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Periodic driving is used to operate machines that go from standard macroscopic engines to small nonequilibrium
microsized systems. Two classes of such systems are small heat engines driven by periodic temperature variations,
and molecular pumps driven by external stimuli. Well-known results that are valid for nonequilibrium steady states
of systems driven by fixed thermodynamic forces, instead of an external periodic driving, have been generalized to
periodically driven heat engines only recently. These results include a general expression for entropy production
in terms of currents and affinities, and symmetry relations for the Onsager coefficients from linear-response
theory. For nonequilibrium steady states, the Onsager reciprocity relations can be obtained from the more general
fluctuation theorem for the currents. We prove a fluctuation theorem for the currents for periodically driven
systems. We show that this fluctuation theorem implies a fluctuation dissipation relation, symmetry relations for
Onsager coefficients, and further relations for nonlinear response coefficients. The setup in this paper is more
general than previous studies, i.e., our results are valid for both heat engines and molecular pumps. The external
protocol is assumed to be stochastic in our framework, which leads to a particularly convenient way to treat
periodically driven systems.
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I. INTRODUCTION

Thermodynamic cycles of macroscopic systems directed by
periodic variation of parameters such as pressure, temperature,
and volume were a primary motivation for the development of
the classical theory of thermodynamics [1]. The generalization
of thermodynamics to systems that can have large fluctuations
and can be arbitrarily far from equilibrium is a current
active area of research known as stochastic thermodynamics
[2]. This theoretical framework is equipped with the tools
to deal with periodically driven systems that are small, far
from equilibrium, and operate under finite-time conditions.
Two main classes of such systems that have been realized
experimentally are heat engines that are driven by a periodic
temperature variation [3–7] and artificial molecular pumps
that generate internal net motion due to periodic modulation
of energies and energy barriers [8–11].

The expression of the entropy production in terms of
currents (or fluxes) and affinities [12], and the reciprocity
relation of Onsager coefficients [13,14], are two known
fundamental results valid for nonequilibrium steady states,
which, in contrast to periodically driven systems, are driven
by fixed thermodynamic forces. This second result is a
cornerstone of linear irreversible thermodynamics [15], an
older framework that applies to nonequilibrium systems in
the linear-response regime.

As an important theoretical advancement for periodically
driven heat engines, a general expression of the entropy
production in terms of currents (or fluxes) and affinities and
symmetry relations for the Onsager coefficients have been
recently obtained in [16]. Further general results concerning
the linear-response regime of periodically driven systems have
been derived in [17,18]. Periodically driven heat engines
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have also been analyzed in several models in the linear-
response regime [19–21] and arbitrarily far from equilibrium
[22–24].

For periodically driven molecular pumps, if the system has
an internal fixed load, the periodic driving can lead to output
work against this load. A key difference between this situation
and the theoretical approaches considered in [16–18] is that
in this case there is a fixed thermodynamic force, i.e., the
system would be out of equilibrium even with no periodic
variation of parameters. Such molecular pumps (also known
as “stochastic pumps” [25]) have received much attention in
recent theoretical studies [26–36].

The fluctuation theorem for the currents is a central result
in stochastic thermodynamics valid for nonequilibrium steady
states [37,38] (see [39] for a finite-time generalization).
This result can be expressed as a symmetry on the scaled
cumulant-generating function of the currents. It implies the
Onsager reciprocity relations and further relations for non-
linear response coefficients [40]. In this paper, we prove a
fluctuation theorem for the currents for periodically driven
systems. We show that this fluctuation theorem implies a
fluctuation dissipation relation for periodically driven systems,
a symmetry of the Onsager coefficients and further relations for
nonlinear-response coefficients. Our result on the symmetry of
Onsager coefficients is a generalization of the symmetry from
[16] for heat engines to a case that also includes molecular
pumps.

In our approach, we consider discrete-state Markov pro-
cesses with a stochastic protocol [31,35], instead of the more
usual deterministic protocol. Systems driven by such stochastic
protocols have been realized experimentally [41,42]. The
use of a stochastic protocol is a mathematical convenience,
since in this case the protocol and system together form a
bipartite Markov process [43–45]. The periodically driven
system is then analyzed within the steady state of this bipartite
Markov process. We provide evidence that our results are
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FIG. 1. Periodically driven system with a stochastic protocol
modeled as a bipartite Markov process. For this case, the number
of different states of the external protocol is N = 4. Transition rates
that change the state of the system wn

ij depend of the state of the
external protocol, whereas a transition rate that changes the state of
the protocol γ n is independent of the state of the system.

also valid for deterministic protocols, which are modeled as
a stochastic protocol with a large number of jumps. We note
that a fluctuation theorem for currents for periodically driven
systems with a deterministic protocol has been proven in [46].
Their result is more restrictive than ours as it requires the
transition rates to fulfill some constraints that, for example, do
not allow for the realization of a molecular pump that generates
an internal current.

The structure of the paper is as follows. In Sec. II we define
the basic setup and write down an expression for the entropy
production in terms of currents and affinities. The fluctuation
theorem for the currents is proved in Sec. III. The response
relations, including the symmetry of the Onsager coefficients,
are derived in Sec. IV. We conclude in Sec. V. The limit of a
deterministic protocol is discussed in Appendix A. Technical
aspects of the proof of the fluctuation theorem for the currents
are discussed in Appendix B.

II. GENERAL FRAMEWORK

A. Transition rates and generalized detailed balance

The system and protocol together form a bipartite Markov
process, which can be used to analyze thermodynamic systems
driven by a stochastic protocol [31,35]. The variables i,j

represent a state of the system, which has a finite number of
states �. The variable n = 0,1, . . . ,N − 1 represents a state
of the periodic protocol, as shown in Fig. 1. This variable n is
analogous to the time in a periodically driven system with a de-
terministic protocol leading to time-dependent transition rates.

