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Universal features of cluster numbers in percolation

Stephan Mertens,1 Iwan Jensen,2 and Robert M. Ziff3

1Institut für Theoretische Physik, Otto-von-Guericke Universität, PF 4120, 39016 Magdeburg, Germany,
and Santa Fe Institute, 1399 Hyde Park Rd, Santa Fe, New Mexico 87501, USA

2School of Mathematics Statistics, University of Melbourne, Victoria 3010, Australia
3Center for the Study of Complex Systems and Department of Chemical Engineering, University of Michigan,

Ann Arbor, Michigan 48109-2136, USA
(Received 2 October 2017; published 13 November 2017)

The number of clusters per site n(p) in percolation at the critical point p = pc is not itself a universal quantity;
it depends upon the lattice and percolation type (site or bond). However, many of its properties, including
finite-size corrections, scaling behavior with p, and amplitude ratios, show various degrees of universal behavior.
Some of these are universal in the sense that the behavior depends upon the shape of the system, but not lattice
type. Here, we elucidate the various levels of universality for elements of n(p) both theoretically and by carrying
out extensive studies on several two- and three-dimensional systems, by high-order series analysis, Monte Carlo
simulation, and exact enumeration. We find many results, including precise values for n(pc) for several systems, a
clear demonstration of the singularity in n′′(p), and metric scale factors. We make use of the matching polynomial
of Sykes and Essam to find exact relations between properties for lattices and matching lattices. We propose a
criterion for an absolute metric factor b based upon the singular behavior of the scaling function, rather than a
relative definition of the metric that has previously been used.
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I. INTRODUCTION

Percolation is the study of connectivity in random sys-
tems, particularly of the transition that occurs when the
connectivity first becomes long-ranged [1]. Examples are the
formation of gels in polymer systems [2], conductivity in
random conductor-insulator mixtures [3], and flow of fluids
in random porous materials [4]. The percolation model has
been of immense theoretical interest in the field of statistical
mechanics, being a particularly simple example of a system
that undergoes a nontrivial phase transition. It is directly
related to the Ising model through the Fortuin-Kasteleyn [5]
representation of the Potts model. Variations have received
attention recently including k-core or bootstrap percolation
[6], invasion percolation and watersheds [7,8], and explosive
percolation [8,9]. Percolation has also been intensely studied
in the mathematical field in recent years [10–12].

In the basic model of random percolation, one considers a
lattice of sites (vertices) and bonds (edges), and one randomly
occupies a fraction p of either sites or bonds, creating
clusters of connected components. Of particular interest is the
behavior near the critical threshold pc where an infinite cluster
first appears. The study of this model has encompassed a wide
variety of approaches, including experimental measurements
[3], asymptotic analysis of exact series expansions [13],
theoretical methods [14], conformal invariance [15],
Schramm-Loewner evolution theory [10,11], and numerous
types of computer simulation [16–24]. For some classes of
two-dimensional (2D) models, thresholds can be found exactly
[25–27], and recently methods have been developed to find
approximate 2D values to extremely high precision [28–31].

Universality has played a central role in the understanding
of the critical behavior of the percolation process (and in
statistical mechanics in general). First, there are universal
exponents such as α (related to the number of clusters), β (the
percolation probability P∞), σ (the inverse of the exponent for

the divergence of the typical cluster size), ν (the correlation
length), etc. [1]. For all systems of a given dimensionality,
these exponents have universal values, such as α = 2/3,
β = 5/36, σ = 36/91, and ν = 4/3 in two dimensions, inde-
pendent of the system (lattice, nonlattice, etc.) and the shape
of the boundary. This is the strongest form of universality.

Second, there are quantities, such as the number of clusters
of size s, ns ∼ s−τ f1(b(p − pc)sσ ), whose scaling function
f1(z) is universal, and identical for all systems of a given
dimensionality, although in order for this universality to be
realized, the metric factor b must be adjusted for each system.
One usually assumes b = 1 for one system, such as bond
percolation on the square lattice, and then chooses b for the
other systems to get the behaviors to match. The metric factor
compensates for the roles of L and p for the different systems.
Here the system is assumed to be infinite, and the scaling
function f1(z) is independent of the system shape that was
used in the limiting process to infinity.

