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Dynamical transition on the periodic Lorentz gas: Stochastic and deterministic approaches
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The effect of dynamical properties of the periodic Lorentz gas on the autocorrelation function and diffusion
coefficient are investigated in various geometric transitions between billiards without horizon and infinite horizon.
Numerical simulations are performed using a double square lattice which permits us to isolate different types
of corridors and to describe the individual effects of each corridor. The results are compared with a stochastic
model based on a escape-rate formalism which reveals the sensibility of the diffusion coefficient and clarifies the
role of the open corridors mechanism on the dynamical transitions
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I. INTRODUCTION

One of the major goals in the study of dynamical systems
is to understand how macroscopic physical quantities are
affected by the dynamical properties given by the microscopic
motion of the particles that compose this system. By dynamical
properties we refer to those quantities defined by the behavior
of deterministic trajectories on the phase space of the particles,
such as ergodicity, mixing, chaos and, mainly, by parameters
as the Lyapunov exponent and the Kolmogorov entropy. The
physical quantities of interest are usually the transport coef-
ficients, which are macroscopic quantities that characterize
a system or process. They can be defined by stochastic
models, where they are related to microscopic dynamical
quantities treated as random variables. Regarding this, we
highlight the paper of Gaspard and Nicolis who present the
relationship of diffusion coefficient with Lyapounov exponent
and Kolmogorov entropy in a Lorentz gas [1].

The periodic Lorentz gas has been consistently used to
understand this connection. As a physical model, it is used
to study diffusion in a lattice of scatterers [2], whose core
dynamics is simple but displays a number of interesting
properties, such as chaos and hyperbolicity [3–8]. This system
is defined by noninteracting point masses that move freely
inside a periodical arrangement of scatterer disks, often
modeled by Sinai billiards [9]. One of the key aspects of
the periodic Lorentz gas is that its statistical and dynamical
properties are connected to its geometry [4–6], especially the
horizon, which defines whether an infinite trajectory (along
corridors) with no collisions is possible (called infinite horizon
or ∞H) or not (without horizon or 0H). Its dynamics is known
to be hyperbolic in 0H and nonhyperbolic in ∞H, where the
diffusion coefficient is normal in the former and anomalous in
the latter [10,11].

Diffusion in the periodic Lorentz gas is usually defined
by the deterministic trajectories using the Einstein-Green-
Kubo formula, which defines the diffusion coefficient by an
integration of the velocity autocorrelation function C(t) =
〈v(0) · v(t)〉 [where v(t) is the velocity of the particle at time t]
[6]. The interest in this function is how it decays depending on
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the geometric regime. Exponential decay as an upper bound
for C(t) is observed in 0H billiards both analytically and
numerically [3,5,10,12]. The integration of C(t) leads to a
finite value of the diffusion coefficient when t → ∞ (normal
diffusion). Friedman and Martin studied C(t) numerically on
a triangular lattice billiards and observed exponential decay
for 0H and proposed 1/t decay for ∞H billiards at long time
[5]. They later conjectured that the origin of the 1/t decay
was a consequence of a geometric property related to the open
corridors of ∞H billiards [13]. This case was consistent with
an analytical study carried out by Bleher [6]. By integrating
C(t), the diffusion coefficient was numerically observed to be
anomalous superdiffusive in the ∞H case [12].

It is not clear, however, how some quantities behave in
the transition between 0H and ∞H regimes. In the triangular
lattice billiards, Matsuoka and Martin found that C(t) and
the diffusion coefficient change smoothly from one geometric
regime to the other [12]. On the other hand, Gaspard and
Baras described it as a thermodynamic phase transition due to
a discontinuity in the Ruelle pressure function [14]. Also, in the
scope of stochastic models of billiards, some theoretical and
numerical studies show that the survival or decay probabilities
in closed billiards with a small hole are also sensitive to internal
dynamics, where the presence of an algebraic tail after an
exponential decay separates nonhyperbolic from hyperbolic
systems [11,15–20].

In the periodic Lorentz gas, the stochastic models are mostly
focused on the 0H regime, defining the diffusion based on the
random walk of the particle between traps formed by a group
of adjacent scatterers [4,21–23]. Recently, Cristadoro et al.
studied the anomalous diffusion, analyzed the moments of the
displacement vector, and proposed a correction to its known
logarithmic growth based on a time scale of coexistence of
normal and anomalous diffusions [24]. The same authors later
developed a stochastic model of Lévy walk for both normal and
anomalous diffusion regimes and obtained good agreements
with simulation data [25].

In our study, we are interested in investigating the dynami-
cal transition between nonhyperbolic and hyperbolic billiards
and its influence in the diffusion coefficient as a relevant phys-
ical quantity. When the geometry changes from 0H to ∞H,
we look at the algebraic tail of the velocity autocorrelation
function considering each type of open corridor allowed by
our model, with the assistance of a predicted curve based on
the volume of the phase space of the open corridors, as well
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FIG. 1. Sinai billiard table with length L and two sublattices with
radii R1 and R2.

as the behavior of the time-dependent diffusion coefficient.
Furthermore, we propose an escape-rate model based on traps
formed by adjacent scatterers. It results in an expression for the
diffusion coefficient as a function of the survival probability
inside the traps and suggests some similarities between the
survival probability and the velocity autocorrelation function.
We compute all these quantities numerically using a simulator
of trajectories in the billiards. Considering the reliability of our
mathematical and numerical tools, we extend our investigation
from the transition hyperbolic to nonhyperbolic, observing the
region where two types of corridors are open, looking for other
relevant transitions.