The transition rate from state (i,n) to state (j,n) is denoted
wn

ij . If wn
ij �= 0, then wn

ji �= 0. The transition rate for the
protocol in state n to the protocol in state n + 1 with the system
in state i is wnn+1

i = γ n, while the reversed transition rate
is zero. This transition rate is independent of the state of the
system i, and from n = N − 1 the protocol transitions back to
state n = 0. All other rates for transitions that involve a change

in the protocol are zero. The stationary master equation for
the whole bipartite process of system and protocol together
reads
d

dt
P n

i =
∑

j

(
P n

j wn
ji − P n

i wn
ij

) + γ n−1P n−1
i − γ nP n

i = 0,

(1)

where P n
i is the stationary probability of state (i,n).

Thermodynamic quantities such as temperature and energy
are defined in the following way. The energy of state i with
the protocol in state n is

En
i = Ei + �Ef n

i . (2)

The dimensionless function f n
i characterizes the influence of

the external protocol on the energy. The energy �E quantifies
the amplitude of the part of the energy that depends on the
external protocol. The periodicity of the external protocol, as
depicted in Fig. 1, implies f n+N

i = f n
i . The inverse tempera-

ture βn can take values between a hot inverse temperature βh

and a cold inverse temperature βc � βh. It is written as

βn = βc(1 − Fqh
n), (3)

where hn � 1 and Fq ≡ (βc − βh)/βc. The periodic function
hn+N = hn characterizes the dependence of the temperature
on the external protocol. Similar forms for the dependence of
energy and temperature on the external protocol for the case
of a deterministic protocol have been used in [16,18]. The
comparison between a stochastic protocol and a deterministic
protocol is discussed in Appendix A.

The transition rates for changes in the state of the system
fulfill the generalized detailed balance relation [2]

ln
wn

ij

wn
ji

= βn

[
En

i − En
j + (βc)−1

∑
α

Fαd
(α)
ij

]
, (4)

where Fα are internal affinities and d
(α)
ij = −d

(α)
ji are general-

ized dimensionless distances. For example, if Fα is a torque
applied to a rotatory motor, then d

(α)
ij is the amount that the

angle changes in a transition from i to j . For a heat engine,
all Fα are zero. A molecular pump corresponds to the case of
a fixed temperature βn = βc and nonzero internal force Fα .
The comparison between Eq. (4) and the standard form of
the generalized detailed balance relation for a deterministic
protocol is presented in Appendix A.

B. Currents and affinities

The mathematical form of the rate of entropy production,
i.e., the rate of entropy increase of the external medium, reads
[35]

σ ≡
∑

n

∑
ij

P n
i wn

ij ln
wn

ij

wn
ji

� 0. (5)

The class of Markov processes considered here is different
from the class of Markov processes considered in standard
stochastic thermodynamics [2]. In particular, transitions that
change the state of the external protocol are irreversible,
and their transition rates do not appear in Eq. (5). We note
that, as usual in thermodynamics, the thermodynamic cost of
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the external protocol is not taken into account in this paper.
Hence, the second law in Eq. (5) applies to a nonautonomous
physical system, like a heat engine driven by an external
control of the temperature. The cost of the external protocol
becomes relevant if the external control is exerted by, for
example, a chemical reaction. In this case, one must consider
a thermodynamically consistent external protocol without
irreversible jumps, which leads to a different statement of the
second law [47].

The average elementary probability current from state (i,n)
to state (j,n) is defined as

J n
ij ≡ P n

i wn
ij − P n

j wn
ji . (6)

The rate of entropy production in Eq. (5) in terms of this
elementary probability current becomes

σ =
∑

n

∑
i<j

J n
ij ln

wn
ij

wn
ji

, (7)

where the sum
∑

i<j is over all links between states of the
system. Using the generalized detailed balance relation in
Eq. (4), we obtain

σ =
∑

α

FαJα +
∑

n

∑
i<j

J n
ijβ

n
(
En

i − En
j

)
, (8)

where

Jα ≡
∑

n

∑
i<j

(βc)−1βnJ n
ij d

(α)
ij . (9)

Using Eq. (3), the second term on the right-hand side of
Eq. (8) becomes∑

n

∑
i<j

J n
ijβ

n
(
En

i − En
j

) = βc

∑
n

∑
i<j

J n
ij

(
En

i − En
j

) + FqJq,

(10)

where

Jq ≡
∑

n

∑
i<j

J n
ijh

nβc

(
En

j − En
i

)
. (11)

This current is the generalized heat flux from [16]. For the case
of Fα = 0 and a temperature that takes only the values βc (for
hn = 0) and βh (for hn = 1), Jq is the rate at which heat is
taken from the hot reservoir multiplied by βc.

The work current Je is defined as

Je ≡
∑

n

∑
i<j

J n
ij

(
f n

i − f n
j

) =
∑

n

∑
i

P n
i γ n

(
f n+1

i − f n
i

)
,

(12)

where the second equality follows from the master equation in
Eq. (1), which leads to d

dt

∑
i

∑
n f n

i P n
i = 0. The term �EJe

is the rate of work exerted on the system due to the variation
of the external protocol: from the second line of Eq. (12),
γ n is the speed of the change of the protocol from n to n +
1, and �E(f n+1

i − f n
i ) is the energy change associated with

the protocol jump. Finally, using Eqs. (8), (10), (12), and the
dimensionless affinity Fe = βc�E, we obtain

σ = FqJq + FeJe +
∑

α

FαJα, (13)

which is the expression of the entropy production in terms of
currents and affinities. Note that we have defined the currents
in Eqs. (9), (11), and (12) in such a way that the affinities
Fα , Fq , and Fe are dimensionless. The comparison between
this expression for σ and the more usual expression for the
entropy production for a deterministic protocol is discussed in
Appendix B. To illustrate the general theory, we introduce two
specific models: one for a heat engine and one for molecular
pump.

