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Noise-driven current reversal and stabilization in the tilted ratchet potential
subject to tempered stable Lévy noise
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We consider motion of a particle in a one-dimensional tilted ratchet potential subject to two-sided tempered
stable Lévy noise characterized by strength �, fractional index α, skew θ , and tempering λ. We derive analytic
solutions to the corresponding Fokker-Planck Lévy equations for the probability density. Due to the periodicity of
the potential, we carry out reduction to a compact domain and solve for the analog of steady-state solutions which
we represent as wrapped probability density functions. By solving for the expected value of the current associated
with the particle motion, we are able to determine thresholds for metastability of the system, namely when the
particle stabilizes in a well of the potential and when the particle is in motion, for example as a consequence
of the tilt of the potential. Because the noise may be asymmetric, we examine the relationship between skew of
the noise and the tilt of the potential. With tempering, we find two remarkable regimes where the current may
be reversed in a direction opposite to the tilt or where the particle may be stabilized in a well in circumstances
where deterministically it should flow with the tilt.
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I. INTRODUCTION

The impact of stochastic driving in nonlinear systems [1]
is significant in diverse physical, chemical, and biological
systems; we would also include here social systems for reasons
to be given soon. For all the sophistication of these models,
some features are common: a potential energy landscape with
a tilt, or bias, superimposed with some form of periodicity
in the distributions of local minima. These are known as
tilted ratchet potentials because of the behavior that, under
metastable circumstances, a particle may drift down the tilt
but temporarily “catch” in the periodically occurring wells
[2]. Many works have addressed Gaussian or Brownian noise
in such potentials, or analogous forms such as “washboard”
potentials [3,4], and multidimensional forms of these [5].
However, more general forms of noise, particularly with jumps
drawn from heavy tails [6] are now topical in the literature,
for example spatially stable Lévy noise [7,8] and tempered
stable Lévy noise [9–13]. Such concepts have led to the study
of so-called fractional (or super)diffusion [14–16]. There is a
long history of applications to more standard one-dimensional
systems [17–22]. Such non-Gaussian noise models have been
applied to ratchet potentials in the absence of tilt [23]. In this
paper we extend these analyses to the case of nonzero tilt.

The signature behaviors of interest in stochastic tilted
ratchets [3,4,24] are those of current stabilization (where the
particle may be localized in a well under the influence of the
noise when deterministically it would seek to roll down the tilt)
and current reversal (where the particle is driven against the
tilt by the noise). These phenomena form a subset of nonlinear
collective behaviors alongside stochastically driven resonance
[25,26] and synchronization [27]. Given the importance of
noise characterized by jumps and heavy tails in diverse
contexts [28] such as the fluid properties of plasmas [29,30],
finance [31,32], and brain waves [33], the application of this to
the collective phenomena of tilted ratchets is evident. Already

in the presence of periodic potentials under tempered stable
noise, current reversal has been observed [23]. In this paper
we explore the role in this phenomenon of the tilt (which
should naturally inhibit current reversal) in the vicinity of the
deterministic threshold for current flow.

Our interest in this problem arises from a quite different
problem, that of synchronization on networks as exemplified
in the stylized Kuramoto model [34]. First, the property of
metastability for the Kuramoto model on ring graphs subject
to weak Gaussian noise has been identified [35]. This uses
the approach to stochastic metastability of Freidlin-Wentzell
(FW) theory [36]. Second, the Kuramoto model close to the
synchronization threshold maps to a tilted ratchet potential;
some of us have explored this property for a generalization of
the Kuramoto model for two populations on separate networks
[37] and subject to Gaussian noise [38], which may be seen
as a representation of competitive social or organizational
processes. Finally, some of us have begun explorations of the
ordinary Kuramoto model subject to stable [39] and tempered
stable noise [40]—with hints at stochastic synchronization
there as well.

