effect
based on the MV and MFPT versus F , α, and ε, respectively.

III. ENHANCEMENT EFFECT ON THE MV

The first basic quantity of this paper is the MV of a
particle in the tilted rough ratchet potential subject to a Lévy
noise. Under the condition of Gaussian noises, the MV or
probability current has been investigated both theoretically
and numerically in various studies. In most situations, the
explicit analytical formula of MV can be obtained by solving
the Fokker-Planck equation (FPE). However, for systems
subjected to a Lévy noise, the corresponding FPE equation
becomes of fractional order, for which it is very difficult to
obtain an analytical solution. Up to now, only systems with
specific polynomial potentials have been solved analytically
[42,43]. Numerically simulating the fractional-order FPE is
an important way to deal with this problem. However, for
a periodic potential the precision depends sensitively on the
integration domain, boundary conditions, and the external
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force [27,44]. So in this tilted rough ratchet potential, we
directly calculate Eq. (3) with the Euler algorithm. Considering
the influences of roughness, the mean displacement of a
one-step iteration must be far smaller than the period length
of U1(x). This requires a very small time step. In this paper,
the time step is �t = 10−4. To calculate the MV, the process
is repeated more than 104 times for each point and the total
integration time is not less than 5×106. The MV is calculated
by

v = 〈ẋ〉 = lim
t→∞

〈x(t) − x(0)〉
t

, (5)

where 〈x(t) − x(0)〉 is the statistical mean (first moment) of
the particle displacements as a function of time. For Lévy
noise, when α ∈ (1,2] the first moment is finite, whereas it
is divergent for α ∈ (0,1). Hence, we mainly focus on the
influences of α ∈ (1,2].

Figures 2(a) and 2(b) show the MVs as a function of F for
different roughness ε. As known, a driving force F �= 0 will
break the symmetry and generates a tilted potential. Thus a net
current yields a biased direction. As expected, MVs increase
monotonously with F in both panels. However, after the
superposition of roughness, the transport properties become
complex. In Fig. 2(a), with increasing F , the roughness first
leads to an increase of the MV, but then it decreases. This
phenomenon indicates that the roughness can result in an
enhancement of the transport. Due to the fact that small wells
on the walls service as stopovers for particles to temporarily
stay, particles are able to jump to right-side wells from
somewhere uphill with a small F . However, for a large F ,
when roughness is absent, particles may be able to slide down
the smooth ratchet directly, or at least it is easy for them to
cross barriers. When the roughness is superimposed, small
rough wells on the potential make it impossible for particles to
slide down directly like in the smooth case. The roughness may
even become an obstacle to be overcome. Thus the roughness
hinders the transport of particles in a steep tilted ratchet rather
than helps it. Besides F , a comparison of Figs. 2(a) and 2(b)
implies that the Lévy index α is also an important factor to
affect the influence of roughness. When α = 2.0, no matter
how F varies, the roughness always reduces the transport
velocity. This is because Gaussian noises have no large jumps
to kick particles out of a potential well with one large excitation
like Lévy noises (with small α). This makes small rough wells
bad barriers rather than helpful ladders. Coupled with the
mentioned influences of F , the hindering effect is reasonably
obvious for large F when α = 2.0 [Fig. 2(b)].

The enhancement areas of ε accelerating the transport in
the direction of F are briefly shown in Figs. 2(c) and 2(d)
for different F . In Fig. 2(c), MVs first increase and then
decrease for different F . This phenomenon indicates that there
always exists an optimal ε to maximize the MV. Increasing
F , the locations of the optimal ε shift to the left, i.e., for
large F particles take more advantage of small roughness,
while for small F particles benefit more from large roughness.
The enhancement areas of the aggressive ε narrow gradually
with increasing F . When α = 1.9 for F � 2.0, MVs increase
with the roughness, i.e., all ε shown in the panel enhance
the transport. However, when F � 3.0, the roughness hinders
the transport suddenly even for very small ε. Hence, a large

external force F will shrink the enhancement area of ε, while
a small F accelerates the transport. To obtain a view of the
continuous changes of MV with respect to F and ε, Fig. 2(e) is
plotted, in which the inset shows clearly that the enhancement
area of ε decreases with increasing F . In Fig. 2(f), the vertical
view of vε − vε=0 demonstrates the strength of enhancement
and suppression, where the optimal ε lies in the dark red area,
and the most suppressing ε is within the blue area.

In summary, we find that a proper ε is able to enhance the
transport. The basic conditions require a small F and an α

away from 2.0. Next, we will discuss the dependence of the
enhancement area on the Lévy noise index, α.