C. Illustrative examples

1. Heat engine

The model for a heat engine is illustrated in Fig. 2. The
system has two states, a down state with energy 0 and an
up state with energy En = E + �Ef n. The protocol has
four states. The first jump of the protocol corresponds to an
isothermal step at temperature β−1

c , with the energy of the up
state lifted from E to E + �E. In the second jump of the
protocol, the temperature is changed from β−1

c to β−1
h . In the

third jump, the energy is lowered back from E + �E to E in
an isothermal process at temperature β−1

h . In the fourth jump,
the engine returns to the initial state, with a temperature change
from β−1

h to β−1
c . In the isothermal steps, work is exerted on

the system when the higher energy level is elevated by �E

at temperature β−1
c and work is extracted from the system

when the higher energy level is lowered at temperature β−1
h .

If the temperature difference is high enough, the system is
more likely to be in the state of higher energy during the work
extraction step, leading to net work extraction. For this model,
f n = δn,1 + δn,2, and hn from Eq. (3) is hn = δn,2 + δn,3.

The entropy production for the heat engine reads

σ = FqJq + FeJe, (14)

where Jq is the rate of heat taken from the hot reservoir and
−FeJe is the rate of extracted work, both in units of β−1

c per
time. Taking the transition rates given in the caption of Fig. 2,
we consider the following limit. First, we take the limit at

γ

γ
E + ΔE

0

E

0

E + ΔE

0

E

0

γγ

n = 0 n = 1

n = 2n = 3

FIG. 2. Model for a heat engine. The temperature is cold for
n = 0,1 and hot for n = 2,3. The transition rate from the state with
energy 0 to the states with energy En is set to ke−βnEn/2, while the
reversed transition rate is keβnEn/2. The transition rate associated with
isothermal changes is γ , whereas the transition rate associated with
temperature changes is γ ′.
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which temperature changes are instantaneous, leading to γ ′ �
γ,k. Second, we consider that the system equilibrates before an
isothermal step, i.e., k � γ . Within this limit, calculating the
stationary distribution of the full bipartite system, we obtain
the following simple expressions:

−Je = γ
eβcE − eβh(E+�E)

2(1 + eβh(E+�E))(1 + eβcE)
(15)

and

Jq = γβc(E + �E)
eβcE − eβh(E+�E)

2(1 + eβh(E+�E))(1 + eβcE)
, (16)

which leads to the entropy production

σ = γ [βcE − βh(E + �E)]
eβcE − eβh(E+�E)

2(1 + eβh(E+�E))(1 + eβcE)

� 0. (17)

Hence, for βh/βc � E/(E + �E) this machine operates as
a heat engine that uses part of the heat taken from the hot
reservoir to extract work. Interestingly, the efficiency of the
heat engine in this regime is independent of the temperature
difference, i.e.,

η ≡ −FeJe

Jq

= �E

E + �E
� 1 − βh

βc

. (18)

The second inequality, which follows from the second law
in Eq. (17), tells us that the efficiency of the heat engine is
bounded by the Carnot efficiency.

2. Molecular pump

We consider a model for a molecular pump shown in
Fig. 3, which has a protocol with N = 3 states and � = 3
internal states. This model has been analyzed in [35,47]. The
temperature is fixed and set to βn = 1. The energy is set to
En

i = Feδi,n+1, i.e., the green state in Fig. 3 has energy Fe and
the other two states have energy 0. The dotted line in Fig. 3
represents an energy barrier B. The transition rates for a change
in the external protocol are all γ n = γ . The internal transition
rates fulfilling the generalized detailed balance relation in
Eq. (4) are given in the caption of Fig. 3.

The clockwise rotation of both this energy barrier and the
state with higher energy can lead to an internal current in the
clockwise direction that goes against an internal load F in
the anticlockwise direction. For such a molecular pump, the
entropy production in Eq. (13) takes the form

σ = JeFe + JαF , (19)

where Jα is the internal current defined in Eq. (9), with
dα

ij = 1/3 for a clockwise transition and dα
ij = −1/3 for an

anticlockwise transition. The work exerted on the system JeFe

can lead to work done against the internal force −JαF , with
an efficiency η ≡ (−JαF)/(JeFe). In the limit of an infinite
energy barrier B and for internal transitions that are much
faster than changes in the external protocol (k � γ ), we obtain
the following expressions for the currents:

−Jα = γ
eF/3+Fe + eFe − 2e2F/3

3(eF/3+Fe + eFe + e2F/3)
(20)

FIG. 3. Model for a molecular pump. The ellipse in green
represents a state with energy Fe, and the red circles represent states
with energy 0. The transition rates for n = 0 are w0

12 = keFe−F/3,
w0

13 = keFe−B , w0
23 = ke−F/3, w0

21 = k, w0
31 = ke−B−F/3, and w0

32 =
k, where βc = 1. Changing n leads to a rotation in the clockwise
direction of the transition rates. For example, w0

12 = w0
23 = w0

31.

and

Je = γ
eF/3(eFe − eF/3)

3(eF/3+Fe + eFe + e2F/3)
. (21)

Therefore, for a fixed positive Fe, this model operates as a
molecular pump that does work against the internal force 0 �
F � F∗, where F∗ is the solution of the equation Jα = 0.