Third, there are properties that are universal in the sense of
being independent of the lattice and percolation type, but still
dependent upon the shape of the system, even in the limit that
the system size becomes infinite. For example, the finite-size
scaling of P∞ is given by

P∞(p,L) ∼ L−β/νf2(b(p − pc)L1/ν), (1)

where the scaling function f2(z) is universal only when
comparing different systems of the same shape and boundary
condition. (Again, b has to be adjusted to make the different
systems coincide, and will be the same b as in f1(b(p −
pc)sσ ).) The reason that shape matters here is that, for p close
to pc, the correlation length diverges, and the boundaries of
the system are seen. Note P∞ = smax/L

d is just the size of the
maximum cluster divided by the area or volume of the system,
and the properties of the maximum cluster will depend upon
the boundary of a system. Another well-known example
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of a shape-dependent quantity is the percolation crossing
probability, where for a rectangular system Cardy derived his
well-known formula for the crossing of a rectangular system
of any aspect ratio [15]. Here the system is made infinite but
with the boundary shape fixed in the limiting process.

The reference to system shape may seem irrelevant, since
usually percolation is related to just connectivity. However,
there are finite-size effects that depend upon the large
clusters of a system, and for those clusters there is a unique
representation of a lattice in space that makes the cluster
growth isotropically. For example, the triangular lattice can be
deformed into a square lattice with diagonals in one directions,
but in that representation the clusters would grow unequally in
the two diagonal directions. To properly characterize the shape
of the system, the triangles must be represented equilaterally.

One of the earliest and most fundamental quantities to be
studied in percolation is simply the number of clusters per site
n(p) as a function of the occupation probability p [25,32];
this quantity corresponds to the free energy of the percolating
system [5]. In an infinite system and for p near pc, n(p)
behaves as

n(p) = A0 + B0(p − pc) + C0(p − pc)2

+A±|p − pc|2−α + · · · , (2)

where the first three terms represent the analytical part of
n(p), and the last term represents the singular part. A± is the
amplitude above (+) and below (−) the critical point pc. In
two dimensions, the critical exponent α has the universal value
α = −2/3 [13] andA+ = A−. However, the value ofA±, as
well as those of A0, B0, and C0, are nonuniversal. The subscript
0 indicates an infinite system. The singularity is a weak one,
and n(p) becomes infinite at pc in the third derivative. In terms
of the correlation length ξ ∼ |p − pc|−ν where dν = 2 − α,
the singularity in n(p) is proportional to ξ−d , where d is the
number of dimensions.

In 1976, Domb and Pearce [13], using series analysis, found
values of the coefficients A0, B0, C0, andA± for two systems:
site percolation on the triangular lattice and bond percolation
on the square lattice (see Table I). They used their results to
conjecture that α = −2/3, which proved correct. However,
there has been little further determination or discussion of
these quantities, other than A0, since then. One exception is
the finite-size correction to n(pc), the so-called excess cluster
number [33], where measurements have been made and the
shape dependence has been quantified theoretically. However,
other correction quantities, and especially the strength of the
singularity, have not been studied.

In the present paper, we report several high-precision results
for the quantities in (2) and also discuss many aspects of the
finite-size scaling corrections, with a focus on universality.
We determine the metric factors b using the same convention
as Hu et al., that b = 1 for bond percolation on the square
lattice, but then also propose an “absolute” definite of b by
using a fully universal property of the scaling function—the
coefficient of the singular behavior, which we can take as equal
to unity. We determine this absolute b for site percolation on
the triangular, square, honeycomb, and Union Jack lattices,
and for bond percolation on the square lattice, where b is no
longer equal to 1.