Most of the past studies [1,4–6,9,12–14,21–23] were
conducted on a triangular lattice Lorentz gas instead of a
square lattice, because in the former it is possible to close all
corridors without overlapping the scatterers. One interesting
variant of these systems is the double square lattice Lorentz
gas with a different radius for each sublattice [10]. Figure 1
represents the unit cell of this lattice characterized by a square
box of length L, a central scatterer of radius R1, and four
peripheral scatterers of radius R2. The major advantage of this
lattice is the large geometric variety given by the individual
adjustment of the radius of each sublattice, which permits
wide control over the open corridors in ∞H billiards. The
two types of open corridors that can be isolated in this system
are the vertical-horizontal and the main diagonal. Thus, it is
possible to analyze how each type of corridors influences the
billiard dynamics when the transitions are made from 0H to
∞H billiards by opening one or another corridor.

The paper is organized as follows. In Sec. II, we describe
the geometric properties of the billiards, detailing the horizon
property and how it relates to the billiard dynamics. The
theoretical model is developed in Sec. III, which presents
the time-dependent diffusion coefficient formulas in terms
of velocity autocorrelation function and survival probability,
where the latter is achieved by a escape-rate model. Section IV
describes the details of the simulations and the numerical
experiments. The results are shown and discussed in Sec. V,
describing the unique geometric transitions enabled by the
double square lattice. Concluding remarks are made in Sec. VI.

FIG. 2. Representation of isolated open corridors in ∞H bil-
liards: (a) bouncing balls; (b) diagonal. In the example (a), the main
diagonal corridor (segmented line) is closed by R2 > L

√
2/4 . In (b),

the bouncing balls corridors are closed by R1 + R2 > L/2. In this
case, the central disk would touch the corridor if R1 = R2.

II. GEOMETRIC AND DYNAMICAL PROPERTIES
OF BILLIARDS

The horizon is a geometric property defined by the size
of the scatterer disks and characterizes the longest straight
path that a particle can travel without collisions. In billiards
with infinite horizon (∞H), there are open corridors where a
trajectory without collisions is possible, such as in Fig. 2. In
billiards without horizon (0H), such corridors are closed and a
trajectory without collisions is not possible. As a special case
of 0H billiards, there is a group of enclosed ones where the
boundaries of the scatterer disks touch or overlap each other,
what traps the trajectories to a confined space. We consider
only the 0H cases where no trajectory is trapped even though
all corridors are closed.

In the ∞H case for the double lattice Sinai billiards,
there is a possibility of isolating two different types of open
corridors. We denominate billiards with only vertical and
horizontal corridors as bouncing balls (denoted BB), shown in
Fig. 2(a). They occur when either R1 or R2 � L

√
2/4, while

R1 + R2 < L/2. On the other hand, the main diagonal corridor
(denoted D) is isolated when both R1 and R2 < L

√
2/4, while

R1 + R2 � L/2 [shown in Fig. 2(b)].
All the possible geometric configurations of the Sinai

billiards with two sublattices are shown in Fig. 3 in terms
of disk radii relative to the box size. In the lower left region,
where both radii are small, are the ∞H billiards with at least
two main open corridors (BB and D). For large radii some
corridors may close, such as in the striped areas where only the
BB corridors are open, and in the checkerboard area where only
the D corridors are open. They are bounded by the relations
shown in the previous paragraph. In the 0H areas, all corridors
are closed but the disks do not touch each other. The regions
with diamondlike shapes are the billiards where the disks touch
or overlap, and the shapes represent the remaining billiard
table where the particles can move. In the top right region, no
billiards are possible, since the disks are big enough to occupy
the whole box area, leaving no space for the particles.

To achieve our goal of investigating the sensibility of the
diffusion coefficient and correlated quantities, we focus our
interest in the regions of Fig. 3 where geometric transitions
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FIG. 3. Classification of the Sinai billiards with two sublattices
relative to the radii R1 and R2 of the disks. The regions are described in
Sec. II. Isolated corridors are located in highlighted areas: stripes for
bouncing balls (BB) and checkerboard for diagonal (D). The sequence
of small squares, triangles, and circles are the selected configurations
for the simulations.

between the 0H and the ∞H regimes are found. They can occur
either by closing the BB corridors, as shown by the sequence
of small squares or by closing the D corridors indicated by
the sequence of small triangles. The sequence of small circles
passes over a region with a transition from two kinds of open
corridors (D and BB) to one kind of open corridor (BB).

The geometric properties are related to the billiard dynam-
ics. All Sinai billiards with any R > 0 are fully chaotic, but
they are considered fully or strongly hyperbolic only in 0H
case [11,16] because all periodic trajectories are isolated with
a hyperbolic separation from neighboring trajectories [26].
In the ∞H case, the corridors define a set of nonisolated
and nonhyperbolic periodic trajectories, which provide the
system with a different long-time behavior for autocorrelation
functions and other quantities presented in the Introduction of
this paper. Due to the similar behavior to other nonhyperbolic
systems, such as nonchaotic billiards (integrable billiards
[15,19] and pseudointegrable polygonal billiards [20]), and
nonfully chaotic systems [27,28], we adopt the term nonhy-
perbolic for ∞H billiards and hyperbolic for 0H billiards [16].

III. DETERMINISTIC AND STOCHASTIC APPROACHES
TO DIFFUSION

The deterministic approach to diffusion is usually made
by applying the Einstein-Green-Kubo formula following the
trajectories of the particles in the periodic Lorentz gas. This
approach associates the time-dependent diffusion coefficient
D(t) with the autocorrelation function C(t) [6]:

D(t) = 〈|r(t) − r(0)|2〉
4t

= 1

2

∫ t

0
C(ξ )dξ − 1

2t

∫ t

0
ξC(ξ )dξ. (1)

FIG. 4. The dark region delimits the site on the periodic Lorentz
gas where the particles spend some time before jumping across
the lattice. The segmented square indicates the Sinai billiards, as
presented in Fig. 1. w is the distance between two adjacent scatterers
and ρ is the distance between two neighboring sites.