D. Reversed protocol

Our results in the next section are obtained in terms of the
original bipartite Markov process and another bipartite Markov
process that corresponds to reversal of the external protocol,
which is represented in Fig. 4. The transition rates for the
original bipartite process are given by

wnn′
ij ≡

⎧⎪⎨
⎪⎩

wn
ij if i �= j and n′ = n,

γ n if i = j and n′ = n + 1,

0 otherwise.

(22)

The transition rates for the bipartite Markov process that
corresponds to reversal of the protocol are

vnn′
ij ≡

⎧⎪⎨
⎪⎩

wn
ij if i �= j and n′ = n,

γ n if i = j and n′ = n − 1,

0 otherwise.

(23)

For a symmetric protocol, the bipartite Markov processes
defined in Eqs. (22) and (23) become equivalent. Such a
symmetric protocol fulfills the conditions wn

ij = wN−1−n
ij and

γ n = γ N−1−n.

052120-4



STOCHASTIC THERMODYNAMICS OF PERIODICALLY . . . PHYSICAL REVIEW E 96, 052120 (2017)

i j
w0

ij

w0
ji

i j
w1

ji

w1
ij

i j
wN−2

ji

wN−2
ij

i j
wN−1

ij

wN−1
ji

· · ·γ0 γN−2

γN−1

· · ·
γN−1γ1

γ0

i j
w0

ij

w0
ji

i j
w1

ji

w1
ij

i j
wN−2

ji

wN−2
ij

i j
wN−1

ij

wN−1
ji

FIG. 4. Illustration of the comparison between the original bipar-
tite Markov process with rates in Eq. (22) and the one corresponding
to reversal of the protocol with rates in Eq. (23).

III. FLUCTUATION THEOREM FOR CURRENTS

A. Fluctuating currents

A fluctuating elementary current Xn
ij is a functional of the

stochastic trajectory from time 0 to time t that counts transi-
tions between states (i,n) and (j,n). For compact notation, we
omit the dependence of Xn

ij on the time interval t . If a transition
from (i,n) to (j,n) happens, this random variable increases by
1, and if a transition from (j,n) to (i,n) happens, this random
variable decreases by 1. The average of this fluctuating current
is

lim
t→∞

〈
Xn

ij

〉
t

= J n
ij , (24)

where the angular brackets indicate an average over stochastic
trajectories. Similar to Eq. (9), the fluctuating currents Xα are
given by

Xα ≡
∑

n

∑
i<j

(βc)−1βnXn
ij d

(α)
ij . (25)

Furthermore, from Eq. (11) we define

Xq ≡
∑

n

∑
i<j

Xn
ijh

nβc

(
En

j − En
i

)
, (26)

and from Eq. (12) we define

Xe ≡
∑

n

∑
i<j

Xn
ij

(
f n

i − f n
j

)
. (27)

The fluctuating entropy production Xs reads

Xs ≡ FqXq + FeXe +
∑

α

FαXα =
∑

a

FaXa, (28)

where the sum
∑

a represents a sum over all currents and
affinities including a = q, a = e, and a = α.

The scaled cumulant-generating function associated with
the vector of currents X = (Xa) is defined as

G(z) ≡ lim
t→∞

1

t
ln〈exp(z · X)〉, (29)

where z = (za) is a vector of real numbers z · X ≡ ∑
a zaXa .

This quantity is related to the rate function I (x) from large
deviation theory [48], which is defined as

Prob(X) ∼ exp[−tI (x)], (30)

where x ≡ X/t , and the symbol ∼ indicates asymptotic
behavior in the limit t → ∞. Specifically, I (x) is a Legendre-
Fenchel transform of G(z), i.e.,

I (x) = maxz[x · z − G(z)]. (31)

B. Fluctuation theorem

We now prove the fluctuation theorem for the currents,
which is a symmetry in the scaled cumulant-generating
function G(z). The modified generator L(z) is a quadratic
matrix with dimension � × N . Its elements are identified by
a state of the bipartite process i,n. These elements are defined
as

[L(z)]j,n′;i,n ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wn
ij e

∑
a d

n(a)
ij za if j �= i and n′ = n,

γ n if j = i and n′ = n + 1,

−γ n − ∑
k wn

ik if j = i and n′ = n,

0 otherwise,

(32)

where d
n(α)
ij ≡ (βc)−1βnd

(α)
ij , d

n(q)
ij ≡ hnβc(En

j − En
i ), and

d
n(e)
ij ≡ (f n

i − f n
j ). This matrix can be written in the form

L(z) =

⎛
⎜⎜⎜⎜⎝
L0(z) − �0 0 · · · �N−1

�0 L1(z) − �1 · · · 0
0 �1 · · · 0
...

...
. . .

...
0 0 · · · LN−1(z) − �N−1

⎞
⎟⎟⎟⎟⎠, (33)

where

[Ln(z)]j ;i ≡
{

wn
ij e

∑
a d

n(a)
ij za if i �= j,

−∑
k wn

ik if i = j,
(34)

and �n = γ nI, with I as the identity matrix with dimension �. This modified generator is a Perron-Frobenius matrix, and its
maximum eigenvalue is the scaled cumulant-generating function G(z) [37].
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The scaled cumulant-generating function associated with the reversed bipartite process, with transition rates given by Eq. (23),
is denoted GR(z). The modified generator related to it is

[LR(z)]j,n′;i,n ≡

⎧⎪⎪⎨
⎪⎪⎩

wn
ij e

∑
a d

n(a)
ij za if j �= i and n′ = n,

γ n if j = i and n′ = n − 1,

−γ n − ∑
k wn

ik if j = i and n′ = n,

0 otherwise.

(35)

This matrix can be written in the form

LR(z) =

⎛
⎜⎜⎜⎜⎝
L0(z) − �0 �1 · · · 0

0 L1(z) − �1 · · · 0
0 0 · · · 0
...

...
. . .