II. FINITE-SIZE CORRECTIONS
AND SCALING THEORY

The leading amplitude A0 in (2) gives the critical number
of clusters per site n(pc) and has been found exactly in only
two cases: bond percolation on the square lattice, where the
number of clusters per bond is [14,33]

n(pc) = A0 = 24
√

3 − 41

32
= 0.017788106 . . . , (3)

and bond percolation on the dual triangular and honeycomb
lattices, where n(pc) = (1/3)[35/4 − 3/pTR

c − (1 − pTR
c )6] =

0.01150783 . . . and n(pc)= (1/3)[35/4−3/pTR
c −(pTR

c )3] =
0.02331840 . . . bond clusters per bond, respectively, with
pTR

c = 2 sin π/18 [33,34].
The next amplitude B0 is known exactly for some systems.

Sykes and Essam [25] showed that for site percolation on
infinite planar lattices,

n(p) − ñ(1 − p) = φ(p), (4)

where ñ represents the number of clusters on the matching
lattice in which the vertices in every face of the original
lattice are completely connected, and φ(p) is the matching
polynomial or Euler characteristic [35] corresponding to the
specific lattice. For all fully triangulated lattices, such as the
triangular and Union Jack lattices, as well as the square-bond
covering lattice, the matching lattice is identical to the original
lattice, pc = 1/2, and φ(p) = p − 3p2 + 2p3 [25], implying

n′(pc) = B0 = φ′(1/2)/2 = −1/4 . (5)

For other lattices, we can find exact results if we include
the matching lattice. For example, for a square (SQ) lattice
(site percolation), φ(p) = p − 2p2 + p4, and it follows from
(4) that the following combinations of quantities are known
exactly in terms of pc:

A
SQ
0 − A

NNSQ
0 = pc − 2p2

c + p4
c = 0.01349562262604(1),

B
SQ
0 + B

NNSQ
0 = 1−4pc+4p3

c = −0.537943928141750(5),

C
SQ
0 − C

NNSQ
0 = −4 + 12p2

c = 0.2161745687555(3), (6)

using pc from Ref. [30], where NNSQ represents the square
lattice with next-nearest-neighbor connections, which is the
matching lattice of the square lattice.

Next we consider the behavior for finite systems. For
systems of length scale L, (2) is replaced by [36]

nL(p) = A0 + B0(p − pc)+C0(p − pc)2+L−df (z) + · · · ,

(7)
where f (z) is the leading scaling function. Here z = b(p −
pc)L1/ν and b is a metric factor depending on the lattice and
percolation type, but not on the shape of the boundary of the
system. The subscript L on nL(p) indicates a finite system. We
assume that the boundary conditions are periodic, so there are
no surface correction terms. We do not consider higher-order
corrections-to-scaling terms, such as L−2dg(z), here.

The scaling function f (z) depends upon the system’s shape,
boundary conditions, and dimensionality, but is universal for
all percolation types, including different lattices with site or
bond percolation, continuum systems, etc., for systems of the
same shape. It is analytic around the origin, allowing us make
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a Taylor expansion about z = 0:

nL(p) ∼ A + B(p − pc) + C(p − pc)2 + · · · (8)

with

A = A0 + A1L
−d + · · · , (9a)

B = B0 + B1L
−d+1/ν + . . . , (9b)

C = C0 + C1L
−d+2/ν + · · · , (9c)

and A1 = f (0), B1 = bf ′(0), C1 = b2f ′′(0)/2. The metric
factor b cancels out in the dimensionless ratio

R = A1C1

B2
1

= f (0)f ′′(0)

2f ′(0)2
, (10)

which is predicted to be universal for systems of a given shape.
By including A1 in this ratio, we also account for different
definitions of the unit area of the system in n(p), such as
using clusters per bond rather than per site for the square-bond
system.

For |z| � 1, f (z) ∼ Â±|z|2−α , where 2−α=dν, ν =4/3
in two dimensions and 0.8762 [20] in three dimensions, and
the amplitudes Â± are universal for a given definition of f (z).
For large z, the behavior is not shape dependent, because
z ∝ (L/ξ )1/ν , so for |z| � 1, ξ � L and the boundaries are
not seen. Substituting z = b(p − pc)L1/ν into f (z), we find
for z � 1 that L−df (z) ∼ Â±b2−α|p − pc|2−α , which implies
the singular term in (2) with

A± = b2−αÂ±. (11)

This equation shows the scaling between the universal (Â±)
and nonuniversal coefficients (A±) for the different systems.
Note that this implies B1/(−A±)1/(2−α) is another universal
ratio along with R. We discuss these universal ratios below.