The shaded parts in Fig. 3 are enhancement areas, i.e.,
the roughness is capable of increasing MVs in the ratchet.
In these shaded areas, we always find an aggressive ε to
enhance the transport. In Fig. 3 we calculate MVs with the
minimal roughness index ε = 0.1. There is no doubt that for
some ε < 0.1 the roughness may also increase MVs, so the
enhancement area is not exactly precise. But it is certain that
the parameters in the shaded area will definitely enhance the
transport. In our simulated results, with increasing F, we find
that the enhancement area shrinks for larger α. The white parts
in Fig. 3 mainly focus on large α. This is due to the fact that
larger α generate fewer and smaller jumps, which makes it
less possible for particles to make use of the roughness as for
smaller α. In particular, for large ε the roughness has high
potential barriers, i.e., particles are easily trapped in these
small wells for a while which delays the transport. Note that,
although in Figs. 3(c) and 3(d) the shown roughness reduces
MVs slightly for small α, the roughness does enhance the
transport with an even smaller ε < 0.1. The insets in both
figures show that each of two cases has a small enhancement
area of ε. However, this is not true for large α; for example,
when F = 4.0 the MV of α = 1.8 decreases monotonously
with increasing ε [see Fig. 4(b)]. The bifurcation diagram
of α and F is computed in Fig. 3(e) where the gray color
is the enhancement area labeled under the condition of
vε=0.05 − vε=0 > 0, and the white color is the suppressing
area labeled for the condition of vε=0.05 − vε=0 < 0. It shows
that with increasing F, the enhancement area shrinks and the
suppressing area of α focuses at the right side.

Figure 4 illustrates the dependence of enhancement effects
on ε for different values of α. It clearly shows the enhancement
areas of ε accelerating the transport. MVs first increase with ε

but then decrease for α � 1.8. This means that for these α, we
can find an optimal ε to maximize the MVs. In addition, the
locations of the optimal ε shift to the right with the increase
of α. For example, the enhancement area of the aggressive ε

for α = 1.5 is about (0, 0.19], and we get the maximal MV
at about ε = 0.1. However, when α = 2.0 the enhancement
area disappears, which coincides with the conclusion in [15].
In Fig. 4(a), the enhancement areas of ε increase with α, but it
comes to a sudden change at around α = 1.93, i.e., the range
of the aggressive ε vanishes for 1.93 < α � 2.0. In Fig. 4(b)
we see that a large F not only shrinks the enhancement area
of α, but also reduces the range of the aggressive ε. When
F = 4.0, the range of the aggressive ε is about (0, 0.13] for
α = 1.5, which is much smaller than that of F = 2.0. These
phenomena are clearly illustrated in Fig. 4(c) and the changes
of the optimal ε can be found in Fig. 4(d).
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FIG. 2. MVs with respect to the external force F and roughness ε for different α, with D = 0.3. (a) α = 1.85; roughness can increase
the MV for small F . (b) α = 2.0; roughness always decreases the MV. (c) α = 1.6; the enhancement areas of ε shrink with increasing F .
(d) α = 1.9; the influence of ε suddenly changes from enhancement to suppression with increasing F . (e) The space diagram of MV for
α = 1.5. The inset shows the enhancement area of ε, in which the difference �ε = 0.02 makes the changes of bar unsmooth. (f) is the vertical
view of vε − vε=0, where we can find the enhancement area and optimal ε for different F . The legend in (a) and (b) for ε holds throughout the
paper.

From these MVs we find that a proper ε is able to enhance
the transport in the direction of F for α away from 2.0. For
α = 2.0, the enhancement effect vanishes for all ε, no matter
how F varies. The increase of F not only shrinks the enhance-
ment area of α, but also reduces the range of the aggressive ε. A
small F and a modest α will probably induce an enhancement
effect on the transport velocity.

IV. ENHANCEMENT EFFECT ON THE MFPT

In this section, we analyze the MFPT problem under
the condition of roughness. The MFPT describes how long
a particle jumps from one area to another specific region.
When α = 2.0 in a tilted periodic potential, the MFPT
can be given in a simple form closely related to the MV,
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FIG. 3. MVs as a function of α for different F with D = 0.3. The shaded parts are enhancement areas of α in which roughness increases
MVs. The enhancement areas shrink with increasing F . The insets in (c) and (d) are plotted to illustrate that small α is within the enhancement
areas for some ε < 0.1. (e) The bifurcation diagram of α and F , in which the gray color corresponds to the enhancement area, and the white is
the suppressing area.

v = L/〈t(x0 → xL)〉, where 〈t(x0 → xL)〉 is the MFPT from
x0 to xL [26]. However, this does not fit for Lévy noise. This is
because Gaussian noise has almost no large jumps; most of the
time a particle can only cross one well once. So each time a
particle jumps out, it is probably not beyond xnL, n � 2.