The paper is structured as follows. In the next section we
set up the tempered stable stochastic system, first using the
fractional Langevin formalism and then the Fokker-Planck
formalism. We then discuss the reduction procedure in light
of the periodic structure of the potential, using the Gaussian
case as an example. We then present the main results showing
the solution to the reduced Fokker-Planck probability density
and associated expected value of the current associated with
the particle; in this we use a little-known representation of
the solutions as “wrapped probability densities.” We examine
these under variations of parameters such as the fractional
α, the tilt and the tempering of the noise. Here we identify
the regimes of current reversal and stabilization. The paper
concludes with prospects for future work.
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II. TEMPERED-FRACTIONAL–FOKKER-PLANCK
EQUATIONS IN RATCHET POTENTIALS

We present here the formulation of the problem to be solved.
The focus is on certain types of stochastic processes in ratchet
potentials. These are potentials that involve tilted periodic
functions. For this work we use a ratchet potential of the form

V (x) = −μx − γ cos(x − ρ), ρ ∈ (−π,π ], (1)

where μ ∈ R and γ ∈ R are referred to as the tilt and amplitude
respectively. Equation (1) is commonly referred to as a
tilted periodic ratchet [1,2]. The potential has two important
features. The first is the periodicity V ′(x) = V ′(x + 2π ). The
second is given by the sign of the quantity

K = γ 2 − μ2, (2)

which encapsulates the interplay between the tilt and the
amplitude. Specifically, if K > 0 then V (x) contains a series
of local minima (stable fixed points) at x = ρ + sin−1(μ/γ )
mod 2π , and a series of local maxima (unstable fixed points) at
x = π + ρ − sin−1(μ/γ ) mod 2π . If K = 0 then the maxima
and minima collapse into each other and form a series
of inflection points (unstable fixed points). Last, if K < 0
then V (x) becomes an entirely monotonic function with no
inflection points, namely no stationary points.

These properties completely govern the behavior of the de-
terministic system ẋ = −V ′(x), namely the circumstances for
which stationary behavior may be attained (K > 0, suspension
in a potential well) and what forms of nonstationary behavior
are allowed (K < 0, “rolling” down the tilt). These behaviors
are encoded in the deterministic solution which takes the form
[37]

x(t) = ρ + 2 arctan

{
|γ | − √

K tanh
(

c−t
2

√
K

)
|μ|

}
, (3)

with c an integration constant. The impact of Gaussian noise
on this was explored in Ref. [38]. We now wish to see how
non-Gaussian stochastic processes change this behavior.

A. Fractional Langevin equations

We generalize the deterministic system to a Langevin
equation combining deterministic and non-Gaussian stochastic
dynamics written in stochastic differential notation:

dx(t) = −V ′(x(t))dt + dLα,θ,λ(t), (4)

where Lα,θ,λ(t) is taken to be a tempered stable process,
given by parameters that describe, respectively, the strength
of the power law (or “fractional index”) in the noise tail,
the asymmetry or skew of the noise, and the tempering
of the tail. As described, for example, in Ref. [41], and
clarified further below, the parameters are constrained in the
following way: α ∈ (0,1) ∪ (1,2] arising from a stable Lévy
process, θ ∈ [−1,1] is the asymmetry, and λ ∈ (0,∞) for the
tempering parameter for the heavy tails. For α = 2, the Lévy
noise term in Eq. (4) becomes Gaussian. These parameters
describe the tempered-fractional diffusion process, defined in
the following.

B. Tempered-fractional diffusion

The probability density P(x,t) associated with the
tempered-stable Lévy process Lα,θ,λ(t) in Eq. (4) obeys
the following so-called tempered-fractional Fokker-Planck
equation (TFFP) [42]

∂

∂t
P(x,t) =

{
�∂α,θ,λ

x + ∂

∂x
V ′(x)

}
P(x,t)

P(x,0) = δ(x − y), (5)

where � ∈ R+ is the diffusivity and the operator ∂α,θ,λ
x is the

tempered-fractional-diffusion operator, given explicitly by
[23]

∂α,θ,λ
x = Dα,θ,λ

x + vα,θ,λ ∂

∂x
+ να,λ. (6)