...
�0 0 · · · LN−1(z) − �N−1

⎞
⎟⎟⎟⎟⎠. (36)

From Eqs. (2)–(4), and (34), we obtain the following
symmetry:

[Ln(z)]j ;i = [Ln(−F − z)]i;j eβc(Ei−Ej ), (37)

where F = (Fa), and Ei is the part of the energy En
i that does

not depend on the external protocol. For the case γ n = γ ,
with a matrix D that is a diagonal matrix with components
[D]i,n;j,n′ = δnn′δij eβcEi , we obtain

L(z) = [DLR(−F − z)D−1]T , (38)

where the superscript T denotes transpose. This similarity
transformation proves thatL(z) andLR(−F − z) have the same
characteristic polynomial. A similar similarity transformation
appears in the proof of a transient fluctuation theorem for the
currents [39].

For general γ n, Eq. (38) does not hold; however, as
shown in Appendix B, the characteristic polynomials of L(z)
and LR(−F − z) are the same. Since the scaled cumulant-
generating function is the maximum eigenvalue of the modified
generator, this equality between characteristic polynomials
implies the symmetry

G(z) = GR(−F − z). (39)

This fluctuation theorem for the currents for periodically
driven systems is the most general result of this paper. It is
a generalization of the fluctuation theorem for the currents
for nonequilibrium steady states [37,40] to periodically driven
systems. For the case of a symmetric protocol, this relation
becomes G(z) = G(−F − z), which is the exact same form of
the fluctuation theorem for the currents for nonequilibrium
steady states. In spite of this same form and a similar
mathematical derivation, the relation G(z) = G(−F − z) for
symmetric protocols is a different mathematical result, which
applies to a different class of Markov processes, in relation
to the fluctuation theorem for the currents for nonequilibrium
steady states. We point out that our results should also be valid
for deterministic protocols that are continuous, since there is
strong evidence that such protocols can be obtained as a limit of
a stochastic protocol with infinitely many jumps, as discussed
in Appendix A.

It is worth mentioning that a fluctuation theorem for currents
for a system driven by periodic and deterministic protocols
has been obtained in [46]. Their derivation, however, relies on

assumptions that restrict the time dependence of transitions
rates. In particular, they cannot have a situation in which both
energies and energies barriers are varied in time, which is
a necessary condition for a molecular pump to generate an
internal current [26,27]. Hence, the fluctuation theorem from
[46] cannot be used to derive the response relations from
Sec. IV that are valid for both heat engines and molecular
pumps.

The scaled cumulant-generating function associated with
the entropy current Xs is obtained by setting the real vector to
z = (Faz), i.e.,

Gs(z) = G(zF). (40)

The fluctuation theorem for the currents implies

Gs(z) = GR
s (−1 − z). (41)

This equation is a generalization of the Gallavotti-Cohen
symmetry [37] to periodically driven systems. In Fig. 5 we
plot Gs(z) for the models explained in Appendix B. As
illustrated in Fig. 5(a), the function Gs(z) is symmetric for
the case of a symmetric protocol. Furthermore, as shown
in Fig. 5(b), for a nonsymmetric protocol Gs(z) fulfills the
property Gs(0) = Gs(−1) = 0, which is a consequence of
Eq. (41). This property, which is also valid for G(z), is
important for the derivations in the next section. We note that
in terms of the rate function I (x), the fluctuation theorem for
the currents in Eq. (39) becomes

I (x) − IR(−F − x) = −F · x, (42)

where we have used Eq. (31).

IV. RESPONSE COEFFICIENTS

A. Fluctuation dissipation relation

In this section, we write the scaled cumulant-generating
function as G(z,F), keeping the dependence on the affinities
explicit. An average current Ja can be obtained from G(z,F)
with the equation

Ja(F) = ∂G

∂za

∣∣∣∣
z=0

. (43)
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FIG. 5. Scaled cumulant-generating function associated with the
entropy current Gs(z). (a) Symmetric protocol for the model depicted
in Fig. 6. Parameters were set to k = Fe = 10, γ 0 = 1, γ 1 = 2.5,
γ 2 = 4, and γ 3 = 3. (b) Nonsymmetric protocol for the molecular
pump depicted in Fig. 3. Parameters were set to k = 10, γ = 1,
Fe = B = 10, and F = 5.

Furthermore, the diffusion coefficient is defined as

Dab(F) ≡ 〈(Xa − 〈Xa〉)(Xb − 〈Xb〉)〉
t

= ∂2G

∂zazb

∣∣∣∣
z=0

. (44)

In the linear-response regime, the current in Eq. (43)
becomes

Ja =
∑

b

LabFb + O(F2), (45)

where

Lab ≡ ∂2G

∂za∂Fb

∣∣∣∣
z=0,F=0

(46)

are the Onsager coefficients. We now derive a fluctuation
dissipation relation for periodically driven systems that relates
the response coefficients Lab with fluctuations in equilibrium,
as quantified by D

eq
ab ≡ Dab(F = 0).

The fluctuation theorem for the currents (39) implies the
relation

G(0,F) = G(−F,F) = 0. (47)

A Taylor expansion around z = F = 0 of the scaled cumulant-
generating function leads to

G(z∗,F∗) =
∑

kl

gk,l

∏
a

(z∗
a)ka (F∗

a )la

ka!la!
, (48)

where

gk,l ≡ ∂k+lG∏
a ∂ka za∂laFa

∣∣∣∣
z=0,F=0

, (49)

k ≡ (ka), l ≡ (la), k = ∑
a ka , and l = ∑

a la . The sum
∑

kl
is over all possible vectors with each component taking the
values ka = 0,1, . . . ,∞ and la = 0,1, . . . ,∞. With a Taylor
expansion around −z∗ − F∗, we obtain

G(−F∗ − z∗,F∗) =
∑

kl

gk,l

∏
a

(−z∗
a − F∗

a )ka (F∗
a )la

ka!la!

