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The double-tetrahedral chain in a longitudinal magnetic field, whose nodal lattice sites occupied by the localized
Ising spins regularly alternate with triangular plaquettes with the dynamics described by the Hubbard model, is
rigorously investigated. It is demonstrated that the uniform change of electron concentration controlled by the
chemical potential in a combination with the competition between model parameters and the external magnetic
field leads to the formation of one chiral and seven nonchiral phases at the absolute zero temperature. Rational
plateaux at one-third and one-half of the saturation magnetization can also be identified in the low-temperature
magnetization curves. On the other hand, the gradual electron doping results in 11 different ground-state regions
that distinguish from each other by the evolution of the electron distribution during this process. Several doping-
dependent magnetization plateaux are observed in the magnetization process as a result of the continuous change
of electron content in the model.
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I. INTRODUCTION

Magnetization process in one-dimensional (1D) strongly
correlated electron systems and quantum spin systems belongs
to hot topics of modern condensed matter physics, both
from the theoretical and experimental point of view [1–3].
In particular, the phenomenon of magnetization plateaux in
low-temperature magnetization curves is currently a subject
of intensive research, because it often reflects an existence of
quantum ground states with an intriguing spin arrangement.
Many theoretical studies of 1D systems, including various
chains [4–19], ladders [20–26], and/or other related models
[27,28], indicate a presence of the magnetization plateaux at
certain rational fractions of the saturation magnetization. The
occurrence of these plateaux is subject to a validity of the
quantized condition known as Oshikawa-Yamanaka-Affleck
(OYA) rule [29],

p(msat − m) = integer, (1)

where p is the period of the ground state, while msat and
m are, respectively, the saturation and total magnetization
per elementary unit of the ground state. It should be noted
that the criterion (1) is a necessary but not a sufficient
condition for the rational magnetization plateau formation.
Experimentally, rational values of the saturation magnetiza-
tion can be observed in numerous insulating materials, such
as the azurite Cu3(CO3)2(OH)2 [30–32], Cu(3-Clpy)2(N3)2

[33,34], Cu3(P2O6OM)2 (M=H, P) [35,36], NH4CuCl3 [37],
Cu3Cl6(H2O)2 · 2H8C4SO2 [38], etc.

In context of the magnetization process of 1D systems,
magnetization curves with plateaux at nontrivial irrational
values can also be found both experimentally [39,41] and
theoretically [42–51]. It was confirmed that this striking
phenomenon is not in conflict with the OYA criterion (1) and
may be a direct result of different Landé g factors of magnetic
particles [39–43], quenched disorder [44–46], or doping by
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itinerant particles [47–51]. In the last case, a change of the
particle concentration may allow one to tune the value and
position of the magnetization plateau in a controlled way. Of
particular interest is the mechanism leading to a continuous
variation of the magnetization plateau with the particle filling.
A valuable feature of this mechanism is that the controlled
doping allows one to move the doping-dependent plateaux to
lower magnetic fields [47–50]. This makes the aforementioned
mechanism very attractive for experiments.

In the present work, we will examine ground-state prop-
erties and the low-temperature magnetization process of a
coupled spin-electron double-tetrahedral chain, in which nodal
lattice sites occupied by the localized Ising spins of the mag-
nitude σ = 1/2 regularly alternate with triangular plaquettes
available for mobile electrons. The magnetic structure of
this 1D lattice is experimentally realized in the copper-based
polymeric chain Cu3Mo2O9 [52–55]. As has been shown in
our recent works [56–59], the mixed spin-electron system
with the lattice topology of the double-tetrahedral chain rep-
resents an excellent prototype model, which allows the exact
investigation of many interesting physical phenomena such
as quantum nonchiral and/or uncommon chiral ground states,
the rational magnetization plateau, the abnormally narrow and
high low-temperature peak of the specific heat, and very abrupt
(almost discontinuous) thermal variations of the entropy and
sublattice magnetization caused by a difference in ground-state
degeneracies, as well as the enhanced magnetocaloric effect.
The main purpose of this paper is to explore in detail an
effect of the uniform and gradual electron doping on the
ground-state properties of the model and the plateau creation
in the magnetization process to provide a deeper insight into
doping-dependent magnetization plateaux.

The paper is organized as follows. In Sec. II we present
the magnetic structure of the model and briefly mention the
computational idea that leads to the rigorous solution of
this model. Sections III and IV present numerical results for
the ground state and low-temperature magnetization process
during the uniform and gradual electron doping, respectively.
Section V contains a summary of the most interesting results
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FIG. 1. A part of the spin-electron double-tetrahedral chain. Full
circles denote nodal sites occupied by the localized Ising spins σ =
1/2 and empty circles forming triangular clusters are available to
mobile electrons.

and the conclusion. The paper ends with three appendices,
which include the complete set of electron basis states of the
orthogonal Hilbert subspaces corresponding to all possible
numbers of mobile electrons in the triangular plaquette and
energy eigenvalues of one double-tetrahedron (Appendix A),
the state vectors corresponding to the kth triangular plaquette,
which are parts of the eigenvectors of ground-state phases
appearing during the uniform electron doping (Appendix B),
and the list of analytical expressions for first-order phase
transitions between these ground states (Appendix C).

II. SPIN-ELECTRON DOUBLE-TETRAHEDRAL CHAIN

We consider a magnetic system with a lattice topology of the
double-tetrahedral chain, in which nodal lattice sites occupied
by the localized Ising spins regularly alternate with triangular
plaquettes consisting of three equivalent lattice sites available
for mobile electrons (see Fig. 1). Assuming N nodal sites, the
total Hamiltonian of this spin-electron model can be expressed
as a sum of N cluster Hamiltonians Ĥk:

Ĥ =
N∑

k=1

Ĥk, (2)

Ĥk = −t
∑

γ∈{↑,↓}

3∑
j=1

(ĉ†kj,γ ĉk(j+1)mod3,γ + H.c.)

+ J

2

(
σ z

k + σ z
k+1

) 3∑
j=1

(n̂kj,↑ − n̂kj,↓) + U

3∑
j=1

n̂kj,↑n̂kj,↓

−μ

3∑
j=1

(n̂kj,↑ + n̂kj,↓) − He

2

3∑
j=1

(n̂kj,↑ − n̂kj,↓)

− HI

2

(
σ z

k + σ z
k+1

)
. (3)

Each cluster Hamintonian (3), contains all the interaction
terms connected to one triangular plaquette and its two
surrounding nodal lattice sites. Parameters ĉ

†
kj,γ , ĉkj,γ represent

usual fermionic creation and annihilation operators for mobile
electrons with the spin γ ∈ {↑,↓} that occupy the j th site
of the triangular plaquette in kth position, n̂kj,γ = ĉ

†
kj,γ ĉkj,γ

denotes the respective number operator and σ z
k = ±1/2 labels

the Ising spin placed at the kth nodal site. The hopping
parameter t > 0 takes into account the kinetic energy of
mobile electrons in triangular plaquettes, J stands for the

Ising-type coupling between electrons and their nearest Ising
neighbors, U > 0 represents the on-site Coulomb repulsion
between two electrons at the same plaquette site and μ is
the chemical potential, which allows one to tune the electron
content in the studied system. The last two terms in Eq. (3)
represent the Zeeman’s energies of mobile electrons and the
Ising spins in a presence of the magnetic fields He and
HI , respectively. Finally, we have introduced the modulo 3
operation into the first term of cluster Hamiltonian (3) to ensure
the periodic boundary condition ĉ