Here vα,θ,λ and να,λ are so-called “induced” drift and
source-sink terms given by

vα,θ,λ =
{

0, α ∈ (0,1)
αθλα−1

| cos(πα/2)| α ∈ (1,2)
, να,λ = λα

cos(πα/2)
. (7)

The operator Dα,θ,λ
x is the λ-truncated fractional derivative of

order α, given by

Dα,θ,λ
x = l(θ )e−λx −∞Dα

x eλx − r(θ )eλx
xD

α
∞e−λx, (8)

where the operators −∞Dα
x and xD

α
∞ are the

Riemann-Liouville derivatives [43]. Both operators have the
following form in Fourier space [44,45]:

F
[
e−λx −∞Dα

x eλxf (x)
] = (λ − ik)αf̂ (k),

F
[
eλx

xD
α
∞e−λxf (x)

] = (λ + ik)αf̂ (k), (9)

where our convention for the Fourier transform is

F[f (x)] =
∫ ∞

−∞
dxeikxf (x) = f̂ (k),

F−1[f̂ (k)] =
∫ ∞

−∞

dk

2π
e−ikx f̂ (k) = f (x). (10)

Finally, for definitional purposes, the weighting factors

l(θ ) = θ − 1

2 cos(πα/2)
, r(θ ) = θ + 1

2 cos(πα/2)
(11)

give the asymmetry imposed on each of the Riemann-Liouville
derivatives. Taking the Fourier transform of the fractional
derivative ∂α,θ,λ

x we obtain

F
[
∂α,θ,λ
x f (x)

] = {l(θ )(λ − ik)α − r(θ )(λ + ik)α − ikvα,θ,λ

+ να,λ}f̂ (k) = �(k)f̂ (k), (12)

where �(k) is the logarithm of the characteristic function of
the tempered stable Lévy process.

For the stable limit, λ → 0, Eq. (5) arises from a continuous
time random walk (CTRW) process (in the absence of waiting
times), as shown in Ref. [14]; in this limit the process
is governed by the characteristic function as given in the
Lévy-Khinchine law [46]. The generalization to the tempered
case is given in Ref. [42], where the dynamical equation
(5) is a special case of a macroscopic transport equation in
the continuum “fluid limit” of a CTRW for a specific case
of a density describing the jump distribution of the random
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walkers. As [42] argues, the generalization of the problem
to an external potential is achieved by adding the potential,
indeed as considered in Ref. [23].

The key property of tempered stable noise that makes it
attractive lies in the moments of the density for CTRW jumps.
For λ = 0, the stable process only admits finite moments of
order n < α. Thus, for fractional α ∈ (1,2] only first order
moments exist. This means that one cannot fit a model to a
finite dataset (all empirical moments are finite). Tempering
with λ �= 0, renders all moments finite while retaining the
property of the heavy tail [12,23,41,42].

C. Illustrative example: Gaussian limit

In order to proceed with the general TFFP equation with
the tilted ratchet potential, we first briefly detail the Gaussian
limit case, namely

∂

∂t
P(x,t) =

{
�

∂2

∂x2
+ ∂

∂x
V ′(x)

}
P(x,t), (13)

as its relatively simple explanation of solution allows for
greater intuition when we consider the more complicated
fractional case. As well as the defining equation (13), we are
also concerned with the probability current J (x,t), defined by
the following probability conservation expression:

∂

∂t
P(x,t) + ∂

∂x
J (x,t) = 0

⇒ J (x,t) = −
{
�

∂

∂x
+ V ′(x)

}
P(x,t). (14)

As explained in Ref. [1] and references therein, one finds a
non-normalizable density when following the usual procedure
for a steady-state solution: solving the Pearson equation for
the steady-state density Pst (x), namely setting ∂

∂t
P(x,t) = 0

in Eq. (13), and applying the vanishing boundary condition
Pst (x) → 0 at the natural boundaries x → ±∞. This is due to
the periodicity of the ratchet potential and its metastability in
the presence of noise [35,36,47]. In order to circumvent this
phenomenon, we restrict the support of x to S1 by constructing
the so-called reduced densityP (r)(x,t) and reduced probability
current J (r)(x,t) through