=
∑

kl

g̃k,l

∏
a

(−z∗
a)ka (F∗

a )la

ka!la!
, (50)

where

g̃k,l ≡ ∂k+lG∏
a ∂ka za∂laFa

∣∣∣∣
z=−F∗,F=0

. (51)

Equation (50) implies

g̃k,l =
∑

n

gk+n,l−n

∏
a

(−1)na
la!

(la − na)!na!
, (52)

where n ≡ (na) and na = 0,1, . . . ,la in the sum
∑

n. The zeros
of G(z,F) in Eq. (47), combined with Eqs. (48) and (50), lead
to g0,l = g̃0,l = 0 for all vectors l. Hence, setting k = 0 in
Eq. (52), we obtain

gl,0 = −
′∑
n

gn,l−n

∏
a

(−1)na
la!

(la − na)!na!
, (53)

where the sum
∑′

n is over all na = 0,1, . . . ,la apart from the
term na = la for all a. A similar mathematical derivation of
Eq. (53) from the condition in Eq. (47) has been used in [49]
for the case of nonlinear transport in a conductor.

If we set the vector l to 1 for components a and b, and to 0
for all other components, Eq. (53) becomes

D
eq
ab = Lab + Lba, (54)

which is the fluctuation-dissipation relation for periodically
driven systems. This equation relates fluctuations in equi-
librium, as quantified by D

eq
ab, with nonequilibrium response

functions, as quantified by the Onsager coefficients. For the
case a = b, we obtain D

eq
aa = 2Laa by setting the component

a of the vector l to 2 and the other components to 0 in Eq. (53).

B. Symmetry for Onsager coefficients

For the reciprocity relation for periodically driven systems,
we also have to consider the bipartite Markov process
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corresponding to reversal of the protocol. From the fluctuation
theorem for currents in Eq. (39), we obtain

∂2G

∂za∂Fb

∣∣∣∣
z=z∗,F=F∗

= ∂2GR

∂za∂zb

∣∣∣∣
z=−z∗−F∗,F=F∗

− ∂2GR

∂za∂Fb

∣∣∣∣
z=−z∗−F∗,F=F∗

. (55)

Setting z∗ = F∗ = 0, Eq. (55) becomes

Lab = D
eq
ab − LR

ab. (56)

This equation, together with the fluctuation-dissipation re-
lation in Eq. (54), gives the symmetry of the Onsager
coefficients,

LR
ab = Lba. (57)

This symmetry relation is a generalization of the symmetry
derived in [16], since our framework also accounts for the
case of nonzero fixed thermodynamic affinities Fα .

We note that this method of taking derivatives of the
fluctuation theorem for the currents to derive relations for
response coefficients as in Eq. (55) has been used in [40] for
the case of nonequilibrium steady states. The main difference
between the derivations in this reference and the present
derivation is that for periodically driven systems, we have
to consider two scaled cumulant-generating functions, and,
therefore, Eq. (55) alone is not enough to get the symmetry of
Onsager coefficients; we also need Eq. (54).

C. Nonlinear coefficients

We now show that the fluctuation theorem for the currents
also implies relations between the nonlinear-response coeffi-
cients. Expanding the current up to second order in the affinity,
we obtain

Ja =
∑

b

LabFb + 1

2

∑
bc

Ma,bcFbFc + O(F3), (58)

where

Ma,bc ≡ ∂3G

∂za∂Fb∂Fc

∣∣∣∣
z=0,F=0

. (59)

The diffusion coefficient is expanded up to first order,

Dab = D
eq
ab +

∑
c

Nab,cFc + O(F2), (60)

where

Nab,c ≡ ∂3G

∂za∂zb∂Fc

∣∣∣∣
z=0,F=0

. (61)

From the fluctuation theorem for the currents in Eq. (39),
we see that the scaled cumulant-generating function in equi-
librium is symmetric and, hence, the odd cumulants associated
with the currents in equilibrium are zero. In particular, using
the fact that the third cumulant in equilibrium is zero, from
Eq. (53) we obtain

Ma,bc + Mb,ac + Mc,ab = Nab,c + Nac,b + Nbc,a. (62)

Hence, the second-order coefficients of the current can be
expressed as first-order coefficients of the diffusion coefficient.

Furthermore, taking a further derivative with respect to Fc in
Eq. (55), we obtain

Ma,bc + MR
a,bc = Nab,c + Nac,b = NR

ab,c + NR
ac,b, (63)

where the second equality comes from the fact that we can
interchange the roles of original and reversed protocol in
Eq. (55). From Eqs. (62) and (63), the following relation for
the second-order coefficient of the current is obtained:

Ma,bc + Mb,ac + Mc,ab = MR
a,bc + MR

b,ac + MR
c,ab. (64)

In general, relation (53) shows that higher-order cumulants
at equilibrium can be expressed as response functions asso-
ciated with lower-order cumulants. Considering higher orders
in Eq. (53) and taking further derivatives in Eq. (55) lead
to relations between higher-order response coefficients. For
the case of a symmetric protocol, all relations for nonlinear-
response coefficients derived in [40] hold true, since their
derivation relies on the relation G(z,F) = G(−z − F,F) that
is valid for a symmetric protocol.

V. CONCLUSION

We have proven a fluctuation theorem for the currents
for periodically driven systems. This result generalizes the
symmetry of the Onsager coefficients for periodically driven
systems obtained in [16]: our fluctuation theorem implies
this symmetry, a fluctuation dissipation relation, and further
relations for nonlinear-response coefficients. This situation
is akin to the previously known fluctuation theorem for the
currents for steady states that implies response relations.