†
k4,γ = ĉ

†
k1,γ (ĉk4,γ = ĉk1,γ )

for the three-site electron subsystem.
The cluster Hamiltonian (3) can be alternatively written

in terms of the operators n̂k = ∑3
j=1(n̂kj,↑ + n̂kj,↓) and Ŝz

k =∑3
j=1(n̂kj,↑ − n̂kj,↓)/2. The former operator determines the

total number nk of mobile electrons in the triangular plaquette
of kth double-tetrahedron, while the latter one specifies the
total spin Sz

k of this plaquette in the zth direction. It is worth
noting that the Hamiltonian (3) can be written as 64 × 64
matrix, if one considers a variable number of electrons from
zero up to six in the triangular plaquette. This matrix has
the block-diagonal form with regard to a validity of the
commutation relations [Ĥk,n̂k] = 0, [Ĥk,Ŝ

z
k ] = 0. Individual

matrix blocks of Eq. (3) correspond to the orthogonal Hilbert
subspaces with different but fixed number of electrons nk and
distinct values of the total spin Sz

k . The eigenvalues of these
blocks can be analytically found by applying the so-called
basis of wavelets [60,61] on the orbits O|f ini

kj 〉 of individual
Hilbert subspaces as the aftermath of the cyclic translational
symmetry of triangular plaquettes (see Appendix A). It should
be mentioned that each orbit O|f ini

kj 〉 is well defined by the initial
electron configuration∣∣f ini

kj

〉 = ĉ
†
kj,γj

ĉ
†
kp,γp

. . . ĉ
†
kq,γq︸ ︷︷ ︸

nk

|0〉

(j,p, . . . ,q ∈ {1,2,3}, γj ,γp, . . . ,γq ∈ {↑,↓}, |0〉 labels the
vacuum state) and consists of electron configuration(s)
satisfying

c3

∣∣f ini
kj

〉 = ĉ
†
k(j+1)mod3,γj

ĉ
†
k(p+1)mod3,γp

. . . ĉ
†
k(q+1)mod3,γq

|0〉,
c2

3

∣∣f ini
kj

〉 = c3
(
c3

∣∣f ini
kj

〉)
= ĉ

†
k(j+2)mod3,γj

ĉ
†
k(p+2)mod3,γp

. . . ĉ
†
k(q+2)mod3,γq

|0〉.
In the above, c3 is an element of the cyclic translation
group C3.

A complete set of eigenvalues of the cluster Hamiltonian (3)
can be employed for a calculation of the grand free energy �

per elementary unit:

� = −kBT lim
N→∞

1

N
ln

⎛⎝∑
{σk}

Tr e−βĤ

⎞⎠
= −kBT lim

N→∞
1

N
ln

⎛⎝∑
{σk}

N∏
k=1

Trk e−βĤk

⎞⎠
= −kBT lim

N→∞
1

N
ln

⎛⎝∑
{σk}

N∏
k=1

64∑
l=1

e−βEkl

⎞⎠. (4)
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In the above, β = 1/(kBT ) represents the inverse temperature
(kB is Boltzmann’s constant and T is the absolute temperature),∑

{σk} denotes a summation over all possible states of the
localized Ising spins, and Tr labels for a trace over the
degrees of freedom of all mobile electrons in the system.
The trace Tr can be factorized into a product of N traces
Trk running over degrees of freedom of electrons from the
kth plaquette due to a validity of the commutation relation
between different cluster Hamiltonians [Ĥk,Ĥk′] = 0. It is
worthy to note that the grand free energy � is valuable for
investigating all physical quantities, which may be helpful
in understanding the magnetic behavior of the considered
model. A rigorous expression for � may be obtained by
two independent analytical methods. The first method is the
standard transfer-matrix technique [62–64], while the second
one lies in a combination of the generalized decoration-
iteration mapping transformation [65–67] with the known
analytical formula for the partition function of the spin-1/2
Ising chain in the longitudinal field [62–64]. The reader can
find computational details of both methods in our recent works
[56,57,59], which deal with some particular variants of the
model with the conserved electron concentration.

III. UNIFORM ELECTRON DOPING

In this section, we will discuss the ground-state arrangement
and low-temperature magnetization process during an electron
doping, which results in the same electron content in triangular
plaquettes. Due to some fundamental differences between
magnetic properties of models with distinct nature (sign) of
the spin-electron couplings [56–59], our attention will be
restricted to the particular case of the ferromagnetic interaction
J < 0 hereafter. The same magnetic fields acting on the Ising
spins and mobile electrons H = HI = He will also be assumed
to reduce the total number of free parameters.

A. Ground state

To find all possible spin-electron arrangements at the zero
temperature, a comprehensive analysis of all eigenvalues Ekl

listed in Appendix A has to be performed by considering four
available spin combinations of the Ising pair σk , σk+1. The
gained lowest-energy eigenstates can be then extended to the
whole model due to the commuting character of the cluster
Hamiltonian (3). In this manner, eight different phases can
be observed at T = 0 as a result of the mutual competition
between model parameters and the external magnetic field.
The spin-electron arrangements peculiar to these phases are
unambiguously determined by the following eigenvectors and
energies:

|Sa〉 =
{∏N

k=1 |(↓)↑〉σk
⊗ ∣∣nk = a,Sz

k = 0
〉
, H = 0∏N

k=1 |↑〉σk
⊗ ∣∣nk = a,Sz

k = 0
〉
, H > 0

,

Ea = −NH

2
− Na

16
[16μ − (a + 2)U − 2(a − 6)t

− (a − 6)
√

(U + 2t)2 + 32t2], a = {0,2,4,6}; (5)

|Sb〉 =
{∏N

k=1|↓〉σk
⊗ ∣∣nk = b,Sz

k = − 1
2

〉
, H = 0∏N

k=1 |↑〉σk
⊗ ∣∣nk = b,Sz

k = 1
2

〉
, H � 0

,

Eb = NJ

2
− NH − N

2
[2bμ− (b − 1)U + 4t], b = {1,5};

(6)

|S3〉 =
{∏N

k=1|↓〉σk
⊗ ∣∣nk = 3,Sz

k = − 3
2

〉
, H = 0∏N

k=1 |↑〉σk
⊗ ∣∣nk = 3,Sz

k = 3
2

〉
, H � 0

,

E3 = N

2
(3J − 4H − 6μ);

|̃S3〉 =
{∏N

k=1|↓〉σk
⊗ ∣∣nk = 3,Sz

k = − 1
2

〉
L,R

, H = 0∏N
k=1 |↑〉σk

⊗ ∣∣nk = 3,Sz
k = 1

2

〉
L,R

, H � 0
,

(7)

Ẽ3 = NJ

2
− NH − N

3
[9μ− 2U + 6

√
U 2 + 27t2 cos(φU, t )].

(8)

In the above, the subscripts a, b and 3 specify a total number
(concentration) of electrons in the kth triangular plaquette
and φU, t = 1

3 arctan ( 9t
U 3

√
U 4 + 27U 2t2 + 243t4). The prod-

uct
∏N

k=1 runs over elementary clusters, the state vector |↑〉σk

(|↓〉σk
) determines the spin state σ z

k = 1/2 (−1/2) of the Ising
spin located at the kth nodal site, while |nk,S

z
k〉 and |nk,S

z
k〉L,R

refer, respectively, to the nonchiral and chiral eigenstates of nk

electrons with the total spin Sz
k in the kth plaquette. Analytical

expressions of the state vectors |nk,S
z
k〉, |nk,S

z
k〉L,R are too

cumbersome for some electron concentrations, therefore the
reader finds them in Appendix B.

It can be easily deduced from Eqs. (5)–(8) that an
arrangement of the Ising spins depends on a presence/absence
of the magnetic field and the total spin of triangular plaquettes.
To be specific, the phases Sa , where triangular plaquettes
have the zero total spin, because they are either empty,
fully filled, or partly occupied by two or four electrons in
a quantum superposition of several intrinsic antiferromagnetic
and nonmagnetic states, exhibit a kinetically driven frustration
of the Ising spins at H = 0. An arbitrary nonzero field cancels
this macroscopic degeneracy, because it forces the Ising spins
to align into its direction. On the other hand, all the Ising
spins may occupy either the spin state σ z

k = −1/2 or 1/2 if
the phases Sb, S3, and S̃3 occur in the zero-field ground state.
Mobile electrons in triangular plaquettes also choose between
two possible quantum states with the total spins Sz

k = −1/2
and 1/2 (in Sb and S̃3) or between two classical ferromagnetic
states corresponding to the total spins Sz

k = −3/2 and 3/2
(in S3) to preserve the spontaneous ferromagnetic ordering
with the Ising neighbors. Any nonzero magnetic field lifts
this twofold degeneracy of the phases Sb, S3, S̃3. Moreover,
one can also find a peculiar field-independent macroscopic
degeneracy if the phase S̃3 constitutes the ground state. This
degeneracy relates to two possible chiral degrees of freedom
(Left- and Right-hand) of mobile electrons in each triangular
plaquette. It should be said that four of the eight observed
phases have already been identified in some particular variants
of the model with the conserved electron content in triangular
plaquettes. Namely, the phase S1 represents the ground state
of the model with the one-sixth filling of plaquettes [56], S2 is
one of two possible phases constituting the zero-temperature

052110-3



LUCIA GÁLISOVÁ PHYSICAL REVIEW E 96, 052110 (2017)

FIG. 2. Ground-state phase diagrams of the model (2) in the μ-H plane for the fixed Coulomb term U/|J | = 3 and four representative
values of the kinetic parameter (a) t/|J | = 0.4, (b) t/|J | = 0.7, (c) t/|J | = 0.9, (d) t/|J | = 1.3.

phase diagram of the model with the one-third electron filling
[58] and the phases S3, S̃3 have already been detected in the
ground state of the model with half-filled plaquettes [59].