P (r)(x,t) ≡
∞∑

n=−∞
P(x + 2πn,t),

J (r)(x,t) ≡
∞∑

n=−∞
J (x + 2πn,t). (15)

Due to the linearity of the Fokker-Planck equation, the reduced
density and reduced probability current also obey Eqs. (13) and
(14) respectively, but with the new boundary and normalization
conditions

P (r)(−π,t) = P (r)(π,t),
∫ π

−π

dxP (r)(x,t) = 1. (16)

The reduced steady-state density is then given by [48]

P (r)
st (x) = sinh

(
πμ

�

)
e−V (x)/�

∫ x+2π

x
dϕeV (ϕ)/�

2π2
∣∣Iiμ

(
γ

�

)∣∣2
(1 − e−2πμ/�)

, (17)

where Iiμ is the modified Bessel function of imaginary order.
Additionally, the corresponding average velocity 〈ẋ〉, which

may assume nonzero values as a consequence of the metasta-
bility and the tilt of the potential μ, is given by [48]

〈ẋ〉 = d

dt
〈x〉 =

∫ π

−π

dxJ (r)
st (x) = � sinh

(
πμ

�

)
π

∣∣Iiμ

(
γ

�

)∣∣2 . (18)

Note that, trivially, for Gaussian noise there is zero average
velocity in the absence of tilt: 〈ẋ〉 = 0 if μ = 0.

Figure 1 gives examples of Eq. (17) (insets) and Eq. (18)
(main figure) where we have fixed the amplitude γ = 1; thus
deterministically, the point of instability K = 0 occurs when
μ = ±1 from Eq. (2) so for μ = (−1,1) ẋ(t → ∞) = 0. We
also choose the offset ρ = −1.5. The main part of Fig. 1
shows the average velocity 〈ẋ〉 as a function of the tilt μ. We
see that for weak noise, � = 10−3, the current is vanishing
inside the interval (−1,1) and increases positively, respectively
negatively, for μ > 1, respectively < −1. The particle “rolls”
in the direction of the tilt. For increasing � in the Gaussian
noise, the current assumes nonzero values inside the region
where deterministically it should vanish: the noise generates
tails that allow the particle to “spill” outside the potential wells
giving a nonvanishing probability that the particle rolls with
the tilt when deterministically it should be stable; hence the
particle is metastable.

We also examine these same properties through the
probability density solutions of the Gaussian Fokker-Planck
equation as insets in Fig. 1. The left-most inset provides a case
with stable fixed points (γ = 1, μ = 0.99) and the right-most
inset details a case with no fixed points (γ = 1, μ = 1.01).
Both insets are presented as so-called “wrapped probability
density functions” (see for example [49]), namely a parametric
plot where

{x,y} = {(
1 + P (r)

st (φ)
)

cos φ,
(
1 + P (r)

st (φ)
)

sin φ
}
,

for φ ∈ S1. (19)

Note that in such plots the convention is that the positive
horizontal axis represents φ = 0 (which would correspond to
the vertical axis for a density on the real line); peaks located
clockwise from this are in the positive direction and those
anticlockwise are in the negative.

For the leftmost inset in Fig. 1, for small � we see that
the density is approximately concentrated at the deterministic
position of the stable fixed point [φ = ρ + sin−1(μ/γ ) ≈
−0.07, and thus the peak is oriented slightly below the
horizontal axis]. Moreover, as � increases we see that
the probability density begins to smear around the circle,
losing any discernible features after � = 1. This displays the
phenomenon of metastability in the wrapped densities: the
particle is rolling with some probability so the probability
density is distributed around the entire circle.

The narrative is similar for the right-most inset, except the
relative heights of the densities is significantly less—indicating
that even for the weakest noise there is a nonvanishing
probability that the particle is at other points around the
circle because deterministically the particle will roll for μ > 1.
Further increases in � distend the peak until it is uniformly
distributed around the circle.
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FIG. 1. Examples of Eq. (17) (insets) and Eq. (18) (main) for ρ = −1.5 and γ = 1 and various values of the diffusivity � which governs
noise strength. The leftmost inset details a case with stable fixed points in the potential (μ = 0.99), the rightmost inset details a case with no
fixed points in the potential (μ = 1.01). Both insets are given as a parametric plot governed by Eq. (19).