When the system shows normal diffusion, the diffusion
coefficient D is obtained by D = limt→∞ D(t).

The stochastic approach to the Lorentz gas has been made
by considering that a particle spends some time trapped in a
site between a group of neighboring scatterers and jumps to
other sites in a random walk manner. For a two-dimensional
system, the diffusion coefficient is known [29] as

D = �2

4τ
, (2)

where � is the mean length of jumps between sites and τ is the
mean time spent between jumps. For the 0H periodic Lorenz
gas, Machta and Zwanzig [4] used � = ρ, the distance between
the centers of two neighboring sites and the mean time

τ = πA

P
, (3)

where A is the area of the site and P is the perimeter where
the particles cross or collide [8]. Using the same proposal for
our arrangement of scatterers, � = L/

√
2 and

τ = τe = π
[
L2 − π

(
R2

1 + R2
2

)]
8[L/

√
2 − (R1 + R2)]

. (4)

In the latter, τe is taken as a mean escape time, which is
described below.

In Fig. 4, the dark region represents one site where the parti-
cles spend a specific amount of time colliding with neighboring
scatterers before jumping to another site. For (4), the area A

of the dark region is a half of the Sinai billiards (Fig. 1) and
the perimeter is P = 4w = 4[L/

√
2 − (R1 + R2)]. Numerical

simulations for D show that the result in (2) is better for small
values of w [4]. Recent papers [23,24] introduce improvements
to obtain � and τ in (2), obtaining suitable fits for numerical
results.

052117-3



FELICZAKI, VICENTINI, AND GONZÁLEZ-BORRERO PHYSICAL REVIEW E 96, 052117 (2017)

Our approach uses the continuous time random walk
method [30] to introduce the probability density functions:
φ(t) of surviving in the site until time t , ψ(r,t) of jumping
with length and direction given by r after waiting a time t ,
and λ(r,t) of finding the particle at position r at time t . These
probabilities are related by [30,31]:

λ(r,t) =
∫ t

0
η(r,t ′)φ(t − t ′)dt ′, (5)

where

η(r,t) =
∫

dr′
∫ ∞

0
dt ′ η(r′,t ′)ψ(r − r′,t − t ′) + δ(r)δ(t)

(6)

is the probability density function of just having arrived at
position r at time t , after coming from r′ and t ′. The delta
functions in (6) express the initial conditions. Thereby, (5)
is the probability density function of remaining in position r
until time t after arriving at time t ′. The Fourier and Laplace
transforms of (5) and (6) result in

�(k,u) = (u)

1 − �(k,u)
, (7)

where the uppercase letters stand for the Fourier and Laplace
transforms of equivalent probability density funtions, which
were presented in lowercase letters [32]. The time-dependent
diffusion coefficient is given by [30,31]

D(t) = 1

4t

∫
dr r2λ(r,t) = 1

4t
L−1

{∫
dr r2�(r,u)

}

= 1

4t
L−1

{
lim
k→0

∫
dr r2eik·r�(r,u)

}

= 1

4t
L−1

{
− lim

k→0

∂2

∂k2
�(k,u)

}
, (8)

where L−1 stands for inverse Laplace transform. In this
approach, the mean quantities � and τ are obtained by

�2 =
∫ ∞

0
2πrdr r2

∫ ∞

0
dt ψ(r,t) (9)

and

τ =
∫ ∞

0
dt t

∫ ∞

0
2πrdr ψ(r,t). (10)

Using the results shown in Appendix A, (8) reduces to

D(t) = 1

4t

�2

τ 2
L−1

{
(u)

u2

}
(11)

and the inverse Laplace transform is the convolution [32]

L−1

{
(u)

u2

}
=

∫ t

0
(t − s)φ(s) ds. (12)

The final expression for D(t) is

D(t) = �2

2τ 2

[
1

2

∫ t

0
φ(ξ ) dξ − 1

2t

∫ t

0
ξφ(ξ ) dξ

]
, (13)

which is similar to (1).
In (13), φ(t) assumes the main role in the determination

of D(t). The exponential decay of survival probability φ(t) =

e−t/τ leads to the diffusion coefficient D = limt→∞ D(t) =
�2/4τ [Eq. (2)], and a possible algebraic decay φ(t) ∼ τ/t ,
for t 	 τ , leads to logarithmic time-dependent diffusion
coefficient D(t) ∼ (�2/4τ ) ln t/τ . However, we can propose
the following shape of survival probability:

φ(t) = (1 − B)e−t/τ + B

1 + t/τ
, (14)

where B is the statistical weight of the algebraic tail. The
survival probability with an exponential to algebraic transi-
tion was observed by Fendrik and coauthors in Sinai well
billiards [11,16], with open corridors, and they associated the
trajectories that remain for a long time in corridors with the
algebraic tail. Following the suggestions in Refs. [12,13] for
autocorrelation functions, we propose the value of B as the
relative volume of the open corridors in the phase space in
relation to the whole billiard phase space, demonstrated in
Appendix B,

B = 4c2

π
[
L2 − π

(
R2

1 + R2
2

)] , (15)

where c is the width of an open corridor.
Using (14) in (13), we obtain

D(t) = �2

4τ

{
(1 − e−t/τ )(1 − B) + B

[
ln

(
1 + t

τ

)
− 1

]

+ τ

t

[
1 −

(
1 + t

τ

)
e−t/τ

]
(1 + B)

+ Bτ

t
ln

(
1 + t

τ

)}
, (16)

which has the limit for t 	 τ

D(t) = �2

4τ

{
1 + B

[
ln

(
t

τ

)
− 2

]}
. (17)

In (17), the first constant term is equal to the normal
diffusion coefficient [Eq. (2)] and the second term, with the
logarithmic function, is proportional to B. We highlight that
B coefficient controls the sensibility of D(t) towards the
changes in the dynamics of the billiards, since B = 0 indicates
hyperbolic billiards and B > 0 nonhyperbolic billiards.