To illustrate stability regions of the ground states given by
Eqs. (5)–(8), several zero-temperature diagrams are depicted
in Fig. 2 for the fixed Coulomb term U/|J | = 3 and a
few representative values of the hopping parameter t/|J |.
Obviously, four different ground-state topologies are possible
in the μ-H plane. If the hopping parameter is smaller than the
boundary value,

tb1 = − U

18
+ 1

18

√
(U − 6J )2 − 24UJ, (9)

then the μ-H plane is divided into five regions corresponding
to five different phases [see Fig. 2(a)]: S0 and S6, where the
system is broken up into a set of N noninteracting Ising spins
due to zero effective interactions mediated by either empty
(in S0) or fully-filled nonmagnetic (in S6) plaquettes; S3, in
which each plaquette site is occupied by a single electron due
to its polarization into the magnetic-field direction; and S1,
S5, which are characterized by a single and five electrons per
plaquette, respectively. We note that the phases S0, S1 represent
mirror images of the phases S6, S5 on account of the fact that
empty plaquette sites can be replaced by doubly occupied
ones. If the reverse condition t > tb1 is satisfied, other two
novel phases S2, S4 can be observed in the ground state [see
Figs. 2(b)–2(d)]. Both these phases are characterized by the
zero total spin of triangular plaquettes, since mobile electrons
underlie a quantum superposition of six antifferomagnetic and

three nonmagnetic states [see the state vectors (B5) and (B12)
in Appendix B]. If the hopping parameter is higher than the
other boundary value tb2 > tb1, which is determined by the
condition

3J − 2U + 2
√

U 2 + 27t2
b2 cos

(
φU, tb2

) = 0, (10)

then the macroscopically degenerate chiral phase S̃3 can
be identified between S2 and S4. The phases S2, S4 grad-
ually enlarge, while S̃3 is shifted toward higher mag-
netic fields with the increasing t . As a result, a ver-
tical boundary arises between the phases S2, S4 at the
magnetic fields H � J − 2U

3 + 2t +
√

(U + 2t)2 + 32t2 −
4
3

√
U 2 + 27t2 cos(φU, t ). The phase transition S2–S4 can be

observed only for hopping parameters that are higher than the
boundary value tb3 > tb2 given by equation

3J − 2U + 6tb3 + 3
√

(U + 2tb3)2 + 32t2
b3

− 4
√

U 2 + 27t2
b3 cos

(
φU, tb3

) = 0, (11)

as illustrated in Fig. 2(d).
It is worth mentioning that all observed ground-state

boundaries are discontinuous (first-order) phase transitions,
where two neighboring phases coexist together. Their an-
alytical expressions can be derived by comparing energies
of these phases (see Appendix C). The exceptions are the
phase transitions S1–S3 and S3–S5, which are depicted by
dashed lines in Fig. 2. At each point of these particular
boundaries, spin-electron configurations of the elementary

052110-4



MAGNETIZATION PLATEAU AS A RESULT OF THE . . . PHYSICAL REVIEW E 96, 052110 (2017)

FIG. 3. The electron density ρe per triangular plaquette as a
function of the chemical potential μ and the magnetic field H for
the Coulomb term U/|J | = 3 and the hopping parameter t/|J | = 0.9
at the temperature kBT/|J | = 0.015.

clusters corresponding to the adjacent phases S1, S3 (S3, S5)
are in thermodynamic equilibrium with the third configuration
S̃2k (̃S4k) given by the following eigenvector and ground-state
energy:

|̃Sc〉k =
{

|↓〉σk
⊗ ∣∣nk = c,Sz

k = −1
〉
L,R

, H = 0

|↑〉σk
⊗ ∣∣nk = c,Sz

k = 1
〉
L,R

, H � 0
,

Ẽck = −J − 3H

2
− cμ − t, c = {2,4}. (12)

Similarly as S̃3, not yet observed configurations (12) are
macroscopically degenerate due to the chiral degrees of
freedom of mobile electrons [see Eqs. (B4), (B6), (B11), (B13)
in Appendix B].

For completeness, we should remark that other variants
of the ground-state phase diagrams could also be discussed.
However, all possible spin-electron arrangements resulting
from the mutual competition between the parameters J,t,U,μ,
H have already been presented in Fig. 2, therefore we omit
them in this paper.

B. Electron density

The electron content in triangular plaquettes observed
within individual ground-state phases can be independently
verified by the electron density per triangular plaquette ρe =
〈n̂k〉gcn. at low enough temperatures. This physical quantity
can be obtained by using the relation:

ρe = −
(

∂�

∂μ

)
T

. (13)

Typical three-dimensional (3D) plot of the electron density
per triangular plaquette against the chemical potential μ and
the magnetic field H is presented in Fig. 3. To compare the
displayed results with the ground-state analysis in Sec. III A,
the reduced parameters U/|J | and t/|J | are fixed to the same

values as in Fig. 2(c). The temperature takes the lowest possible
value for numerical calculations kBT/|J | = 0.015. It is clear
from Fig. 3 that the displayed electron density exhibits in
total seven different plateaux at ρe = 0, 1, 2, 3, 4, 5, and 6.
Referring to the phase diagrams in Fig. 2(c) one can conclude
that the observed zero and integer plateaux reflect the electron
content per plaquette in the ground-state phases S0, S1, S2,
S3, S̃3, S4, S5, and S6, respectively. Steep continuous steps
between different plateaux quite accurately reproduce real
discontinuous jumps, which exist at relevant first-order phase
transitions at the absolute zero temperature. In accordance with
common expectations, the rising temperature smoothes the
observed stepwise behavior of ρe until the plateaux completely
disappear.

C. Magnetization process

To investigate the magnetization process of the spin-
electron double-tetrahedral chain, it is useful to introduce the
single-site magnetization corresponding to the localized Ising
spins mI = 〈σ z

k 〉gcn. and the magnetization of mobile electrons
per triangular plaquette me = 〈Ŝz

k〉gcn.. Both the magnetization
can be obtained as derivatives of the grand free energy (4) with
respect to the particular magnetic fields:

mI = −
(

∂�

∂HI

)
T

, me = −
(

∂�

∂He

)
T

. (14)

In view of this notation, the total magnetization per elementary
cluster m can be defined as a sum of both magnetizations:

m = mI + me. (15)

It is worth noting that the value of Eq. (15) depends on the spin
states of magnetic particles forming the elementary cluster
as well as the electron density per triangular plaquette. As
a consequence, the saturation magnetization per elementary
cluster msat can be expressed as follows:

msat =

⎧⎪⎨⎪⎩
1 + ρe

2
for 0 � ρe � 3,

7 − ρe

2
for 3 < ρe � 6.

(16)

Figure 4 presents 3D views of the magnetization process for
the fixed Coulomb term U/|J | = 3 and three representative
values of the hopping parameter t/|J | = 0.7,0.9,1.3 at the
temperature kBT/|J | = 0.015. Obviously, besides a direct
steep increase from the zero to saturation value in the zero-
field limit, 3D magnetization curves may include one or
two fractional plateaux at the one-third and one-half of the
saturation magnetization before reaching the saturation value.
Referring to Fig. 2 one can conclude that the region where the
total magnetization reaches the saturation value corresponds
to the phases S0, S1, S3, S5, and S6. On the other hand, the
one-third plateau reflects the presence of the phases S2 and
S4, while the one-half plateau corresponds to the chiral phase
S̃3. The analytical expressions of individual plateaux depend
on the total spin Sz

k and the electron density ρe of triangular
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FIG. 4. 3D views of the magnetization process for the Coulomb
term U/|J | = 3 and the hopping parameters (a) t/|J | = 0.7,
(b) t/|J | = 0.9, (c) t/|J | = 1.3 at the temperature kBT/|J | = 0.015.

plaquettes:

m

msat
=

⎧⎪⎪⎨⎪⎪⎩
1 + 2Sz

k

1 + ρe

for ρe = 2 and 3,

1 + 2Sz
k

7 − ρe

for ρe = 4.