The wrapped densities also provide insight into the range
of fluctuations. So, for μ = 1.01 the weakest noise � = 10−3

has a density that is evenly distributed on either side of the
horizontal axis, indicating that fluctuations about the average
of zero are symmetrically distributed. As � increases, the bulge
moves clockwise around from the horizontal axis indicating
that fluctuations are biased in the positive direction—the
direction of the tilt. Similar properties are seen for μ = 0.99
but at stronger values of �.

III. ANALYTIC SOLUTION OF THE TFFP EQUATION

A. Reduced density

As with the Gaussian case, we expect that the steady-state
equivalent of Eq. (5) with vanishing boundary conditions at the
natural boundaries x → ±∞ will be non-normalizable due to
metastability. In order to ameliorate this situation we again
consider a reduced density defined on S1 [Eq. (15)] for the
steady-state TFFP equation{

�∂α,θ,λ
x + ∂

∂x
V ′(x)

}
P (r)

st (x) = 0, (20)

with boundary and normalization conditions given by Eq. (16).
Taking the Fourier transform of Eq. (20) we obtain

{��(k) + ikμ}P̂ (r)
st (k)

= kγ

2

{
e−iρP̂ (r)

st (k + 1) − eiρP̂ (r)
st (k − 1)

}
⇒ Q̂(k + 1) = −fkQ̂(k) + Q̂(k − 1), (21)

where Q̂(k) = e−ikρP̂ (r)
st (k) and

fk = − 2

kγ
{��(k) + ikμ}. (22)

Equation (21) represents a linear three-term recurrence rela-
tion defining the coefficients in the Fourier expansion.

Because of the periodic boundary conditions of P (r)
st (x) on

the finite interval, the Fourier variable k only takes discrete
values. Specifically,

F
[
P (r)

st (x)
] =

∞∑
n=−∞

F[Pst (x + 2πn)]

= P̂st (k)
∞∑

n=−∞
e−i2πnk

= P̂st (k)
∞∑

m=−∞
δ(k − m).

Thus we need to solve the three term recurrence relation
for coefficients Q̂(k) in Eq. (21) for k ∈ {. . . ,−1,0,1, . . . }.
Doing so, we can then construct the probability density via the
discrete inverse Fourier transform

P (r)
st (x) = 1

2π

{
Q̂(0) + 2Re

∞∑
n=1

e−in(x−ρ)Q̂(n)

}
, (23)

where Q̂(0) = 1 from the normalization condition in Eq. (16).
Following Chap. 9 of [50], applying the transformations

Sk+1 = Q̂(k + 1)

Q̂(k)
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FIG. 2. Examples of Eq. (23) (insets) and Eq. (27) (main) for ρ = −1.5, γ = 1, α = 0.5, λ = 0.5, � = 0.1 and various values of the
asymmetry θ . The left-most inset details a case with stable fixed points in the potential (μ = 0.99), the right-most inset details a case with no
fixed points in the potential (μ = 1.01). Both insets are given as a parametric plot governed by Eq. (19).

the linear three term recurrence relation in Eq. (21) becomes
the following nonlinear two term recurrence relation:

Sk = 1

fk + Sk+1
, (24)

which can be solved iteratively using continued fractions

Sk = 1

fk + 1

fk+1 + Sk+2

= 1

fk + 1

fk+1 + 1

fk+2 + 1

. . .

.

Moreover, applying the notation

Km
j=1(aj : bj ) = a1

b1 + a2

b2 + a3

· · · + am

bm

Sk can be conveniently expressed by

Sk = K∞
j=k(1 : fj ). (25)

Calculating the expressions for {Sk,Sk−1, . . . ,S2,S1}, we
may then reconstruct the corresponding Q̂(k) using

Q̂(k) = SkSk−1 . . . S2S1Q̂(0) (26)

for insertion into Eq. (23). Thus Eq. (23) with coefficients given
by Eq. (26) is the solution to the TFFP equation, equivalent to
Eq. (17) for Gaussian noise.