The results in (17) and (15) are very similar to those
obtained by Cristadoro et al. [24,25]. In Ref. [24], based on
previous results (Ref. [33]), the authors use D(t) ∼ 2ξflow log t ,
where the variance ξflow [34], except for some differences in
geometry, corresponds to our B/4. However, the ξflow proposed
in Ref. [24] accumulates the contribution of all open corridors
whereas we consider separately the contribution of each
corridor. Regarding Ref. [25], the authors deduce the diffusion
coefficient as D(t) = (�2/4τR){1 + (δ/�)[ln t + O(1)]} with a
constant and a logarithmic part similar to (17), where τR was
defined as the residence time, equal to our τe in (4). Their
weight for the logarithmic part is δ/�, where δ is the corridor
width which, in their choice of geometry (square lattice),
coincides with our c. � is the length of their billiards but also
the mean length of jumps and coincides with τF , defined by
them as the mean time “of propagation across a cell.” In order
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to compare, we can rewrite (15) as B = c/τt , with

τt = π
[
L2 − π

(
R2

1 + R2
2

)]
4c

. (18)

Herein we call τt as the mean time to cross a section of width
4c, which could be understood as the transition time when
moving into corridors. Thus, our B carries a characteristic
time, as Ref. [25], but with a different interpretation. Further
discussions are presented in Sec. V D together with our results.

IV. NUMERICAL METHODS

The billiard table was defined as a square box of side L = 1,
with one scatterer disk of radius R1 in the center of the box,
and four disks of radius R2 centered in each corner of the
box, as shown in Fig. 1. Periodical boundary conditions were
applied on the sides of the box. The initial conditions of the
particles are uniformly random and given by x, y and θ , being
(x,y) in the space between the scatterers, and θ ∈ [0,2π [ the
angle between the velocity and the horizontal axis x and taking
the origin of the coordinate system in the center of the box.
We consider particles with unit mass and unit velocity. The
collisions are detected by the intersection of the trajectory line
with the circle boundary (in collisions with the scatterers) or
with the side of the box.

The velocity autocorrelation function is evaluated at each
time step by the equation

C(t) = 〈v(0) · v(t)〉 = 2〈vx(0) · vx(t)〉, (19)

being vx = cos(θ ) the x component of velocity. Since the
billiards show symmetry between x and y coordinates, we
assume that the y contribution to the velocity autocorrelation
function is equal to the x contribution, thus the right-hand side
of Eq. (19) is multiplied by 2. By making 〈·〉 an average of
trajectories of N particles, the Eq. (19) is

C(t) = 2
1

N

N∑
n=1

cos(θn0)cos(θnt ), (20)

where the coordinates θn0 and θnt refer to nth particle at
initial and t time, respectively. The number of particles on
each simulation for the velocity autocorrelation function was
2 × 107.

The time-dependent diffusion coefficient curve is obtained
by numerical integration of the velocity autocorrelation func-
tion data following (1) rather than (13), because the former
does not use �2 and τ .

The survival probability φ(t) was obtained counting the
number of particles inside or linked to the original site, as
shown in Fig. 4, at each time step. Each particle was followed
until it hit a scatterer of another site. In this way, if a particle
crosses the lattice using an open corridor, then the computer
program considers this particle to be linked with the original
site. In order to compare with the autocorrelation function, the
simulations for φ(t) used 106 particles (Figs. 5, 6, 8, 9, 11,
and 12). To evaluate the behavior of the B parameter in (14)
and (17), we used 107 particles, whose results are shown in
Figs. 14, 15, and 16. In both sets, the measures are averages of
10 simulations for each configuration, with error given by the
standard deviation.

V. RESULTS AND DISCUSSION

In the sequence, we show our results on three sets of
configurations, represented by each symbol in Fig. 3. Each
set keeps the radius of one disk constant while changing the
other in order to investigate a particular geometric transition.
Hence we show our results in terms of critical radius Rc for
geometric transition.

Although the plots for the velocity autocorrelation function
and survival probability are shown in reduced units by the
mean escape time τe [Eq. (4)], we also use the mean collision
time τc [8],

τc = L2 − π
(
R2

1 + R2
2

)
2(R1 + R2)

, (21)

as a reference to the velocity autocorrelation function decay
and the diffusion coefficient. We use P = 2π (R1 + R2), the
perimeter of the scatterers inside Sinai billiards, according
to (3).

A. 0H to BB

In the first set, the transition from 0H to ∞H is investigated
with the bouncing balls corridor being the first to be opened.
We fix R2 = 0.40L and begin with R1 = 2.00Rc followed by
1.60Rc, 1.20Rc, 1.00Rc, 0.80Rc, and 0.50Rc (represented by
squares in Fig. 3), where Rc = 0.10L. The BB and 0H billiards
are below and above the transition, respectively.

Figure 5 shows the di-log plot of the absolute value of the
velocity autocorrelation function C(t) (dots) and the survival
probability φ(t) (squares) of a representative case for 0H
billiards, with 1.20Rc. Since there are no open corridors, the
decay of both curves is expected to be purely exponential, as
indicated by the dashed curves. The decay rate for the velocity
autocorrelation function was fitted to a = 2.33 ± 0.01, using
the best fit for the selected points, on the peak of each
oscillation (triangles) [35]. The sign changes produce the
oscillatory behavior of C(t), which has been explained by
the sequence of disk collisions of trajectories [12,13]. Around
10τe, the exponential decay of C(t) apparently ceases, being
replaced by an oscillation with stationary amplitude below

FIG. 5. Velocity autocorrelation function (dots) and survival
probability (squares) for 0H billiards with R1 = 0.12L and R2 =
0.40L; τe = 0.949 and a = 2.33 ± 0.01.