(17)

For completeness, we note that rational magnetization plateaux
and steep steps displayed in Fig. 3 are not real due to the finite
temperature, but they very precisely reproduce real plateaux
and discontinuous jumps appearing in the zero-temperature
magnetization curves.

IV. GRADUAL ELECTRON DOPING

In this section, we will examine ground-state properties and
the low-temperature magnetization process upon a gradual
(continuous) electron doping. The electron density in the
model is continuously increasing from the zero up to the
maximum value 6N during this mechanism. Therefore, it is
necessary to pass from the grand canonical ensemble, in which
the electron density and other physical quantities are controlled
by varying the chemical potential, into the canonical one with
the inverse dependence. In the context of thermodynamics, the
inversion ρe(μ) → μ(ρe) can be performed via the Legendre
transformation [68]:

G(ρe, . . .) = �[μ(ρe), . . .] + μ(ρe)ρe. (18)

Obviously, the above relation connects the Gibbs free energy G

with the grand free energy � that are functions of the conjugate
variables ρe and μ, respectively. The analytical expression
for the Gibbs free energy (18) can be further utilized for a
calculation of the sublattice magnetization mI = 〈σ z

k 〉cn. and
me = 〈Ŝz

k〉cn.:

mI = −
(

∂G

∂HI

)
T

, me = −
(

∂G

∂He

)
T

, (19)

as well as some fundamental correlation functions:

Be =
〈 ∑

γ∈{↑,↓}

3∑
j=1

(ĉ†kj,γ ĉk(j+1)mod3,γ + H.c.)

〉
cn.

= −
(

∂G

∂t

)
T

, (20)

CIe = 〈
σ z

k Ŝz
k

〉
cn.

= 1

2

(
∂G

∂J

)
T

, (21)

De =
〈

3∑
j=1

n̂kj,↑n̂kj,↓

〉
cn.

=
(

∂G

∂U

)
T

. (22)

The function Be has no physical meaning, while CIe describes
the correlation between electrons in the triangular plaquette
and their nearest Ising neighbor and De reflects a double
occupancy of plaquette sites.

It should be stressed that the sublattice magnetization (19)
and the correlation function (20)–(22) allow one to reliably de-
scribe an evolution of the possible ground-state configurations
and the magnetization process upon continuous change of the
electron content in the whole parameter space of the model (2).
In spite of this generality, we restrict our following analysis in
the same manner as in Sec. III, i.e., to the ferromagnetic Ising
interaction J < 0, the uniform magnetic field H = HI = He,
and the fixed Coulomb term U/|J | = 3.
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A. Ground state

In the limit of zero temperature one may expect several
regions with varying the particle density upon the continuous
electron doping due to a competition between model param-
eters and the external magnetic field. To characterize these
regions, we have solved numerically the set of Eqs. (19)–(22)
and examined the trends of each quantity depending on J , t ,
U , H , and ρe.

At the zero magnetic field, the Ising spins located at
nodal lattice sites are either frustrated or may occupy one
of two possible spin states, σk = −1/2 or 1/2, depending
on whether the total spin of the neighboring triangular
plaquette is zero or not, respectively. As a result, the sublattice
magnetization mi is zero in the whole zero-field space. The
sublattice magnetization me and the correlation function CIe

are also zero. On the other hand, for any H > 0, the Ising
spins are polarized into the field direction and the sublattice
magnetization corresponding to these particles reaches the
saturation value mi = 1/2. Other quantities me, Be, CIe, De are
functions of the electron density ρe. A careful analysis reveals
that the zero-temperature parameter plane ρe-H contains in
total 11 different regions:

(i) Region R0→1 (for 0 < ρe < 1):

me = ρe

2
, CIe = ρe

4
,

Be = 2ρe, De = 0. (23)

In this region, the sublattice magnetization me, the correlation
functions CIe, and the quantity Be start from zero and
linearly increase with ρe, because empty sites of individual
nonmagnetic plaquettes are gradually occupied by single
electrons with spins polarized into the magnetic-field direction.
This particle distribution is confirmed by the zero value of the
double occupancy De.

(ii) Region R1→2̃→3 (for 1 < ρe < 3):

me = ρe

2
, CIe = ρe

4
,

Be = 3 − ρe, De = 0. (24)

In this region, mobile electrons with spins oriented in the
field direction continue in the occupation of empty plaquette
sites. As a consequence, me, CIe have the same analytical
expressions as in R0→1. The double occupancy De also remains
zero, while Be linearly decreases with the increasing ρe. The
electron distribution upon doping process is as follows: For
1 < ρe < 2, the number of triangular plaquettes occupied
by two electrons increases at the expense of those that are
occupied by a single particle. Referring to the ground-state
analysis in Sec. III, it can be concluded that emerging
one-third-filled plaquettes exhibit the nonzero chirality. If
2 < ρe < 3, then the number of chiral plaquettes decreases
and the half-filled plaquettes with all particles polarized into
the magnetic-field direction are created with the increasing ρe.

(iii) Region R3→4̃→5 (for 3 < ρe < 5):

me = 3 − ρe

2
, CIe = 3

2
− ρe

4
,

Be = ρe − 3, De = ρe − 3. (25)

The distribution of mobile electrons within this region upon
doping process is as follows: Because there is no empty
plaquette site, triangular plaquettes with two singly occupied
and one doubly occupied sites are occurred for 3 < ρe < 4.
According to the ground-state analysis in Sec. III, created
plaquettes have the nonzero chirality. For 4 < ρe < 5, the
electrons continue in double occupation of plaquette sites
upon doping. This leads to the creation of nonchiral plaquettes
with one singly occupied and two doubly occupied sites at the
expense of chiral ones. As a result, De linearly increases, while
me and CIe decrease with the increasing ρe. The quantity Be

has the same analytical expression as De.
(iv) Region R5→6 (for 5 < ρe < 6):

me = 3 − ρe

2
, CIe = 3

2
− ρe

4
,

Be = 12 − 2ρe, De = ρe − 3. (26)

This region appears only for sufficiently great electron densi-
ties. The electrons continue in occupation of singly occupied
plaquette sites. As a consequence, the fully filled plaquettes
emerge upon electron doping. The quantities me, CIe, De

have the same analytical expressions as in R3→4̃→5, while
Be linearly decreases upon increasing ρe.

(v) Region R1→2 (for 1 < ρe < 2):

me = 1 − ρe

2
, CIe = 1

2
− ρe

4
,

Be = 2 −
[

1 − U + 18t√
(U + 2t)2 + 32t2

]
(ρe − 1), (27)

De =
[

1

2
− U + 2t

2
√

(U + 2t)2 + 32t2

]
(ρe − 1).

In this region, an interplay between the parameters U , t

favors the electron distribution with opposite spins. As a
result, the plaquettes occupied by electron pairs in a quantum
superposition of six intrinsic antiferromagnetic and three
nonmagnetic states are formed upon doping process. At the
same time, one-sixth-filled plaquettes with the total spin Sz

k =
1/2 disappear. Since the total spin of the created plaquettes
is zero, the magnetization me and the correlation function
Cie linearly decrease upon doping process. The other two
quantities Be, De linearly increase with ρe, but their analytical
expressions are more complex, since their values depend on U

and t .
(vi) Region R2→3 (for 2 < ρe < 3):

me = 3ρe

2
− 3, CIe = 3ρe

4
− 3

2
,

Be =
[

1 + U + 18t√
(U + 2t)2 + 32t2

]
(3 − ρe), (28)

De =
[

1

2
− U + 2t

2
√

(U + 2t)2 + 32t2

]
(3 − ρe).

This region is a continuation of R1→2 when the electron density
exceeds the value ρe = 2. The magnetization me and the
correlation function Cie linearly increase up to their maximum
values me = 3/2 and Cie = 3/4, while Be and De decrease
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to the zero with the increasing ρe. It can be thus concluded
that all the particles in triangular plaquettes prefer the seating
at different sites, since they are fully polarized into the field
direction. The intrinsic antiferromagnetic and nonmagnetic
states disappear.