The correction term A1 in (9) is the excess cluster
number [33]. It is the difference between the actual cluster
number L2n(pc) and the expected number L2A0, and for
compact shapes it is of order 1. Using results from conformal
field theory, A1 can be calculated exactly [37], with A1 =
0.883576308 . . . for a square torus, and 0.878290117 . . . for a
60◦ periodic rhombus [38], which is equivalent to a rectangle
of aspect ratio

√
3/2 with a twist of 1/2. This rhombus is a

natural system boundary shape for triangular, hexagonal, and
related systems and is conjectured to give the lowest value of
A1 for any repeatable shape of a periodic system [37].

III. MEASUREMENTS

In order to study these quantities, we carried out extensive
studies using several different methods. Details will be given
in another paper [38]. Many of the results are summarized in
Table I, where previous values are also listed.

First, we extended the series analysis of n(p) for the
triangular lattice to 69th order. In 1976, Domb and Pearce
[13] used a 19th-order analysis to find α = −0.668(4), and
they also found accurate values of A0, B0, C0, andA±. Using
Domb and Pearce’s powerful substitution u = p(1 − p) on
B(u) = φ(p)/2 + n(p) [13] in our series, we find the very
precise result

n(pc) = A0 = 0.017625277368(2) (12)

TABLE I. Values of the coefficients A0, B0, C0, A1, B1, and C1

in (8) and (9) for 2D and 3D systems found in previous papers as
cited, and in this work by microcanonical MC simulations (m), series
analysis (s), conformal field invariance (c), or duality (d). Numbers in
parentheses give errors in the last digit(s). All are for site percolation
except for the square-bond case. In the latter case, the results are per
bond rather than per site on the lattice, accounting for a factor of two
decrease in A1 from the other square-boundary cases SQ and UJ.

Lattice X X0 X1

Square A 0.0275981(3)[33] 0.8835(5)[33]

0.02759791(5)[19] 0.883576308 . . .[37]

0.02759800(5)[42]

0.02759803(2)m 0.8834(1)m

B −0.3205738(7)m 0.8708(2)m

C 1.9669(3)m −3.286(3)m

Honeycomb A 0.03530709(1)m 0.9468(1)m

0.946883263 . . .c

B −0.4109549(6)m 0.8260(1)m

C 2.3082(2)m −3.898(1)m

Triangular A 0.0168(2)[13]

0.017630(2)[43]

0.017626(1)[44]

0.0176255(5)[33] 0.878(1)[33]

0.017625277(4)m 0.87839(7)m

0.017625277368(2)s 0.878290117 . . .c

B −0.2500006(3)m 0.8807(1)m

−1/4d

C 1.5(2)[13]

1.91392(9)m −3.2909(8)m

1.91391790(5)s

Union-Jack A 0.025662605(6)m 0.88345(8)m

0.883576308 . . .[37]

B −0.2500005(3)m 0.76074(5)m

−1/4d

C 1.41334(5)m −2.5206(3)m

Square (bond) A 0.0173(3)[13]

0.017788096(3)m 0.44183(1)m

0.017788106(1)s 0.441783154 . . . [37]

0.01778810567665 . . .

= (24
√

3 − 41)/32[14,33]

B −0.2499995(4)m 0.55504(7)m

−1/4d

C 1.4(3)[13]

1.87706(4)m −2.6882(5)m

1.87714(2)s

Cubic A 0.0524387(3)[19]

0.052438218(3)[45] 0.6746(3)[45]

0.052438223(3)m 0.6748(2)m

B −0.4107249(5)m 1.7147(4)m

C 0.4405(6)m −1.004(7)m

and also to high accuracy the exponent α = −0.6666669(4), an
unusually precise test of a critical exponent. We also checked
the result (3) for A0 of the square bond lattice and found
agreement using a 72-order series (see Table I), although the
convergence here was slower than for the triangular lattice.