052117-5



FELICZAKI, VICENTINI, AND GONZÁLEZ-BORRERO PHYSICAL REVIEW E 96, 052117 (2017)

FIG. 6. Velocity autocorrelation function (dots) and survival
probability (squares) for BB billiards with R1 = 0.08L and R2 =
0.40L; τe = 0.825.

10−3. This noiselike behavior has been assigned to numerical
errors, whose main source is the finite number of initial
conditions [36]. We assume that the decay has terminated
together with the exponential fit. This exponential decaying
behavior of C(t) and φ(t) is expected for 0H billiards and is
typical of hyperbolic systems [3,5,11,16,37].

The adjustment on the decay rate of C(t) in Fig. 5 indicates
τc as the characteristic relaxation time for C(t), considering
that τe/τc = 2.18 ≈ a. This is expected since correlations are
lost due to collisions with scatterers. Therefore, in the next
figures, we use this correction to the characteristic time for
C(t) directly, instead of the best fit.

Below the transition, the bouncing balls corridors are open.
Figure 6 shows the di-log plot of C(t) (dots) and φ(t) (squares)
for R1 = 0.80Rc, which is a case with very narrow corridors.
The dashed curves represent the main behavior of the decay
of C(t), evidencing an exponential decay as (1 − B)e−at/τe ,
and an asymptotic algebraic decay as B/(1 + at/τe), with
B = 1.07 × 10−3, τe = 0.825, τc = 0.497, and a = τe/τc. As
it was demonstrated in Fig. 5, the characteristic decay time
for C(t) is τc. φ(t) follows the behavior of the decay of
C(t), but its algebraic decay is more evident. The solid curve
represents Eq. (14), using τ = τe. The difference between the
curve and the points for φ(t), in short time, can be explained
by the simulation strategy which accounts the flight time
in the total surviving time. In short time, the flight time is
in the same magnitude of the time for just having escaped
from the original site. It suggests that the exponential part
should be more complex than the one used in (14); however,
it is a good model for a general behavior. The decay of C(t) is
mainly exponential and the 1/t contribution is very small and
remains below the strong oscillations of C(t) right after the
end of the exponential decay. In fact, as shown by the value
of B, the phase-space volume of the open corridors, in this
case, is negligible in comparison to the whole phase space,
meaning that though this billiard is classified geometrically as
∞H, some of its dynamical properties are similar to those of
0H billiards, which are hyperbolic systems. This is evidenced
not only by the fast decay of C(t) but also by the behavior of

FIG. 7. Diffusion coefficient of billiards between BB (R1 < Rc)
and 0H (R1 > Rc). The values R1 of the curves at reduced time are,
from top to bottom, 0.50Rc, 0.80Rc, 1.00Rc (dashed line), 1.20Rc,
1.60Rc, and 2.00Rc.

D(t) which neither converges nor grows as quickly as other
nonhyperbolic systems, as shown in Fig. 7.

We point out that as R1 gets smaller, the nonhyperbolic
properties get stronger, the 1/t tail is more visible above the
long time oscillations of C(t) and the diffusion coefficient
grows faster. Such is the case of the 0.50Rc (a similar case is
the 1.06Rc, discussed in Sec. V C).

The time-dependent diffusion coefficients are shown in
Fig. 7 with the values of R1, from the top, 0.50Rc, 0.80Rc,
1.00Rc (dashed line), 1.20Rc, 1.60Rc, and 2.00Rc. All the
0H cases seem to converge to a finite value. The 0.80Rc

case grows very slowly indicating its weak nonhyperbolic
properties, which get stronger in the 0.50Rc case. It is evident
that the delay of the logarithmic growth of D(t), in the 0.80Rc

case, is due to the small value of B, as shown in (17). However,
this delay implies that the macroscopic property D(t) behaves
like hyperbolic systems.

In this first set, we see that the dynamical properties of BB
billiards, close to the transition from 0H, remain very similar
to 0H, even though there are open corridors. This feature
comes from the fact that the phase space of the bouncing
balls corridors is drastically reduced by the presence of the
second sublattice.

B. 0H to D

In the second set, the diagonal corridor is opened from 0H.
We fix R1 = 0.20L and change R2 to 1.06Rc, 1.00Rc, 0.92Rc,
0.85Rc, and 0.78Rc (represented by triangles in Fig. 3),
where Rc = √

2/4L ≈ 0.3536L. Billiards above 1.00Rc are
0H, billiards between 0.85Rc and 1.00Rc are D and below
0.85Rc are billiards with both bouncing balls and diagonal
corridors.

The 1.06Rc and 1.00Rc cases are 0H billiards with the
same previously described properties in the Sec. V A. Figure 8
presents C(t) and φ(t) for the 0.92Rc case, with the main
diagonal open corridor. The decay starts exponentially and then
continues algebraically, as evidenced by the dashed curves.
The algebraic tail is characteristic of nonhyperbolic systems
and is originated by the particles traveling along the open
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FIG. 8. Velocity autocorrelation function (dots) and survival
probability (squares) for D billiards with R1 = 0.20L and R2 =
0.325L. The dashed curves evidence the decay of C(t) and the solid
refers to the decay of φ(t), as in Fig. 6. τe = 1.17.

corridors, suffering fewer collisions, and retaining correlations
for longer times.

The algebraic tail is even more evident in the 0.78Rc

case, as shown in Fig. 9. In this case, both the diagonal
and bouncing balls corridors are open and the contribution
of each one is evidenced by the dashed curves, being the D
curve the diagonal algebraic decay with B = 0.049 and the BB
curve the bouncing balls with B = 0.001, which is a negligible
contribution.