(vii) Region R3→4 (for 3 < ρe < 4):

me = 6 − 3ρe

2
, CIe = 3 − 3ρe

4
,

Be =
[

1 + U + 18t√
(U + 2t)2 + 32t2

]
(ρe − 3),

De =
[

3

2
− U + 2t

2
√

(U + 2t)2 + 32t2

]
(ρe − 3). (29)

In this region, there is no empty plaquette site in the system,
therefore two-thirds-filled plaquettes involving doubly occu-
pied sites start to appear upon electron doping. However, the
minimization of the energy requires a quantum superposition
of the intrinsic antiferromagnetic and/or nonmagnetic states
of mobile electrons. The total spin of emerging plaquettes is
thus zero. This scenario is well described by the decreasing
magnetization me and correlation function CIe. The double
occupancy De and the quantity Be are increasing functions of
ρe.

(viii) Region R4→5 (for 4 < ρe < 5):

me = ρe

2
− 2, CIe = ρe

4
− 1,

Be = 2 −
[

1 − U + 18t√
(U + 2t)2 + 32t2

]
(5 − ρe), (30)

De = 2 −
[

1

2
+ U + 2t

2
√

(U + 2t)2 + 32t2

]
(5 − ρe).

In this region, the interplay between the parameters U , t and
the external field H favors the formation of plaquettes with the
total spin Sz

k = 1/2, in which one lattice site is occupied by a
single electron polarized into the field direction, while other
ones are occupied by electron pairs with opposite spins. At the
same time, the number of plaquettes with the total spin Sz

k =
0 is gradually diminished. The evolution of afore-described
particle distribution is confirmed by the linear increase of me,
CIe, and also De. The value of the quantity Be decreases upon
the electron doping.

(ix) Region R2→3̃ (for 2 < ρe < 3):

me = ρe

2
− 1, CIe = ρe

4
− 1

2
,

Be =
[

1 + U + 18t√
(U + 2t)2 + 32t2

]
(3 − ρe)

+ 18t√
U 2 + 27t2

cos(φU, t )(ρe − 2)

− 2
√

U 2 + 27t2

3

∂φU, t

∂t
sin(φU, t )(ρe − 2),

De = 2

3
+
[

1

6
+ U + 2t

2
√

(U + 2t)2 + 32t2

]
(ρe − 3)

− 2U

3
√

U 2 + 27t2
cos(φU, t )(ρe − 2)

+ 2
√

U 2 + 27t2

3

∂φU, t

∂U
sin(φU, t )(ρe − 2). (31)

In this region, the electron doping results in a formation of
chiral half-filled plaquettes with the total spin Sz

k = 1/2 at
the expense of nonchiral ones with Sz

k = 0. The number of
electrons with spins oriented in the magnetic-field direction
and doubly occupied plaquette sites disappear during this
process. The creation of chiral plaquettes leads to the increase
of me, Cie, and De. By contrast, the value of Be decreases if
the electron density continuously increases.

(x) Region R3̃→4 (for 3 < ρe < 4):

me = 2 − ρe

2
, CIe = 1 − ρe

4
,

Be =
[

1 + U + 18t√
(U + 2t)2 + 32t2

]
(ρe − 3)

+ 18t√
U 2 + 27t2

cos(φU, t )(4 − ρe)

− 2
√

U 2 + 27t2

3

∂φU, t

∂t
sin(φU, t )(4 − ρe),

De = 2

3
+
[

5

6
− U + 2t

2
√

(U + 2t)2 + 32t2

]
(ρe − 3)

+ 2U

3
√

U 2 + 27t2
cos(φU, t )(ρe − 4)

− 2
√

U 2 + 27t2

3

∂φU, t

∂U
sin(φU, t )(ρe − 4). (32)

The energy minimization of this region requires a formation
of nonmagnetic and intrinsic antiferromagnetic states of four
electrons per plaquette during the electron doping. As a result,
the number of nonchiral two-thirds-filled plaquettes with the
zero total spin gradually increases at the expense of chiral ones,
which are occupied by three mobile electrons. This scenario is
well confirmed by the decrease of me, CIe, Be and the increase
of De as ρe increases.

(xi) Region R2→4 (for 2 < ρe < 4):

me = 0, CIe = 0,

Be = 1 + U + 18t√
(U + 2t)2 + 32t2

, (33)

De = ρe − 1

2
− U + 2t

2
√

(U + 2t)2 + 32t2
.

This region is the only one where triangular plaquettes are
gradually doped by electron pairs and total spins of plaquettes
are conserved to the zero value. The reason is a creation of
intrinsic antiferromagnetic and nonmagnetic states of mobile
electrons during the doping process. This evolution of electron
distribution is confirmed by the zero magnetization me and the
zero correlation function Cie. The quantity Be also remains
constant upon the increasing ρe, but its value is given by the
parameters U , t . On the other hand, the quantity De linearly
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FIG. 5. Ground-state phase diagrams of the model (2) in the ρe-H parameter plane for the fixed Coulomb term U/|J | = 3 and four
representative values of the hopping parameter (a) t/|J | = 0.4, (b) t/|J | = 0.7, (c) t/|J | = 0.9, (d) t/|J | = 1.3.

increases with ρe due to the increasing number of doubly
occupied plaquette sites.

To present locations of the afore-described regions in terms
of mutual interplay between the model parameters and the
magnetic field, four zero-temperature phase diagrams in the
parameter plane ρe-H are depicted in Fig. 5. It is clear
from Fig. 5(a) that for the kinetic parameter smaller than the
value tb1 given by Eq. (9), the model passes a sequence of
the phase transitions R0→1 → R1→2̃→3 → R3→4̃→5 → R5→6

upon a continuous increase of the electron content. If the
reverse condition t > tb1 is valid, other four regions R1→2,
R2→3, R3→4, R4→5 appear in the ground state [see Figs. 5(b)–
5(d)]. The existence of these regions is limited to the electron
densities 1 < ρe < 5 and the magnetic fields H < J − U

2 +
1
2

√
(U + 2t)2 + 32t2. The last three regions R2→3̃, R3̃→4,

and R2→4 can be found exclusively in the density range
2 < ρe < 4. The first two regions are present in the ρe-H
plane at the fields H < J − 2U

3 + 2
3

√
U 2 + 27t2 cos(φU, t ) if

the hopping parameter is higher than the boundary value tb2

given by Eq. (10), while the third one occurs only for the
hopping terms t > tb3 [Eq. (11)] in the field region H < J +
2t − 2U

3 +
√

(U + 2t)2 + 32t2 − 4
3

√
U 2 + 27t2 cos(φU, t ), as

displayed in Figs. 5(c) and 5(d).

B. Chemical potential

To complete the zero-temperature analysis, we report in
this section the results obtained for the chemical potential.
This quantity can be obtained either by means of the bisection

method from Eq. (13) or by using the relation

μ =
(

∂G

∂ρe

)
T

. (34)

The possibility of using two different ways to determine the
chemical potential lies in the fact that μ and ρe are conjugate
variables. Typical behavior of the chemical potential as a func-
tion of the electron density ρe and the magnetic field H is pre-
sented in Fig. 6. To contain all ground-state regions discussed
in the previous subsection, the Coulomb term and hopping
parameter are fixed to the same values as in Fig. 5(d). The tem-
perature takes the lowest possible value for numerical calcula-
tions kBT/|J | = 0.015. It is clear from Fig. 6 that the chemical
potential corresponding to individual ground-state regions has
a linear dependence on H , but it remains constant during the
ρe change. The only exception is the region R2→4, where the
chemical potential does not change even when changing the
field, nor changing the electron concentration in the model.
Steep but continuous steps in the 3D plot in Fig. 6 clearly
reproduce real discontinuous jumps in μ(ρe) curves, which
exist between neighboring regions at the zero temperature.