However, for a Lévy noise, when a particle jumps out, it
can be far from xL. Thus the formula works for Gaussian
noise, but for Lévy noise the formula is not applicable. Here
we investigate how roughness affects the MFPT from x0 to
xL, considering a particle starting from the initial point x0
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FIG. 4. (a), (b) MVs as a function of ε for different α with D = 0.3 in cases F = 2.0 and F = 4.0. With increasing α, the enhancement
areas of ε increase for small α, but then encounter a sudden change from enhancement to suppression. (c) The space diagram of MV with
respect to ε and α for F = 2.0. (d) The vertical view of vε − vε=0, from which we can find the variation of optimal ε.

and proceeding until it arrives or crosses the right adjacent
stable point xL. The corresponding MFPT is defined as
follows:

MFPT = 〈inf{t : x(t) � xL | x(0) = x0}〉. (6)

As expected, the external force F leads to a reduction of the
MFPT. This corresponds to MVs shown in Fig. 2, i.e., larger
F lead to faster MVs. When the roughness is superimposed
in Fig. 5(a), with increasing F , the roughness induces a
decrease of MFPT first, and then increases the MFPT. But

for α close to 2.0, it is hard for the roughness to reduce the
MFPT. We see that the roughness no longer accelerates the
crossing for α = 1.98. As mentioned above, the roughness
always decreases the MV in the Gaussian case, thus with the
relation 〈v〉 = L/〈t(x0 → xL)〉, we know the roughness will
certainly increase the MFPT.

Figure 6 illustrates the influences of roughness on the
MFPT with respect to α for different F . In the absence of
roughness, for F = 1.0 the MFPT first decreases slightly but
then increases fast. However, for F = 2.0 and F = 3.0 MFPTs
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FIG. 5. MFPTs with respect to F with D = 0.3. For α = 1.9 the roughness can decrease the MFPT for small F ; however, for α = 1.98
the roughness always increases the MFPT.
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that α = 1.2 decreases MFPTs for some ε < 0.1. (d) shows the influences of ε for different α.

decrease monotonously with α, i.e., when F is large the jumps
hinder the right crossing process and lead to a longer MFPT
than α of less jumps. This is because when F is large the tilted
ratchet is steep, and it is easy for a particle to go down with
even small fluctuations. However, when we add large jumps,

particles may be kicked to a far place in the negative direction
by a big excitation. This will force particles to move a long
way to come back and move to xL. On the other hand, large
jumps and modest jumps have small differences on crossing
a small positive distance L. Then a small α does not have
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FIG. 7. MFPTs with respect to D and ε, for α = 1.8, F = 2.0.
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much advantage on the MFPT, although it has a lot of large
jumps. Therefore, small fluctuations are relatively helpful on
the MFPT for large F .

When the roughness is superimposed, MFPTs show a
remarkable increase for α close to 2.0. Although the roughness
ε = 0.1 increases the MFPT slightly for small α like α = 1.2 in
Figs. 6(a)–6(c), ε < 0.1 does reduce the MFPT (see the inset).
Thus for small α and ε, the roughness leads to an acceleration
of the crossing process. Figure 6(d) shows the evolution of the
MFPT with respect to ε in detail for different α with F = 2.0.
As shown, for small α the MFPT first decreases but then
increases, i.e., there is an optimal ε to let a particle cross beyond
xL with minimal time. But for large α, the roughness may
increase or decrease the MFPT monotonously like α = 1.9
and α = 1.94, respectively.

Another important parameter in the study of MFPT is the
noise intensity. Choosing a set of parameters α = 1.8 and
F = 2.0 in Fig. 7, the MFPT reduces with increasing noise
intensity D. The roughness always accelerates the crossing
process, which coincides with Fig. 6(b). In Fig. 7(b), MFPTs
first decrease and then increase, and the variation rate between
maximum and minimum is larger for small D. In addition,
the optimal ε inducing the minimal MFPT shifts to the right
with the increase of D. This means that a small noise intensity
benefits more from the small roughness, while a large noise
intensity benefits more from the large roughness.

V. CONCLUSION

In this paper, we have studied the enhanced transport
resulting from the superimposed roughness in a tilted rough
ratchet potential subject to a Lévy noise. The mean velocity
and mean first passage time have been calculated to explore
the enhancement areas with respect to the driving force F , the
Lévy stability index α, and the noise intensity D under

perturbations of roughness. We find that the superposition of
roughness is able to accelerate the transport of particles with
a proper F and α. For the mean velocity, the enhancement
area of ε decreases, and the optimal ε shifts to the left with
increasing F for small α. For large α, the enhancement area
of ε exhibits a sudden change from a full range to a zero
range with increasing F . We conclude that a large F benefits
more from a small ε, whereas a small F benefits more from
a large ε. In addition, the enhancement area of α decreases
with increasing F and focuses at regions away from α = 2.0.
Within the enhancement area of α, the increasing of α leads
to a larger range of aggressive ε, and shifts the optimal ε to
the right. This phenomenon indicates that a small α benefits
more from a small ε while a large α benefits more from a
large ε. The results of our investigations of the mean first
passage time almost coincide with those of the mean velocity.
The roughness can accelerate the crossing process with a
small force for α away from 2.0. Moreover, we find that
the roughness functions strongly for small noise intensities,
i.e., the induced rate of change of MFPTs is larger for smaller
noise intensities. In summary, the roughness is able to enhance
the transport of particles in a tilted rough ratchet in specific
conditions requiring a small F and α away from 2.0. However,
except the above parameters, other factors influencing the
function of roughness are its frequency or forms, which will
be discussed in our future work.
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