The diffusion coefficient calculated for this set is shown
in Fig. 10. The three nonconverging curves at the top are
the nonhyperbolic systems (∞H), while the two curves at the
bottom are the hyperbolic systems (0H, including the transition
case), which converge to a finite value. Different from BB, the
diagonal corridors exhibit nonhyperbolic characteristics right
after finishing 0H.

FIG. 9. Velocity autocorrelation function (dots) and survival
probability (squares) for ∞H billiards with R1 = 0.20L and R2 =
0.275L. The top (D) dashed curve refers to the diagonal corridors
algebraic decay and the bottom (BB) to the bouncing balls corridors.
τe = 1.08.

FIG. 10. Diffusion coefficient of billiards between ∞H (R2 <

Rc) and 0H (R2 > Rc). The values of R2 for the curves at long time
are, from top to bottom, 0.78Rc, 0.84Rc, 0.92Rc, 1.00Rc (dashed
line), and 1.06Rc.

C. ∞H to BB

In the third set, we focus on the transition by closing
the diagonal corridors and keeping only the bouncing balls
corridors open. We fix R1 = 0.05L and change R2 to 0.78Rc,
0.92Rc, 1.00Rc, and 1.06Rc, where Rc = √

2/4L ≈ 0.3536L

(represented by the circles in Fig. 3). In this case, billiards
below Rc have multiple types of corridors, while above Rc

they have only BB corridors, as in the first set in Sec. V A.
The 0.92Rc case shown in Fig. 11 is clearly nonhyperbolic

and is very similar to its equivalent in set 2. In this case, the
BB dashed curve is related to the bouncing balls corridor,
with the relative volume B = 0.031 and the D curve is
related to the diagonal corridor with B = 0.006. Figure 12
displays C(t) and φ(t) for the 1.06Rc case where only the
bouncing balls corridors are open. We see that in the limit
close to the opening of the diagonal corridor the bouncing
balls corridors are large enough to display the algebraic tail,

FIG. 11. Velocity autocorrelation function (dots) and survival
probability (squares) for ∞H billiards with R1 = 0.05L and R2 =
0.325L. The top (BB) dashed curve refers to the bouncing balls
corridors algebraic decay and the bottom (D) to the diagonal corridors.
τe = 0.78.
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FIG. 12. Velocity autocorrelation function (dots) and survival
probability (squares) for BB billiards with R1 = 0.05L and R2 =
0.375L. τe = 0.77.

with relative volume of B = 0.013. The diffusion coefficient
for this configuration is shown in Fig. 13, where every case
in this set diverges logarithmically, though the growing rate
decreases significantly when the diagonal corridor is closed.

The smooth transition between 0H and ∞H billiards was
already shown by Friedman and Martin [13] and then by
Matsuoka and Martin in a triangular lattice billiards [12].
Since our double square lattice provides the freedom to isolate
either type of open corridors, we can separately analyze
their effects. As mentioned before, our results in Fig. 9
show little contribution of the bouncing balls corridors to
the algebraic tail of C(t). This is explained by the small
relative phase-space volume of the open corridors, leading
to a very slow transition from hyperbolic to nonhyperbolic.
The diagonal open corridors have a larger phase-space volume
and the algebraic tail is visible right after the transition from
0H. If both types of corridors are open, then the algebraic tail
is clearly visible and the disk radii can be adjusted to choose
which type of corridor has a greater volume, as depicted in
Figs. 9 and 11.

FIG. 13. Diffusion coefficient of billiards between ∞H (R2 <

Rc) and BB (R2 > Rc). The values of R2 for the curves at long time
are, from top to bottom, 0.78Rc, 0.92Rc, 1.00Rc (dashed line), and
1.06Rc.

FIG. 14. Fitting of the algebraic part of φ(t), according to (14).
The data points refer to the configuration R1/L = 0.05 and R2/L =
0.325. The small error bars are included for some points. The inset
shows the equivalent points for diffusion coefficient, obtained by (13).
In both data, the fitting was performed to the points in the time range
between 102 and 103 t/τe.

D. Dynamical transitions

In our simulations we have used C(t) instead φ(t) to
calculate D(t) to avoid the characteristic parameters τ and
�; however, φ(t) is better suited to evaluate the long-time
behavior of D(t). We concentrate in analyzing the B coefficient
as the parameter that characterizes this long-time behavior in
nonhyperbolic billiards [Eq. (17)], without the necessity of
determining τ and �. It is possible to calculate B directly from
the algebraic part of φ(t) [Eq. (14)]. Figure 14 shows the data
points for one of the configurations in the third set, presented
in Sec. V C, with R1/L = 0.050 and R2/L = 0.325. The
coefficient B = 0.044660 ± 6 × 10−6 was calculated using
the best fit for the function B/(t/τe) in the range between
102 and 103 t/τe, represented by the continuous line. With
these same data points, in the inset, D(t) was calculated using
(13), with B = 0.044480 ± 3 × 10−6 fitted by the function
A + B ln(t/τe) in the same time range. Considering that there
is no significant difference between the two B values, in the
following Figs. 15 and 16, we use B calculated from φ(t).