C. Magnetization process

As discussed in recent works [47–51], a gradual change of
the particle content in the model may lead to a formation of
irrational plateaux in magnetization curves. To illustrate the
existence of these plateaux in the magnetization process of the
studied spin-electron chain (2), Fig. 7 shows three different 3D
views of the low-temperature total magnetization normalized
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FIG. 6. The chemical potential μ as a function of the electron
density ρe and the magnetic field H for the Coulomb term U/|J | = 3,
the kinetic parameter t/|J | = 1.3, and the temperature kBT/|J | =
0.015.

to its saturation value in the ρe-H plane. It is noteworthy
that results for the aforementioned magnetization has been
realized by using the previously established relation (15) in a
combination with Eqs. (19). The reduced parameters U/|J |,
t/|J | take the same values as in Figs. 5(b)–5(d). Apart from
a direct steep increase from the zero to saturation value in the
zero-field limit, the displayed surfaces of the ratio m/msat may
include in total seven doping-dependent plateaux if t > tb1.
In particular, for relatively weak hopping terms tb1 < t <

tb2, four single plateaux can be observed in magnetization
curves before reaching the saturation magnetization upon
strengthening the applied magnetic field:

m

msat
= 3 − ρe

1 + ρe

for 1 < ρe � 2, (35)

m

msat
= 3ρe − 5

1 + ρe

for 2 < ρe � 3, (36)

m

msat
= 13 − 3ρe

7 − ρe

for 3 < ρe � 4, (37)

m

msat
= ρe − 3

7 − ρe

for 4 < ρe � 5 (38)

[see Fig. 7(b)]. Referring to Figs. 5(b)–5(d), one can conclude
that the first plateau given by Eq. (35) is pertinent to the region
R1→2, the second plateau given by Eq. (36), corresponds to the
region R2→3, while the last two given by Eqs. (37) and (38), re-
flect the existence of the regions R3→4 and R4→5, respectively.
For stronger hopping terms tb2 < t < tb3, the magnetization
scenario includes two plateaux that can be continuously tuned
by electron doping according to the formulas

m

msat
= ρe − 1

1 + ρe

for 2 < ρe � 3, (39)

m

msat
= 5 − ρe

7 − ρe

for 3 < ρe � 4. (40)

The plateau given by Eq. (39) corresponds to the region R2→3̃,
while the plateau given by Eq. (40) appears in magnetization
curves when the region R3̃→4 constitutes the ground state
[compare Figs. 5(c) and 5(d) with Figs. 7(c) and 7(d)]. Last

FIG. 7. 3D views of the magnetization process for the Coulomb
term U/|J | = 3 and the hopping parameters (a) t/|J | = 0.7,
(b) t/|J | = 0.9, (c) t/|J | = 1.3 at the temperature kBT/|J | = 0.015.

but not least, an intriguing plateau given by the condition

m

msat
=

⎧⎪⎪⎨⎪⎪⎩
1

1 + ρe

for 2 < ρe � 3,

1

7 − ρe

for 3 < ρe � 4
(41)

can be observed in low-field parts of the magnetization curves
if t > tb3 [see Fig. 7(d)]. Interestingly, this plateau is the
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only one that has the nonmonotonous dependence during
doping process: for electron densities 2 < ρe < 3, the value
of the ratio m/msat gradually decreases to its minimum
m/msat = 1/4 at ρe = 3. On the other hand, the value of
m/msat increases with ρe while for 3 < ρe � 4. The observed
plateau corresponds to the ground-state region R2→4.

V. CONCLUSIONS

The present work deals with a rigorously solvable double-
tetrahedral chain, in which the Ising spins of the magnitude
σ = 1/2 localized at nodal lattice sites regularly alternate with
triangular plaquettes occupied by mobile electrons. Ground-
state properties and low-temperature magnetization process
are examined in detail by assuming a variable electron density
in the model.

It has been evidenced that the uniform change of the
electron content in all triangular plaquettes controlled by the
chemical potential μ in a combination with the competition
between model parameters and the external magnetic field
H lead to the formation of one chiral and seven nonchiral
phases in the zero-temperature μ-H parameter space. The
macroscopic ground-state degeneracy arising from chiral
degrees of freedom of mobile electrons is not suppressed
by the external field in contrast to the one that appears due
to a frustration of the localized Ising spins. Magnetization
curves involve one or two fractional plateaux at one-third
and/or one-half of the saturation magnetization, in addition

to a direct steep increase from zero to saturation value found
in the zero-field limit. On the other hand, a gradual electron
doping results in 11 distinct regions at the absolute zero
temperature. These regions can be distinguished from each
other by an evolution of the possible electron distribution in
triangular plaquettes during the doping process. It has been
demonstrated that magnetization curves include in total seven
irrational plateaux whose heights can be continuously tuned
by a gradual change of the electron content in the model.

It is well known that a steep variation of the magnetization
at low magnetic fields points to a possible applicability for
low-temperature magnetic refrigeration achieved through the
enhanced magnetocaloric effect [69–71]. Considering this
statement, the studied mixed-spin double-tetrahedral chain
represents a quite good theoretical tool for a rigorous exam-
ination of the aforementioned phenomenon when the particle
content is changed. Our research interest will continue in that
direction.
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APPENDIX A

TABLE I. Decomposition of electron configurations from kth triangular cluster into the orbits O|f ini
kj 〉 of the cyclic symmetry

group C3 and the corresponding eigenenergies Ekl of the block Hamiltonian (3) for different numbers of mobile electrons
nk = {0,1,2, . . . ,6}. Here, we have introduced the following notations, hI = HI (σ z

k + σ z
k+1)/2, he = J (σ z

k + σ z
k+1) − He and

φU,t = 1
3 arctan [9t

√
U 4 + 27U 2t2 + 243t4/U 3], to write the eigenenergies Ekl in a more abbreviated form.

nk Sz
k |f ini

kj 〉 O|f ini
kj

〉 Ekl

0 0 |0〉 |0〉 −hI

1 − 1
2 c

†
k1,↓|0〉 c

†
k1,↓|0〉 −μ − hI − he

2 − 2t

c
†
k2,↓|0〉 −μ − hI − he

2 + t

c
†
k3,↓|0〉 −μ − hI − he

2 + t
1
2 c

†
k1,↑|0〉 c

†
k1,↑|0〉 −μ − hI + he

2 − 2t

c
†
k2,↑|0〉 −μ − hI + he

2 + t

c
†
k3,↑|0〉 −μ − hI + he

2 + t

2 −1 c
†
k1,↓c

†
k2,↓|0〉 c

†
k1,↓c

†
k2,↓|0〉 −2μ − hI − he + 2t

c
†
k2,↓c

†
k3,↓|0〉 −2μ − hI − he − t

c
†
k3,↓c

†
k1,↓|0〉 −2μ − hI − he − t

0 c
†
k1,↑c

†
k1,↓|0〉 c

†
k1,↑c

†
k1,↓|0〉 −2μ − hI + 2t

c
†
k2,↑c

†
k2,↓|0〉 −2μ − hI − t + U

2 ± 1
2

√
(U + 2t)2 + 32t2

c
†
k3,↑c

†
k3,↓|0〉

c
†
k2,↑c

†
k3,↓|0〉 c

†
k2,↑c

†
k3,↓|0〉 −2μ − hI − t

c
†
k3,↑c

†
k1,↓|0〉 −2μ − hI + t

2 + U

2 ± 1
2

√
(U − t)2 + 8t2

c
†
k1,↑c

†
k2,↓|0〉

c
†
k3,↓c

†
k1,↑|0〉 c

†
k3,↓c

†
k1,↑|0〉 −2μ − hI − t

c
†
k1,↓c

†
k2,↑|0〉 −2μ − hI + t

2 + U

2 ± 1
2

√
(U − t)2 + 8t2

c
†
k2,↓c

†
k3,↑|0〉
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TABLE I. (Continued)

nk Sz
k |f ini

kj 〉 O|f ini
kj

〉 Ekl

1 c
†
k1,↑c

†
k2,↑|0〉 c

†
k1,↑c

†
k2,↑|0〉 −2μ − hI + he + 2t

c
†
k2,↑c

†
k3,↑|0〉 −2μ − hI + he − t

c
†
k3,↑c

†
k1,↑|0〉 −2μ − hI + he − t

3 − 3
2 c

†
k1,↓c

†
k2,↓c

†
k3,↓|0〉 c

†
k1,↓c

†
k2,↓c

†
k3,↓|0〉 −3μ − hI − 3he

2

− 1
2 c

†
k1,↓c

†
k2,↓c

†
k3,↑|0〉 c

†
k1,↓c

†
k2,↓c

†
k3,↑|0〉 −3μ − hI − he

2

c
†
k2,↓c

†
k3,↓c

†
k1,↑|0〉 −3μ − hI − he

2 + U

c
†
k3,↓c

†
k1,↓c

†
k2,↑|0〉 −3μ − hI − he

2 + U

c
†
k2,↑c

†
k2,↓c

†
k3,↓|0〉 c

†
k2,↑c

†
k2,↓c

†
k3,↓|0〉 −3μ − hI − he

2 + 2U

3 − 2
3

√
U 2 + 27t2 cos φ

c
†
k3,↑c

†
k3,↓c

†
k1,↓|0〉 −3μ − hI − he

2 + 2U

3 +
c
†
k1,↑c

†
k1,↓c

†
k2,↓|0〉 + 1

3

√
U 2 + 27t2(cos φ ± √

3 sin φ)