Second, we found exact results for n(p) for small L×L

systems using the Newman-Ziff (NZ) method [24]. The NZ
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method computes n(p) by occupying the sites (or bonds) one
by one in random order. The cluster structure can be updated
very efficiently because the changes in the cluster structure
are triggered by local events. For exhaustive enumerations, we
have to loop over all 2L×L configurations and record the cluster
structure for each. If you do this in the obvious fashion (binary
counting or gray code), many consecutive configurations differ
by many occupied sites. In particular many sites change their
status from occupied to empty from one configuration to the
next. This is something the NZ method cannot handle, and
you need to compute the next cluster structure from the empty
lattice. There is, however, a clever way to loop through all
2L×L configurations by adding an occupied site most of the
time, while the number of transitions that require a restart
grows only like O(2L). With this method, exact computation
of nL(p) is possible for L � 7 [38]. For the square lattice
with periodic boundary conditions and L = 3, for example,
the polynomial is

n3(p) = 9pq8+54p2q7+132p3q6 + 171p4q5 + 135p5q4

+ 84p6q3 + 36p7q2 + 9p8q + p9, (13)

where q = 1 − p. We considered several systems with L up
to 7, and the resulting polynomials of order L2 are posted on
Ref. [39].

Third, we carried out Monte Carlo (MC) simulations using
the NZ method, which generates the microcanonical weights—
essentially approximations for the coefficients in polynomials
such as (13), but for much larger systems. In this method,
occupied sites are added one at a time, and an efficient union-
find procedure is used to update the cluster connectivity. Once
the microcanonical weights Ni,L (number of clusters of size i

in a system of length L) are found, the canonical p-dependent
expressions are found through a convolution with the binomial
distribution:

nL(p) = 1

N

N∑
i=0

Ni,L

(
N

i

)
pi(1 − p)N−i . (14)

Derivatives n
[k]
L (p) can be found by a similar convolution

n
[k]
L (p) = 1

N

N∑
i=0

Ni,LDk,i

(
N

i

)
pi(1 − p)N−i (15)

with D1,i = (i − pN )/[p(1 − p)] and D2,i = {i2 − [1 +
2(N − 1)p]i + N (N − 1)p2}/[p(1 − p)]2 for the first and
second derivatives, respectively.

In the MC work we considered L×L systems with L up to
1024 for site percolation (s) on the SQ, NNSQ, triangular
(TR), honeycomb (HC), and Union Jack (UJ) lattices, the
three-dimensional (3D) cubic lattice, and bond percolation
(b) on the SQ lattice. For the TR lattice, we used a periodic
square lattice with diagonal bonds, so the system shape was
effectively a 60◦ rhombus. For the HC lattice, we also used a
square lattice but with half the vertical bonds missing in a brick
pattern, so the effective shape was a rectangle with aspect ratio√

3. For each size and lattice type we computed up to 1010

samples. Figure 1 shows n′′
L(p) for the square-site problem,

0.4 0.5 0.6 0.7 0.8
p

-2

-1

0

1

2

3

4

nL"(p)

FIG. 1. Second derivative of the cluster density nL(p) for square
lattices of size L×L for L = 8,16, . . . ,1024. Error bars are much
smaller than the line width. The vertical dashed line marks the
percolation threshold pc.

clearly demonstrating the development of the branch-point
singularity. (Note that peaked plots of closely related “specific
heat” functions were given by Ref. [40] and more recently by
Ref. [41].)