Our results also provide a unifying framework that includes
two different classes of periodically driven systems that have
hitherto been analyzed separately in the literature and that
have been realized experimentally. These two classes are small
heat engines operated with periodic temperature variation and
molecular pumps that can have fixed thermodynamic forces
and, therefore, would be out of equilibrium even without
periodic driving.

Several universal features of nonequilibrium steady states
have been obtained within the framework of stochastic
thermodynamics [2]. The fluctuation theorem for currents is
one such universal feature that is now generalized to the case
of periodically driven systems. Generalizing other results that
have been established for nonequilibrium steady states, e.g.,
fluctuation dissipation relations far from equilibrium [50–
52] and the thermodynamic uncertainty relation [35,53], to
periodically driven systems constitutes an interesting direction
for future work.
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APPENDIX A: DETERMINISTIC PROTOCOL AS A LIMIT
OF A STOCHASTIC PROTOCOL

In this appendix, we explain how a continuous deterministic
protocol can be obtained as a stochastic protocol with infinitely
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many jumps. We also write down the expression of the entropy
production for this case of a deterministic protocol.

1. Average entropy production

The stochastic protocol alone is a Markov process that
follows the master equation

d

dt
P n = γP n−1 − γP n, (A1)

where P n = ∑
i P

n
i , and we set γ n = γ for n = 0,1, . . . ,N −

1. If we consider a random variable Xext that counts the number
of jumps of the external protocol, a standard calculation gives

vext ≡ 〈Xext〉/t = γ /N (A2)

and

Dext ≡ 〈(Xext − 〈Xext〉)2〉/t = γ /N2. (A3)

By setting γ = N/τ and taking the limit N → ∞, the stochas-
tic protocol becomes deterministic with a speed vext = τ−1 and
a dispersion Dext = (τN )−1 → 0. In this limit, the transition
rates wn

ij become wij (t), where t = nτ/N . The periodicity

condition wn
i = wn+N

i changes to wij (t) = wij (t + τ ).
The master equation in this limit then becomes

d

dt
Ri(t) =

∑
j

[Rj (t)wji(t) − Ri(t)wij (t)], (A4)

where Ri(t) is the probability to be in state i at time t . The
generalized detailed balance relation in Eq. (4) changes to

ln
wij (t)

wji(t)
= β(t)

[
Ei(t) − Ej (t) + (βc)−1Fαd

(α)
ij

]
, (A5)

where β(t) = βc[1 − Fqh(t)] and Ei(t) = Ei + �Efi(t).
Comparing with the stochastic protocol, the functions h(t)
and Ei(t) fulfill the relations h(t = τn/N ) = hn and Ei(t =
τn/N ) = En

i , where En
i is given in Eq. (2) and hn is given in

Eq. (3)
In the long-time limit, the system reaches a periodic steady

state characterized by the probability R∗
i (t) = R∗

i (t + τ ). For
the comparison of this probability with the stationary proba-
bility of the bipartite process P n

i , we define the conditional
stationary probability of the system being in state i given the
protocol is in state n, P (i|n) ≡ P n

i /P n, where the stationary
probability of the protocol is P n = 1/N . It can be shown that
the conditional probability of the bipartite Markov process
P (i|n) tends to R∗

i (t = nτ/N ) in the limit N → ∞ [35].
The elementary current X∗

ij , analogous to
∑

n Xn
ij for a

stochastic protocol, is a random variable that increases by 1
if a jump from i to j takes place and that decreases by 1 if a
jump from j to i takes place. The average current,

J ∗
ij ≡ lim

t→∞
〈X∗

ij 〉
t

, (A6)

is given by

J ∗
ij = 1

τ

∫ τ

0
[R∗

i (t)wij (t) − R∗
j (t)wji(t)]dt ≡ 1

τ

∫ τ

0
Jij (t)dt.

(A7)

Using Eq. (6), this expression can be compared to the following
expression for the stochastic protocol:

Jij ≡
∑

n

J n
ij = 1

N

∑
n

[
P (i|n)wn

ij − P (j |n)wn
ji

]
. (A8)

Comparing with J ∗
ij , we obtain that the convergence P (i|n) →

R∗
i (t = nτ/N ) in the limit N → ∞ implies Jij → J ∗

ij .
The entropy production in Eq. (5) changes to

σ ∗ ≡ 1

τ

∫ τ

0

∑
ij

R∗
i (t)wij (t) ln

wij (t)

wji(t)

= FqJ
∗
q + FeJ

∗
e +

∑
α

FαJ ∗
α � 0, (A9)

where

J ∗
α ≡ 1

τ

∫ τ

0

∑
i<j

(βc)−1β(t)Jij (t)d (α)
ij dt, (A10)

J ∗
q ≡ 1

τ

∫ τ

0

∑
i<j

Jij (t)h(t)βc[Ej (t) − Ei(t)]dt, (A11)

and

J ∗
e ≡ 1

τ

∫ τ

0

∑
i<j

Jij (t)[fi(t) − fj (t)]dt. (A12)

The fact that the stationary probability of the bipartite
process converges to R∗

i (t) suggests that such convergence
should also take place for current fluctuations, as characterized
by the scaled cumulant-generating function. Furthermore, an
expression for the large deviation function characterizing
fluctuations of currents in periodically driven systems with
a deterministic protocol in terms of R∗

i (t) has been recently
proposed in [36]. Such an expression provides further evidence
for this convergence for current fluctuations. We now illustrate
the convergence of the scaled cumulant-generating function for
a specific model analyzed in [35].