c
†
k3,↓c

†
k1,↑c

†
k1,↓|0〉 c

†
k3,↓c

†
k1,↑c

†
k1,↓|0〉 −3μ − hI − he

2 + 2U

3 − 2
3

√
U 2 + 27t2 cos φ

c
†
k1,↓c

†
k2,↑c

†
k2,↓|0〉 −3μ − hI − he

2 + 2U

3 +
c
†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 + 1

3

√
U 2 + 27t2(cos φ ± √

3 sin φ)
1
2 c

†
k1,↑c

†
k2,↑c

†
k3,↓|0〉 c

†
k1,↑c

†
k2,↑c

†
k3,↓|0〉 −3μ − hI + he

2

c
†
k2,↑c

†
k3,↑c

†
k1,↓|0〉 −3μ − hI + he

2 + U

c
†
k3,↑c

†
k1,↑c

†
k2,↓|0〉 −3μ − hI + he

2 + U

c
†
k2,↑c

†
k2,↓c

†
k3,↑|0〉 c

†
k2,↑c

†
k2,↓c

†
k3,↑|0〉 −3μ − hI + he

2 + 2U

3 − 2
3

√
U 2 + 27t2 cos φ

c
†
k3,↑c

†
k3,↓c

†
k1,↑|0〉 −3μ − hI + he

2 + 2U

3 +
c
†
k1,↑c

†
k1,↓c

†
k2,↑|0〉 + 1

3

√
U 2 + 27t2(cos φ ± √

3 sin φ)

c
†
k3,↑c

†
k1,↑c

†
k1,↓|0〉 c

†
k3,↑c

†
k1,↑c

†
k1,↓|0〉 −3μ − hI + he

2 + 2U

3 − 2
3

√
U 2 + 27t2 cos φ

c
†
k1,↑c

†
k2,↑c

†
k2,↓|0〉 −3μ − hI + he

2 + 2U

3 +
c
†
k2,↑c

†
k3,↑c

†
k3,↓|0〉 + 1

3

√
U 2 + 27t2(cos φ ± √

3 sin φ)
3
2 c

†
k1,↑c

†
k2,↑c

†
k3,↑|0〉 c

†
k1,↑c

†
k2,↑c

†
k3,↑|0〉 −3μ − hI + 3he

2

4 −1 c
†
k1,↑c

†
k1,↓c

†
k2,↓c

†
k3,↓|0〉 c

†
k1,↑c

†
k1,↓c

†
k2,↓c

†
k3,↓|0〉 −4μ − hI − he + 2t + U

c
†
k2,↑c

†
k2,↓c

†
k3,↓c

†
k1,↓|0〉 −4μ − hI − he − t + U

c
†
k3,↑c

†
k3,↓c

†
k1,↓c

†
k2,↓|0〉 −4μ − hI − he − t + U

0 c
†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k2,↓|0〉 c

†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k2,↓|0〉 −4μ − hI + 2t + U

c
†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 −4μ − hI − t + 3U

2 ± 1
2

√
(U + 2t)2 + 32t2

c
†
k3,↑c

†
k3,↓c

†
k1,↑c

†
k1,↓|0〉

c
†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k1,↓|0〉 c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k1,↓|0〉 −4μ − hI − t + U

c
†
k3,↑c

†
k3,↓c

†
k1,↑c

†
k2,↓|0〉 −4μ − hI + t

2 + 3U

2 ± 1
2

√
(U − t)2 + 8t2

c
†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k3,↓|0〉

c
†
k3,↑c

†
k3,↓c

†
k1,↓c

†
k2,↑|0〉 c

†
k3,↑c

†
k3,↓c

†
k1,↓c

†
k2,↑|0〉 −4μ − hI − t + U

c
†
k1,↑c

†
k1,↓c

†
k2,↓c

†
k3,↑|0〉 −4μ − hI + t

2 + 3U

2 ± 1
2

√
(U − t)2 + 8t2

c
†
k2,↑c

†
k2,↓c

†
k3,↓c

†
k1,↑|0〉

1 c
†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k3,↑|0〉 c

†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k3,↑|0〉 −4μ − hI + he + 2t + U

c
†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k1,↑|0〉 −4μ − hI + he − t + U

c
†
k3,↑c

†
k3,↓c

†
k1,↑c

†
k2,↑|0〉 −4μ − hI + he − t + U

5 − 1
2 c

†
k1,↓c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 c

†
k1,↓c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 −5μ − hI − he

2 − 2t + 2U

c
†
k2,↓c

†
k3,↑c

†
k3,↓c

†
k1,↑c

†
k1,↓|0〉 −5μ − hI − he

2 + t + 2U

c
†
k3,↓c

†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k2,↓|0〉 −5μ − hI − he

2 + t + 2U

1
2 c

†
k1,↑c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 c

†
k1,↑c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 −5μ − hI + he

2 − 2t + 2U

c
†
k2,↑c

†
k3,↑c

†
k3,↓c

†
k1,↑c

†
k1,↓|0〉 −5μ − hI + he

2 + t + 2U

c
†
k3,↑c

†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k2,↓|0〉 −5μ − hI + he

2 + t + 2U

6 0 c
†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 c

†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 −6μ − hI + 3U
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APPENDIX B

The list of state vectors indicating eigenstates of mobile electrons in the kth triangular plaquette that create the eigenvectors
of the ground-state phases given by Eqs. (5)–(8) and (12):

∣∣nk = 0,Sz
k = 0

〉 = |0〉, (B1)∣∣∣∣nk = 1,Sz
k = −1

2

〉
= 1√

3
(c†k1,↓ + c

†
k2,↓ + c

†
k3,↓)|0〉, (B2)∣∣∣∣nk = 1,Sz

k = 1

2

〉
= 1√

3
(c†k1,↑ + c

†
k2,↑ + c

†
k3,↑)|0〉, (B3)

∣∣nk = 2,Sz
k = −1

〉
L,R

=
{

1√
3

(
c
†
k1,↓c

†
k2,↓ + e

2π i
3 c

†
k2,↓c

†
k3,↓ + e

4π i
3 c

†
k3,↓c

†
k1,↓

)|0〉,
1√
3

(
c
†
k1,↓c

†
k2,↓ + e

4π i
3 c

†
k2,↓c

†
k3,↓ + e

2π i
3 c

†
k3,↓c

†
k1,↓

)|0〉, (B4)

∣∣nk = 2,Sz
k = 0

〉 = A2(c†k1,↑c
†
k2,↓ + c

†
k2,↑c

†
k3,↓ + c

†
k3,↑c

†
k1,↓ − c

†
k1,↓c

†
k2,↑ − c

†
k2,↓c

†
k3,↑ − c

†
k3,↓c

†
k1,↑)|0〉

+B2

3∑
j=1

c
†
kj,↑c

†
kj,↓|0〉, (B5)

∣∣nk = 2,Sz
k = 1

〉
L,R

=
{

1√
3

(
c
†
k1,↑c

†
k2,↑ + e

2π i
3 c

†
k2,↑c

†
k3,↑ + e

4π i
3 c

†
k3,↑c

†
k1,↑

)|0〉,
1√
3

(
c
†
k1,↓c

†
k2,↓ + e

4π i
3 c

†
k2,↓c

†
k3,↓ + e

2π i
3 c

†
k3,↓c

†
k1,↓

)|0〉, (B6)

∣∣∣∣nk = 3,Sz
k = −3

2

〉
= c

†
k1,↓c

†
k2,↓c

†
k3,↓|0〉, (B7)

∣∣∣∣nk = 3,Sz
k = −1

2

〉
L,R

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A3
(
c
†
k1,↑c

†
k1,↓c

†
k2,↓ + e

2π i
3 c

†
k2,↑c

†
k2,↓c

†
k3,↓ + e

4π i
3 c

†
k3,↑c

†
k3,↓c

†
k1,↓

)|0〉
+B+

3 c
†
k1,↓c

†
k2,↓c

†
k3,↑|0〉 + B−

3 c
†
k2,↓c

†
k3,↓c

†
k1,↑|0〉 − (B+

3 + B−
3 )c†k3,↓c

†
k1,↓c

†
k2,↑|0〉

+ C−
3 c

†
k1,↓c

†
k2,↑c

†
k2,↓|0〉 + C+

3 c
†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 − (C+

3 + C−
3 )c†k3,↓c

†
k1,↑c

†
k1,↓|0〉

A3
(
c
†
k1,↑c

†
k1,↓c

†
k2,↓ + e

4π i
3 c

†
k2,↑c

†
k2,↓c

†
k3,↓ + e

2π i
3 c

†
k3,↑c

†
k3,↓c

†
k1,↓

)|0〉
+B+

3 c
†
k1,↓c

†
k2,↓c

†
k3,↑|0〉 + B−

3 c
†
k2,↓c

†
k3,↓c

†
k1,↑|0〉 − (B+

3 + B−
3 )c†k3,↓c

†
k1,↓c

†
k2,↑|0〉

+ C−
3 c

†
k1,↓c

†
k2,↑c

†
k2,↓|0〉 + C+

3 c
†
k2,↓c

†
k3,↑c

†
k3,↓|0〉 − (C+

3 + C−
3 )c†k3,↓c

†
k1,↑c

†
k1,↓|0〉,

(B8)