The data points of B in relation to the geometrical parameter
R2/L are shown in Fig. 15 for the billiards of the third set, pre-
sented in Sec. V C, with fixed R1/L = 0.05 and varying R2/L

from one region with two open corridors (D and BB) to another
region with only one open corridor (BB). The segmented line
separates the regions in the point R2/L = √

2/4. The dotted
lines represent the theoretical values, according to (15), for BB
and D corridors separately, and the continuous line represents
their sum (total B). Despite the points and continuous line
do not perfectly match (error bars are smaller than the points),
(15) is a worthy theoretical prediction. Observe that the total B,
represented by the continuous line, is sensitive to the transition
between the two regions separated by the segmented line. The
inset shows the derivative of B in relation to R2, where it is
possible to observe the change of slope in the transition point.
Besides the fact that B distinguishes hyperbolic (B = 0) and
nonhyperbolic (B > 0) billiards, its sensitivity is more refined,
showing the closure of corridors. The dynamical transition,
when all corridors close, was described as thermodynamic
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FIG. 15. Weight B of algebraic part of φ(t) in function of the
radius R2. The data points refer to the third set of configurations
analyzed in Sec. V C. The dotted lines represent the theoretical
values of B, according to (15), for BB and D corridors with fixed
R1. The continuous line is the sum of them. The segmented line
marks the value of R2 from which the D corridors close. The error
bars are smaller than the points. The inset shows the derivative of the
continuous line.

phase transition by Gaspard and Baras [14] by analyzing the
behavior of the derivative of the pressure function. Different
phases differ in all thermodynamic properties, including the
isothermal compressibility, κT (T/V κT = −∂2S/∂V 2), where
T is the temperature. The necessity of the entropy S to be a
homogeneous first-order function of the extensive parameters
allows us to include B parameter as S(V ) = S(BV )/B [38].
Derivatives of entropy implies in derivatives of B. And
derivatives with respect to volume V is also a derivative with
respect to R, because the thermodynamic volume V in our
model is equivalent to the area L2 − π (R2

1 + R2
2) of the billiard

table. The plot in the inset of Fig. 15 suggests that other phase
transitions seem to exist.

FIG. 16. Weight B of algebraic part of φ(t) in function of width
c of BB corridors. The data points are the same configurations as in
Fig. 15. The continuous line represents the theoretical values of B,
according to (15), summing the contribution of BB and D corridors
with fixed R1. The segmented line marks the value of c from which
D corridors open. The dotted line represents the linear dependence
proposed in Ref. [25]. The error bars are smaller than the points.

When there are no open corridors, the particles only collide
with neighboring scatterers and their movement across the
lattice is a composition of small jumps between neighboring
sites. These continuous collisions result in all the trajectories in
phase space to be classified in just one state, called scattering
phase in Ref. [25], characterized by the escape time τe [Eq. (4)].
When there are open corridors, apart from the scattering
phase, the particles moving inside these corridors establish a
special group of trajectories in phase space, called propagation
phase in Ref. [25], which suggests a characteristic time τF

proportional to the mean free path �. Following this suggestion,
the mean time between jumps could be expressed by

τ = τe + A�, (22)

where the first term is the mean time that the particles spend
in a site and the second, the mean time to move to another site,
with A being a constant. For 0H billiards, τe 	 A� and τ ≈ τe.
However, for ∞H billiards, the group of particles in corridors,
flying across the lattice until arriving at another site, could not
have a characteristic time. It is possible that the mean length of
jumps and the mean time between jumps, as defined in (9) and
(10), can diverge in long time for ∞H billiards. This problem
can be transferred to diffusion coefficient as D = 〈r2〉/4〈t〉,
where the ratio of the mean values

〈r2〉
〈t〉 = �2

τe

{
1 + B

[
ln

(
t

τe

)
− 2

]}
(for t 	 τe)

carry the divergence to the diffusion coefficient, when B > 0
[see (17)].

We would like to point out the major difference between our
results and the Ref. [25]. In our proposal (15), we consider B

to be proportional to the relative phase-space volume of each
open corridor. In Fig. 16, we organize a parametric plot of B

in relation to the width c of the corridors, being both B and
c functions of the radii R1 and R2. The simulation points are
calculated in the set of Sec. V C, with fixed R1 and varying R2

to observe the transition from one open corridor (BB) to two
open corridors (D and BB), including two additional points,
with c = 0.119 (R2 = 0.98Rc) and c = 0.149 (R2 = 0.95Rc).
The continuous line is the theoretical values [Eq. (15)], with
the contribution of two open corridors. The segmented line
indicates the point where D corridors open. Similarly as in
Fig. 15, the theoretical prevision does not perfectly match the
data points, but properly follows their behavior. The dotted
line represents the linear dependence similar to the proposal
in Ref. [25]. We use the best linear fit using the first three
points, with B = 0.36c − 0.0094. The authors in Ref. [25]
use a simpler geometry than we do and observe the system
in the limit of narrow corridors. They suggest B = c/�, with
� = 1. In a direct comparison, � would be equivalent to 2.8
in our system. However, Fig. 16 indicates that a parabolic
relation with c is more appropriate. In addition, we propose
in the end of the Sec. III to express B = c/τt , where τt is the
transition time from scattering to propagating states [Eq. (18)].
This mean time exists only in ∞H systems and characterizes
different corridors.

Considering that many characteristic times appear on this
paper, we list them in Table I. This variety of characteristic
times suggests that many processes occur in the periodic
Lorentz gas. The Lorentz gas is primarily a deterministic
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TABLE I. Characteristic times.