2. Current fluctuations

The model with a symmetric protocol illustrated in Fig. 6 is
defined as follows. The system has two states, one with energy
zero and the other with energy En = Fe cos(2πn/N ). The
temperature is constant and set to βn = 1. The transition rates

E

0 0 0

0 0 0

−E

n = 0 n = 1

n = 2n = 3

γ0

γ1

γ2

γ3

FIG. 6. Model with a symmetric protocol for N = 4.
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of the protocol are γ n. For the comparison with a deterministic
protocol, we set γ n = γ . The transition rate from the state with
energy 0 to the state with energy En is set to ke−En/2, while
the reversed transition rate is keEn/2. The scaled cumulant-
generating function Gs(z) can be obtained by calculating the
eigenvalue of the modified generator from Sec. III.

We now consider the deterministic version of the model.
The probability vector R(t) has two components, with the first
component as the probability that the system is in the state
with energy 0 and the second as the probability that the system
is in the state with energy E(t) = Fe cos(t). The transition rate
from the state with energy 0 to the states with energy E(t) is
ke−E(t)/2, whereas the reversed transition rate is keE(t)/2.

The probability vector R(X∗
s ,t) gives the probabilities that

the system is in a certain state with the entropy current
given by X∗

s . Defining the Laplace transform R(z,t) =∑
X∗

s
R(X∗

s ,t)e
zX∗

s and using the master equation (A4), we
obtain

d

dt
R(z,t) = L(z,t)R(z,t), (A13)

where

L(z,t) =
( −keE(t)/2 ke−E(t)/2e−zE(t)

keE(t)/2ezE(t) −ke−E(t)/2

)
. (A14)

The scaled cumulant-generating function is given by

G∗
s (z) ≡ lim

t→∞
1

t
ln〈exp(zX∗

s )〉

= lim
t→∞

1

t
ln[R1(z,t) + R2(z,t)], (A15)

where Ri(z,t) is the component of the vector R(z,t). Using
Floquet theory [54], the scaled cumulant-generating function
G∗

s (z) is given by the maximal Floquet exponent associated
withL(z,t). We have calculated this maximal Floquet exponent
following the numerical method explained in [54]. In Fig. 7,
we show the convergence of the scaled cumulant-generating

-2 -1.5 -1 -0.5 0 0.5 1z

0

0.1

0.2

0.3

0.4

G
s(z

)

Deterministic
N= 8
N= 16
N= 32
N= 64

FIG. 7. Scaled cumulant-generating functions for a determinis-
tic protocol and for a stochastic protocol. The scaled cumulant-
generating function for a stochastic protocol tends to the scaled
cumulant-generating function for the deterministic protocol with
increasing N . The parameters of the model with a symmetric protocol
are set to γ = 2π/N , k = 1, and Fe = 2, where the parameter γ is
valid only for the stochastic protocol.

function obtained with the stochastic protocol with increasing
N to G∗

s (z). We note that, to our knowledge, a rigorous
proof of the large deviation principle for arbitrary currents
in periodically driven systems with deterministic protocols is
still lacking. However, it is reasonable to expect that beyond
the example analyzed here, this scaled cumulant-generating
function is given by a maximal Floquet exponent.

APPENDIX B: EQUALITY BETWEEN
CHARACTERISTIC POLYNOMIALS

The scaled cumulant-generating function G(z) is a root
of the characteristic polynomial associated with L(z). This
polynomial is given by the determinant of the matrix L(z) −
Ix, where I is the identity matrix with dimension � × N and
x is the variable of the polynomial. From Eq. (33), this matrix
takes the form⎛
⎜⎜⎜⎜⎝
L0(z) − D0 0 · · · �N−1

�0 L1(z) − D1 · · · 0
0 �1 · · · 0
...

...
. . .

...
0 0 · · · LN−1(z) − DN−1

⎞
⎟⎟⎟⎟⎠,

(B1)

where Dn = I(γ n + x). Furthermore, from Eqs. (36) and (37),
the transpose of the matrix DLR(−F − z)D−1 − Ix, where D
is the diagonal matrix from Eq. (38), reads⎛
⎜⎜⎜⎜⎝
L0(z) − D0 0 · · · �0

�1 L1(z) − D1 · · · 0
0 �2 · · · 0
...

...
. . .

...
0 0 · · · LN−1(z) − DN−1

⎞
⎟⎟⎟⎟⎠.

(B2)

To show that the matrices in Eqs. (B1) and (B2) have the same
determinant, we consider the Leibniz formula for determinants
(Eq. 0.3.2.1 in [55]), where the determinant is written as a sum
over all (� × N )! permutations of the elements. In a graphical
representation of these terms, where the states of the bipartite
process (i,n) are vertices and nonzero transition rates are edges,
there are diagonal terms and cyclic permutations with sizes that
range from 2 up to � × N (see [38,56]). For the case of the
matrices in Eqs. (B1) and (B2), there are two kinds of cycles.
First there are cycles that do not contain external jumps that
lead to a change in the external protocol. In this case, since
the diagonal blocks in Eqs. (B1) and (B2) are identical, the
contribution to the determinants coming from these cycles
must be the same for both matrices. Second, there are cycles
that contain external jumps. In this case, since the external
jumps are irreversible, all such cycles must go through all
external states in order to close the cycle. For both matrices,
the contribution to these cycles due to the external jumps is the
same and given by

∏N−1
n=0 γ n. We thus conclude that all terms

contributing to the determinant, namely diagonal terms, cycles
containing only internal jumps, and cycles containing external
jumps, are exactly the same for the matrices in Eqs. (B1) and
(B2). Hence, the determinants of these matrices are identical,
which leads to the symmetry G(z) = GR(−F − z).
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