For numerical calculations of the reduced density we trun-
cate the number of terms in Eq. (23) at n = 1000. Moreover,

for the continued fractions Sk in Eq. (25) that form the density
in Eq. (23), we approximate these as Sk = Kp

j=k(1 : fj ), where
k = {1, . . . ,1000}, and p = 2000.

B. Average velocity

Considering the expression for the the average velocity
〈ẋ〉 ≡ d

dt
〈x〉 given in Eq. (18) we may perform the following

sequence of manipulations to re-express the expected current
in terms of the characteristic function for the tempered stable
Lévy process:

d

dt
〈x〉 = d

dt
〈xeikx〉|k→0

= ∂

∂t

{
−i

∂

∂k
P̂(k,t)

}
|k→0

= −i
∂

∂k

{
∂

∂t
P̂(k,t)

}
|k→0

= −i
∂

∂k
{��(k)P̂(k,t) − ikF[V ′(x)P(x,t)]}|k→0

= −i�
d

dk
�(k)|k→0 − F[V ′(x)P(x,t)]|k→0.

From Eq. (12)

−i�
d

dk
�(k)|k→0 =

{
−�αθλα−1

cos ( πα
2 ) 0 < α < 1

0 1 < α < 2

and from Eqs. (1) and (23)

−F[V ′(x)P(x,t)]|k→0 = μ − 2πγ Im{Q̂(1)}.
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FIG. 3. Examples of Eq. (23) (insets) and Eq. (27) (main) for ρ = −1.5, γ = 1, α = 1.25, λ = 0.001, � = 0.1 and various values of
the asymmetry θ . The left-most inset details a case with stable fixed points in the potential (μ = 0.5), the middle inset is μ = 0.99, and the
right-most inset details a case with no fixed points in the potential (μ = 1.01). The insets are given as a parametric plot governed by Eq. (19).

Hence the expected value of the velocity may be expressed as

〈ẋ〉 =
{

−�αθλα−1

cos ( πα
2 ) + μ − 2πγ Im{Q̂(1)} 0 < α < 1

μ − 2πγ Im{Q̂(1)} 1 < α < 2.

(27)

Equation (27) with Q̂(1) given by Eq. (26) is the tempered-
stable equivalent of Eq. (18) for Gaussian noise.

For the corresponding numerical calculations of the average
velocity in Eq. (27), only the first continued fraction coefficient
Q̂(1) = S1Q̂(0) is involved. For numerical purposes we again
truncate S1 as S1 = Kp

j=1(1 : fj ). For α > 1 we set p =
2 × 104. However, for α < 1 we find it necessary to set
p = 4 × 104 to obtain sufficiently smooth plots of the average
velocity.

IV. EXAMPLES: CURRENT STABILIZATION
AND REVERSAL

As for the Gaussian case, we fix the amplitude γ = 1
so that the deterministic threshold for instability is μ = ±1.
We also fix the diffusivity constant at � = 0.1, where the
Gaussian case in Fig. 1 shows diffusion even for μ < 1 due to
metastability, and ρ = −1.5 as before. We first examine the
average velocity and wrapped densities for selective values of
α and λ.

With α = 0.5 we expect for the stable noise case (λ = 0)
very heavy tails which will lead to quite diffuse densities. To
identify structure we therefore choose for this α relatively large
tempering, namely λ = 0.5. The analog to Fig. 1 is shown in
Fig. 2, where again the average velocity is shown as a function
of μ for different values now of skew θ , and insets show the
wrapped densities for two the choices of μ above and below
the threshold μ = 1.

The signature feature of Fig. 2 is the behavior around
μ = 1: we see that for θ = 1 (black curve) the average
velocity is zero for a small range of values 1 < μ � 1.05;
near μ = −1 the same behavior recurs for θ = −1. Once
the skew decreases, θ < 1 for 1 < μ � 1.05, and increases
θ > −1 for −1.05 � μ < −1, the average velocity becomes
nonzero in these narrow regions. In other words, one-sided
tempered stable noise antialigned to the tilt may stabilize the
particle on average in circumstances where deterministically it
should be unstable (namely there is no well). This is stochastic
current stabilization.