Finally, we carried out a MC simulation at fixed p = pc,
counting clusters and keeping track of 〈Nc〉, 〈Ns〉 and 〈NcNs〉,
where Nc is the number of clusters and Ns is the number of
occupied sites in each sample, with 〈Ns〉/L2 = p. These allow
B0 = n′(pc) to be calculated from

n′(p) = 〈NsNc〉 − 〈Ns〉〈Nc〉
L2p(1 − p)

, (16)

which follows from (15) for k = 1. We carried this out for site
percolation simultaneously on the matching SQ and NNSQ
lattices, identifying nearest-neighbor clusters on the black
sites (occupied with probability p) and next-nearest neighbor
clusters on the white sites (occupied with probability 1 − p)
for each sample. We confirmed our values of B0 and also
verified that the matching relation (6) holds to a high degree
of accuracy.

Analyzing these results [38], we find the values of the
amplitudes listed in Table I. Agreement with exact results
and with previous values is generally good. The early results
of Domb and Pearce [13] have been vastly improved. Plots of

TABLE II. Values of shape-dependent universal quantities R =
A1C1/B

2
1 , B1/b = B1/(−A±)3/8 and C2/b

2 = C2/(−A±)3/4, using
b[A±]abs. from Table III.

System Shape R B1/b C1/b
2

SQ,b Square −3.855(2) 0.4995(1) −1.0884(2)
SQ,s Square −3.829(4) 0.5002(1) −1.084(1)
UJ,s Square −3.8484(5) 0.4999(2) −1.088(1)
TR,s Rhomb. −3.726(2) 0.5064(1) −1.0883(2)
HC,s

√
3 rect. −5.410(3) 0.4393(1) −1.1024(10)
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L-1/2
0

1

2

3

4

nL"(pc)

exact
Monte-Carlo

FIG. 2. An example of a plot of the MC and exact-enumeration
data, used to find coefficients given in Table I: n′′

L(pc) = 2C for site
percolation on square lattices vs L−1/2. The line is a fit of (9c), which
yields values for C0 and C1. Error bars of the MC data are much
smaller than the size of the symbols.

the data of nL(p), n′
L(p), and n′′

L(p) verified that the scaling
predicted by (9) is correct; for example, the plot for n′′

L(p) for
site percolation on the square lattice is given in Fig. 2.

Calculating the quantity R of (10) we find the values given
in Table II. The three square-boundary systems give similar
values consistent with a common value of R = −3.844(10),
while for TR and HC systems, simulated on a rhombus and
rectangle, respectively, the value is different. This confirms
our expectations about the shape-dependent but otherwise
universal behavior of R.

Relative metric factors b can be calculated from B1 and
C1 for systems of the same shape by the equations below (9),
which imply

b/b′ = B ′
1/B1, (17)

b/b′ = (C ′
1/C1)1/2, (18)

where the prime indicates a reference system. The relative
b’s can also be calculated from the A±, which is not shape-
dependent and therefore can be used for all 2D systems

TABLE III. Metric factor b calculated from B1 of (17), C1 of
(18), and A± of (19), normalized to those of the SQ,b system (with
a factor of two in the coefficients of the SQ,b system because there
are two bonds per lattice site). Results for b from Hu et al. [46,47]
are also shown. In the last column are the values b based upon the
convention Â± = −1, calculated from (20).

Lattice b[B1] b[C1] b[A±] b[Hu] b[A±]abs.

SQ,b 1 1 1 1 2.22254(8)
SQ,s 0.7847(3) 0.7818(4) 0.7810(10) 0.79 1.7410(6)
UJ,s 0.6854(1) 0.6847(1) 0.6815(11) – 1.522(6)
TR,s – – 0.780(2) 0.79 1.73897548(3)
HC,s – – 0.8435(14) 0.86 1.8804(7)

TABLE IV. The nonuniversal amplitudeA± for 2D lattices, with
our series (s) and MC (m) results, along with results from Domb
and Pearce [13]. The final column shows Â± = b−8/3A±, using our
values of b given in the first two columns of Table III, representing
the SQ,b, SQ,s, and UJ systems with the same square boundary. The
results for our measurements on the SQ,b, SQ,s, and UJ,s systems
give a fairly consistent value of 8.42; for the last two cases, the HC
and TR lattices, we use the values of b from Ref. [46] to find Â±

from
the A± and find less consistent values of Â±

. For the square-bond
system, we have to double the value of Â±

because of the different
basis used. These values of Â±

are based upon the convention that
b = 1 for bond percolation on the square lattice.