Related
Symbol Description Quantity

τc Collision time Velocity
[Eq. (21)] autocorrelation

function
τt Transition time Diffusion coefficient

[Eq. (18)] (logarithmic part)
τ Time between Diffusion coefficient

jumps [Eq. (22)] (linear part)
τe Escape time Survival probability

[Eq. (4)]

system; however, the dispersive nature of its trajectories allows
us to deal with the length of jumps and the time between jumps
as random variables and to introduce stochastic approaches
[22]. τ is the only characteristic time introduced in this paper
related to the stochastic approach [Eq. (10)]. The remaining
times are defined in a deterministic context, all derived
from (3). The microscopic processes are characterized by the
collision time τc and all the billiard dynamic properties are
revealed after this time. τt appears only in ∞H billiards, whose
nonhyperbolic properties are exposed after this characteristic
time. τ and τe were defined in the context of the diffusion
process. τ is the natural mean time to characterize the
movement across the lattice and characterizes the macroscopic
process. But since τ ≈ τe in 0H billiards and it is not defined
in ∞H billiards, τe has been used as a reference time.
Therefore, for 0H billiards and for ∞H billiards, in the limit
of narrow corridors, τe > τc and they distinguish macroscopic
and microscopic processes, respectively. And the complete
characterization of the diffusion process occurs for t 	 τe.
The movement of the particles on the lattice is independent of
the presence of open corridors. The particles can move through
the lattice and remain in their collisional state. For this reason,
τt > τe when one kind of corridors is open, meaning that the
particles can spend more time to escape from the collisional
state than to escape from a site, in ∞H billiards.

VI. CONCLUSIONS

In this paper we have numerically studied the velocity
autocorrelation function C(t), the survival probability φ(t),
and the diffusion coefficient D(t) on a double square lattice
Lorentz gas. Our particular interest was in the dynamical
transitions and properties of each horizon type, ∞H and 0H,
allowed by the adjustment of the sublattices radii.

By isolating each type of corridor, we were able to
distinguish its influence on the dynamical properties of the
billiards. In BB billiards, where there are only vertical and
horizontal corridors, near the transition to 0H, we find that
D(t), calculated from C(t), reflects very similar dynamics to
0H billiards. This is a consequence of the statistical oscillations
of C(t) when they begin before the algebraic tail and mask the
anomalous behavior of D(t). Both the logarithmic growth of
D(t) and the algebraic tail of C(t) are weighed by the geometric
parameter B, which is very small near the transition. However,
φ(t) is sensitive enough to show the algebraic tail even near

the transition, since it has no oscillations, and it is possible
to calculate the values of B from it. In the D case, the open
corridors volume B in the phase space is larger than in the
BB case, showing the algebraic tail right after the transition
from 0H. If both corridors are open simultaneously, then the
influence of each corridor to the algebraic tail can be modulated
by adjusting the disks radii (Figs. 9 and 11).

In our stochastic model, φ(t) takes the equivalent role of
C(t) in the diffusion coefficient derivation [Eq. (13)] and both
quantities have similar behavior in relation to their decays,
as shown by our results. This suggests that φ(t) and C(t)
have the same origin within the dynamics of the billiards
and there might be a direct relation between them, which
connects the stochastic and deterministic models. Using a
linear combination of exponential and algebraic functions to
represent φ(t), it was possible to derive the diffusion coefficient
in (17) displaying both normal and anomalous diffusions
according to the geometric parameter B. The normal term
of this equation accounts for the time that the particles spend
trapped on a site colliding with the scatterers, whereas the
anomalous term accounts for particles that leave the traps via
open corridors and may have long ballistic trajectories before
colliding with another scatterer. These particles originate the
algebraic tail in both φ(t) and C(t). However, φ(t) decays on
a time scale given by τe which is related to the escape rate of
the particles from a site, whereas C(t) decay is ruled by the
mean collision time, τc.

The parameter B is sensitive to a dynamical transition from
nonhyperbolic to hyperbolic billiards, which has been treated
as a phase transition, like in a thermodynamics approach [14].
Analyzing the derivative of B in relation to R, the change
of the slope at the geometric transition, when there are two
kinds of open corridors to one kind of open corridors (BB
and D together to BB alone), might suggest the presence of
other phase transitions in the nonhyperbolic regime. The open
corridors in ∞H billiards allow the coexistence of distinct
states in phase space for long time. This composite structure
of the phase space fosters the complex behavior of the Lorenz
gas, which deserves further studies.
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APPENDIX A

In the sense of making the limit in (8) to obtain (11), after
derivation, it is necessary to define

�(u) ≡
∫

�(r,u) dr, (A1)

�2(u) ≡
∫

r2�(r,u) dr, (A2)

and to consider that ∫
r �(r,u) dr = 0 (A3)
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FIG. 17. Schematic representation of an open corridor of width c.

and the limits

lim
k→0

�(k,u) = �(u), (A4)

lim
k→0

∂�(k,u)

∂k
= 0, (A5)

lim
k→0

∂2�(k,u)

∂k2
= �2(u). (A6)

The next step for (8) is

lim
k→0

∂2W (k,u)

∂k2
= (u)

{ −�2(u)

[1 − �(u)]2

}
. (A7)

Now we consider asymptotic forms for �(u) and �2(u) for
small u, which corresponds to large t ,

�(u) ≈
∫ ∞

0
dt(1 − ut)

∫
dr ψ(r,t)

= 1 − uτ, (A8)

�2(u) ≈
∫

dr r2
∫ ∞

0
dt ψ(r,t) = �2 (A9)

where we use (9) and (10).
The final result, considering t 	 τ , is

lim
k→0

∂2W (k,u)

∂k2
= −�2

τ 2

(u)

u2
. (A10)

APPENDIX B

Consider a billiard with an open corridor of a single type
(either bouncing balls or diagonal) of width c and a particle
that travels in this corridor up to a time t before a collision,
represented in Fig. 17. The phase-space volume of this corridor
is the result of the integration

∫ t cos θ

0
dx

∫ c

0
dy

∫ θ

θ ′
dθ. (B1)

If t is large, then we consider θ ≈ sin θ = (c − y)/t , cos θ ≈
1, and θ ′ ≈ sin θ ′ = −y/t , so the integration is

∫ t

0
dx

∫ c

0
dy

∫ c−y

t

−y

t

dθ = c2. (B2)

Since a billiard cell contains four corridors with two
directions each, the result is multiplied by 8. The ratio between
this volume and the whole phase space of the billiard gives the
value of B in (15).
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