These properties are reflected in the wrapped densities
in the inset. The left-most inset of Fig. 2, for μ = 0.99,
shows strongly peaked densities just as for the Gaussian
case. However, the right-most inset with μ = 1.01 also shows
a strongly peaked density for θ = 1 where the analogous
Gaussian case of Fig. 1 shows diffusion around the circle
(particularly for the corresponding value of �). Observe how
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FIG. 4. Examples of Eq. (27) for ρ = −1.5, γ = 1, � = 0.1. The tempering λ is being varied on the horizontal axis, with various values
of the asymmetry θ . Down the rows (A–F) the tilt μ is varied, with the values μ = {0.1,0.995,1.005,1.01,1.03,1.05} being applied from top
to bottom row. Across the columns (I–IV) the fractional power α is varied, with the values α = {0.25,0.55,0.85,1.25} applied from left-most
to right-most column.

for both cases of μ, the curve for the one-sided density with
θ = 1 joins the circle sharply on one side (anticlockwise from
the peak) and more smoothly on the other (clockwise from the
peak). This manifests the skew for this case.

We now chose a contrasting case with α = 1.25, greater
than 1 but still significantly far from Gaussianity, and λ =
0.001 which is close to the stable limit. The corresponding
average velocity and wrapped densities are shown in Fig. 3, but
now for three choices of μ. Now for −1 < μ < 1 the average
velocity no longer vanishes in general except for specific values
of θ at specific values of μ; at such values the skew exactly

balances against the tilt. However, unusually, there are regions
where the sign of 〈ẋ〉 is opposite to that of μ for certain ranges
of skew θ . For example, for θ = 1 (black curve) and 0 <

μ < 0.7, 〈ẋ〉 < 0, the particle is propagating in the negative
direction (to the left) even though skew and tilt are positive.
For θ = −1 (orange curve) and −0.7 < μ < 0, 〈ẋ〉 > 0, so
that the particle is propagating in the positive direction (to
the right) even though skew and tilt are negative. This is the
phenomenon of current reversal.

Examining the wrapped densities, shown in the insets, we
see strongly oriented and sharp densities for μ = 0.5 across
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the range of θ , while for μ = 0.99,1.01 the densities are
mostly diffuse for θ > 0, most strongly for θ = 1. These
assist, to a degree, in understanding the counterintuitive current
reversal. Specifically, we observe that for the one-sided case
θ = −1 (orange curve) the heavy tail is in the anticlockwise
direction while the peak is oriented clockwise from the positive
horizontal direction. Recalling that all of the cases of θ

correspond to the same mean, we observe that the mode of
the distribution shifts further and further clockwise from the
axis. This indicates that the heavy tail is in the anticlockwise
direction (in contrast to the θ = 1 case). Significantly, for
α > 1 the mode of the distribution lies in the opposite direction
from the heavy tail [39]. The wrapped densities, particularly
with the distortions of plotting on a circle, do not convey
well the significance of the heavy tail; in Ref. [39] the role
of the tail was best represented through quartile-quartile plots.
Nevertheless, in the case of such small tempering given a
heavy tail in the negative direction for θ < 0, we obtain
a probability mass in the positive direction. So there is a
dominance of small jumps in the positive direction. Thus,
with small tempering and even subject to positive tilt, there is
a net drift in the positive direction. The current reversal arises
from this. (We only caution that the threshold for this behavior
cannot immediately be read off the wrapped density plots since
they represent the density of x rather than the current density.)
A similar phenomenon was observed in the Kuramoto model
in Ref. [39], a point to which we shall return in the final section.