Lattice −A± −Â±

SQ,b 4.240(15) [13], 4.211(1)m, 4.2063(2)s, 8.41
SQ,s 4.3867(4) 8.45
UJ,s 3.064(3)m 8.40
TR,s 4.370(15) [13], 4.379(2)m, 4.3730310(2)s 8.20
HC,s 5.387(5)m 8.05

we consider, irrespective of the shape that was used in the
simulations,

b/b′ = [A±/(A±)′]3/8, (19)

from (11). We can choose a convention such as that of Hu et al.
[46,47] that b′ = 1 for bond percolation on the square lattice;
this yields the values of b given in the first four columns of
Table III. Note, in order to use this system for a reference,
we have to multiply the quantities for the square-bond model
by 2 to account for the fact that they represent the number of
clusters per bond, not per site, and there are two bonds per site
on the square lattice.

The quantity A± can be difficult to measure because, for
a finite-size system, it represents the behavior for sufficiently
large |p − pc| so that ξ � L, yet still within the scaling region.
Our 2D results for A± are given in Table IV. We also show
the values of Â±

, and for the cases we have measured values
of b, we find good evidence of universality of that quantity for
systems of different shapes.

IV. ABSOLUTE VALUE OF THE METRIC FACTOR b

Having verified universality of Â±
, we can turn it around

and can use it to propose a definition of b that is not based
upon a reference lattice but instead is based upon the universal
behavior of f (z). Because the quantity Â±

is independent of
both the lattice type and the system shape, it is a good quantity
to use. There is a freedom to choose an arbitrary overall scale
factor for z in f (z), and we can assume that that scale factor
is chosen so that Â± = −1. By (11), this choice implies that
b can be calculated from

b = (−A±)3/8, (20)

which leads to the values of b given in the last column of
Table III. We call these “absolute” values of b because we are
not assuming b = 1 for any particular system.

Using these values for the absolute metric factor b, we
can find the shape-dependent but otherwise universal behavior
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of f (z):

f (z) = f (0) + zf ′(0) + z2f ′′(0)/2 + Â±|z|8/3 (21)

= A1 + z(B1/b) + z2(C1/b
2) − |z|8/3. (22)

For our three systems with the square boundary, we find very
good consistency in these coefficients (see Table II) yielding

f (z)=0.883576+0.5000(2)z−1.088(1)z2−|z|8/3 (23)

with the intriguing result that B1/b = B1/(−A±)3/8 seems
to equal exactly 1/2 for the square boundary. We have no
explanation for this value.

For the systems with other boundary shapes, we have one
system for each. For a system with a rhombus boundary or
equivalently a rectangle of aspect ratio

√
3/2 with a twist of

1/2 (which we used for the TR lattice), we find

f (z)=0.878290+0.5064(1)z−1.0883(2)z2−|z|8/3. (24)

For the HC system, where we used a rectangular boundary of
aspect ratio

√
3, we find

f (z)=0.946883+0.4393(1)z−1.1024(10)z2−|z|8/3. (25)

Thus, we see, as predicted, that systems of different shapes
have different forms of f (z) for small z. Interestingly, it
seems that C1/b

2 is the same for the 60◦ rhombus (the TR
system) as for the three square systems. However, for the

√
3

rectangle (the HC system), it is somewhat different. We have
no explanation for this behavior.

Clearly, an interesting area for future study would be to find
f (z) for systems of more shapes, and to also verify universality
by considering different lattices of a given shape.

V. THE FUNCTION ML( p)

We also analyzed the function ML(p) = L2[nSQ
L (p) −

n
NNSQ
L (1 − p) − φ(p)], where φ(p) = p − 2p2 + p4 is the

matching polynomial (4) for the square lattice. Note that
ML(p)/L2 → 0 as L → ∞, but ML(p) converges to a step
function independent of L that jumps from −1 to +1 at p = pc;
see Fig. 3. At pc, ML appears to go to zero as ML(pc) ∼ L−4 as
L → ∞, which implies that finding where ML(p) = 0 is a very
sensitive criterion for finding pc. In fact, this is identical to the
criterion used by Jacobsen and Scullard [28–30], whose studies
yielded the most precise estimates of percolation thresholds to
date. We discuss ML(p) more in Ref. [48], where it is also
shown that ML(p) is related to the probability of the existence
of wrapping clusters on the lattice and matching lattice.