Having examined two selected cases, we now conduct a
more general scan across a range of λ for representative values
of α below and above 1 and different skew values θ . This
is shown in Fig. 4. These plots should be compared with
Fig. 15 in Ref. [23] for tempered stable noise in a (different
to ours) ratchet potential without tilt (μ = 0). We choose μ

quite far from this regime, and scan in the vicinity of μ = 1,
namely 0.995 � μ � 1.05 and α = 0.25,0.55,0.85,1.25. But
for some comparison we also provide the result for μ = 0.1.
As μ > 0 for all these cases, current reversal corresponds to
negative values of 〈ẋ〉 in these plots.

In fact, we observe that current reversal is a generic feature
both below the deterministic threshold of μ = 1 and above,
starting from the top left and scanning across to higher values
of α, and scanning down with increasing increments in μ.
The case shown in Ref. [23], where they choose α = 1.5 and
two values of θ , shows a current starting negative for small λ,
crossing zero to positive values and then converging to zero;
this is hidden in a plot such as panel A-IV in Fig. 4. For larger
tilt μ such behavior moves to α < 1. For example, panel B-I
shows curves for θ ≈ 0.6 crossing from negative to positive
and then converging to zero. This current reversal occurs not
only for the most extreme skew θ = 1 but closer to symmetric
noise.

We see that for μ < 1 and large λ the average velocity
tends to zero (top two rows); for μ > 1 the asymptotic
limit is nonzero and positive (third row and below), which
corresponds to the deterministic value as tempering suppresses
all noise. We also observe that the current reversal ceases
above α = 1 in this region of μ—recall that in Fig. 3 the
reversal occurs for μ < 0.7.

Within the regimes of current reversal there are always
discrete values where 〈ẋ〉 = 0. However, we also see for μ > 1

and α < 1 regimes where the average velocity vanishes across
a continuum of λ values before increasing and converging to
the deterministic limit—this is most distinct in panel C-II.
Thus current stabilization may be sustained across a broad
range of λ before tempering dampens the noise completely.
These demonstrate that current stabilization is linked naturally
to current reversal, but the stabilization over a range of λ may
not be intuitively expected.

Moving to the lower rows we observe that the range of λ

over which stabilization occurs shrinks until it becomes only a
discrete case of λ except for pure one-sided noise with θ = 1.
For the cases in panels E-III and F-III with θ = 1 the average
velocity will converge to its nonzero value at λ values beyond
those plotted here.

V. CONCLUSIONS AND DISCUSSION

We have solved the Fokker-Planck equation for a particle
in a one-dimensional tilted ratchet potential under tempered
stable Lévy noise and have observed both phenomena of
current stabilization and reversal, particularly in regimes where
deterministic or Gaussian considerations would show quite
different behavior.

The essence of the mechanism is the interplay between
probability mass around the mode of the underlying noise
distributions and the heavy tails and how it shifts as α,λ

are varied. Specifically, for α > 1 the mode is typically in
the opposite direction from the tail for asymmetric noise as
discussed in Ref. [39]. This leads to a drift in a direction
corresponding to the sign of the mode, which manifests as
current reversal for the particle in the tilted ratchet. When
α < 1, due to the induced drift through the form of the noise
characteristic function, the mode and heavy tails are in the
same direction but with increased mass around the mode
and heavier tails. Thus, with tempering, both long range and
intermediate range jumps are suppressed so that the effective
drift may even drop down to zero with increased skew in
the noise. Moreover, tempering moderates current reversal
until it assumes the form of current stabilization. Thus the
particular cases of current reversal in Ref. [23] are a special
instance of a phenomenon in the presence of tilt in the
potential.

As alluded in the Introduction, for us the interest in
this phenomenon arises from our work on the Kuramoto
model or related forms. In Refs. [39] and [40] we have
observed a phenomenon of oscillators of zero native frequency
nevertheless synchronizing to a nonzero net frequency, a drift,
that shifts in sign according to the interplay of α and λ.
While general observations of the position of the mode and
the heaviness of the tail in those cases provide a heuristic
explanation of this phenomenon, we argue that the model
solved here may provide a deeper insight into this behavior.
Future applications of this idea lie in its exploitation for
stochastic control of synchronization phenomena.
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