In the inset to Fig. 3 we show a plot of ML(p) as a
function of (p − pc)L1/ν for the square-site system. Because
of the relations (6), it follows that in the scaling limit
ML(p) = f (z) − f (−z), all the terms proportional to L2

having canceled out. If we had plotted the inset to the figure
versus z=b(p−pc)L−1/ν with b equal to its absolute value
b=1.741, then by (23) the slope at z=0 would be exactly 1.

Finally, we also carried out simulations for site percolation
on a cubic lattice in three dimensions, and these results are
shown in Table I. The behavior was found to be consistent
with the scaling predictions of Eq. (9).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p

-1.0

-0.5

0.0

0.5

1.0

ML(p) -1 0 1
(p-pc) L

3/4

-1

0

1

FIG. 3. ML(p) = L2[nSQ(p) − nNNSQ(1 − p) − φ(p)] vs p from
exact enumeration results for L = 3,4,5,6,7 (solid lines) and L =
8,12,16,24,32,48 from MC (dashed lines), plotted as a function of
p, and (inset) as a function of the scaling variable (p − pc)L1/ν ,
yielding f (z) − f (−z). In the limit L → ∞, ML(p) becomes a step
function.

VI. CONCLUSIONS

In this paper, we have found many results concerning the
function n(p), including the following:

(1) A discussion of the finite-size corrections to A, B, and
C, including a derivation of the scaling of those terms.

(2) The verification of that scaling on several different
system types.

(3) A discussion of the use of the coefficient A± of the
singular term in n(p) to define an absolute, rather than relative,
value of the metric factor b.

(4) A visualization of the formation of a cusp in n′′(p)
(Fig. 1).

(5) The extension of previous work on metric factors [46]
to a new system, the Union Jack lattice. This system is
interesting to study because it is fully triangulated, and so
has a site threshold of 1/2, but can be made into a perfect
square, and so is useful to compare to other square systems.

TABLE V. Universality properties of various quantities related to
n(p). A check in the second column means that the quantity depends
upon the shape of the boundary of the system (with periodic boundary
conditions); a check in the third column means that the quantity
depends upon the lattice and percolation type (site or bond). The final
column shows the dependence on dimensionality, which applies to
all of the quantities here.

Quantity Shape Lattice Dimensionality

α,ν . . . �
Â± = bα−2A± �
A0,B0,C0 � �
b � �
f (z) � �
A1, b−1B1, b−2C1, R � �
B1, C1 � � �
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(6) A discussion of shape-dependent universality [36,37],
as summarized in Table V.

(7) Application of the Sykes-Essam matching polynomial
to find relations for A, B, and C between a lattice and its
matching lattice.

(8) Development of algorithms for carrying out the simu-
lations and series analyses.

(9) The determination of many precise values concerning
n(p), including a very precise determination of n(pc) for site
percolation on the triangular lattice, using a much extended
series expansion for that system.

(10) A discussion of ML(z) which directly yields an
antisymmetrized version of the the scaling function f (z).

(11) The derivation of universal expressions for f (z) for
systems of three different shapes [(23), (24), and (25)], based
upon our standard definition of b. Note that f (z) is a subtle
function to observe as it corresponds to finite-size corrections
to n(p).

Future work is suggested to study n(p) and f (z) for
different lattices and boundary shapes, as well as the behavior
in higher dimensions. Perhaps new exact results for some
of these quantities can also be found, such as n(pc) for site
percolation on the triangular lattice, where we found the
precise value (12). The dependence of B1/b and C1/b

2 as
a function of the system shape seems also interesting, since
they are related to the scaling function f (z).
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