∣∣∣∣nk = 3,Sz
k = 1

2

〉
L,R

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A3
(
c
†
k1,↑c

†
k1,↓c

†
k2,↑ + e

2π i
3 c

†
k2,↑c

†
k2,↓c

†
k3,↑ + e

4π i
3 c

†
k3,↑c

†
k3,↓c

†
k1,↑

)|0〉
+B+

3 c
†
k1,↑c

†
k2,↑c

†
k3,↓|0〉 + B−

3 c
†
k2,↑c

†
k3,↑c

†
k1,↓|0〉 − (B+

3 + B−
3 )c†k3,↑c

†
k1,↑c

†
k2,↓|0〉

+ C−
3 c

†
k1,↑c

†
k2,↑c

†
k2,↓|0〉 + C+

3 c
†
k2,↑c

†
k3,↑c

†
k3,↓|0〉 − (C+

3 + C−
3 )c†k3,↑c

†
k1,↑c

†
k1,↓|0〉

A3
(
c
†
k1,↑c

†
k1,↓c

†
k2,↑ + e

4π i
3 c

†
k2,↑c

†
k2,↓c

†
k3,↑ + e

2π i
3 c

†
k3,↑c

†
k3,↓c

†
k1,↑

)|0〉
+B+

3 c
†
k1,↑c

†
k2,↑c

†
k3,↓|0〉 + B−

3 c
†
k2,↑c

†
k3,↑c

†
k1,↓|0〉 − (B+

3 + B−
3 )c†k3,↑c

†
k1,↑c

†
k2,↓|0〉

+ C−
3 c

†
k1,↑c

†
k2,↑c

†
k2,↓|0〉 + C+

3 c
†
k2,↑c

†
k3,↑c

†
k3,↓|0〉 − (C+

3 + C−
3 )c†k3,↑c

†
k1,↑c

†
k1,↓|0〉,

(B9)

∣∣∣∣nk = 3,Sz
k = 3

2

〉
= c

†
k1,↑c

†
k2,↑c

†
k3,↑|0〉, (B10)

∣∣nk = 4,Sz
k = −1

〉
L,R

=
{

1√
3

(
c
†
k1,↓c

†
k2,↓c

†
k3,↑c

†
k3,↓ + e

2π i
3 c

†
k2,↓c

†
k3,↓c

†
k1,↑c

†
k1,↓ + e

4π i
3 c

†
k3,↓c

†
k1,↓c

†
k2,↑c

†
k2,↓

)|0〉,
1√
3

(
c
†
k1,↓c

†
k2,↓c

†
k3,↑c

†
k3,↓ + e

4π i
3 c

†
k2,↓c

†
k3,↓c

†
k1,↑c

†
k1,↓ + e

2π i
3 c

†
k3,↓c

†
k1,↓c

†
k2,↑c

†
k2,↓

)|0〉, (B11)

∣∣nk = 4,Sz
k = 0

〉 = A4
(
c
†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k3,↓ + c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k1,↓ + c

†
k3,↑c

†
k3,↓c

†
k1,↑c

†
k2,↓ − c

†
k1,↑c

†
k1,↓c

†
k2,↓c

†
k3,↑

− c
†
k2,↑c

†
k2,↓c

†
k3,↓c

†
k1,↑ − c

†
k3,↑c

†
k3,↓c

†
k1,↓c

†
k2,↑

)|0〉 + B4

3∑
j=1

c
†
kj,↑c

†
kj,↓c

†
k(j+1),↑c

†
k(j+1),↓|0〉, (B12)

∣∣nk = 4,Sz
k = 1

〉
L,R

=
{

1√
3

(
c
†
k1,↑c

†
k2,↑c

†
k3,↑c

†
k3,↓ + e

2π i
3 c

†
k2,↑c

†
k3,↑c

†
k1,↑c

†
k1,↓ + e

4π i
3 c

†
k3,↑c

†
k1,↑c

†
k2,↑c

†
k2,↓

)|0〉,
1√
3

(
c
†
k1,↑c

†
k2,↑c

†
k3,↑c

†
k3,↓ + e

4π i
3 c

†
k2,↑c

†
k3,↑c

†
k1,↑c

†
k1,↓ + e

2π i
3 c

†
k3,↑c

†
k1,↑c

†
k2,↑c

†
k2,↓

)|0〉, (B13)
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∣∣∣∣nk = 5,Sz
k = −1

2

〉
= 1√

3
(c†k1,↓c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓ + c

†
k2,↓c

†
k3,↑c

†
k3,↓c

†
k1,↑c

†
k1,↓ + c

†
k3,↓c

†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k2,↓)|0〉, (B14)∣∣∣∣nk = 5,Sz

k = 1

2

〉
= 1√

3
(c†k1,↑c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓ + c

†
k2,↑c

†
k3,↑c

†
k3,↓c

†
k1,↑c

†
k1,↓ + c

†
k3,↑c

†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k2,↓)|0〉, (B15)∣∣nk = 6,Sz

k = 0
〉 = c

†
k1,↑c

†
k1,↓c

†
k2,↑c

†
k2,↓c

†
k3,↑c

†
k3,↓|0〉, (B16)

where i = √−1 and the coefficients A2−4, B2, B±
3 , B4, and C±

3 are

A2 = 1√
6

4μ + U + 2t +
√

(U + 2t)2 + 32t2√[
4μ + U + 2t +

√
(U + 2t)2 + 32t2

]2 + 32t2
,

A3 = 1√
6

[9μ − 2U + 2
√

U 2 + 27t2 cos(φU,t )][9μ + U + 2
√

U 2 + 27t2 cos(φU,t )] − 27t2√
[9μ − 2U + 2

√
U 2 + 27t2 cos(φU,t )]2[9μ + U + 2

√
U 2 + 27t2 cos(φU,t )]2 + 243t2U 2 + 2187t4

,

A4 = 1√
6

8μ + U + 2t +
√

(U + 2t)2 + 32t2√[
8μ + U + 2t +

√
(U + 2t)2 + 32t2

]2 + 32t2
,

B2 = 1√
6

8t√
[4μ + U + 2t +

√
(U + 2t)2 + 32t2 ]2 + 32t2

,

B±
3 = ± 9t√

6

9μ + U + 2
√

U 2 + 27t2 cos(φU,t ) ± 3t√
[9μ − 2U + 2

√
U 2 + 27t2 cos(φU,t )]2[9μ + U + 2

√
U 2 + 27t2 cos(φU,t )]2 + 243t2U 2 + 2187t4

,

B4 = − 1√
6

8t√
[8μ + U + 2t +

√
(U + 2t)2 + 32t2 ]2 + 32t2

,

C±
3 = ± 9t√

6

9μ − 2U + 2
√

U 2 + 27t2 cos(φU,t ) ± 3t√
[9μ − 2U + 2

√
U 2 + 27t2 cos(φU,t )]2[9μ + U + 2

√
U 2 + 27t2 cos(φU,t )]2 + 243t2U 2 + 2187t4

.

APPENDIX C

The list of analytical expressions for the first-order phase transitions between individual ground-state phases of the model (2),
which have been obtained by comparing the ground-state energies given by Eqs. (5)–(8):

S0 − S1 : H = J − 2μ − 4t,

S1 − S2 : H = J + 2μ − U − 2t +
√

(U + 2t)2 + 32t2 (for t > tb1),

S1 − S3 : H = J − 2μ + 2t,

S2 − S3 : H = J − 2μ

3
− U

3
+ 2t

3
+ 1

3

√
(U + 2t)2 + 32t2 (for t > tb1),

S2 − S̃3 : H = J − 2μ + U

3
+ 2t +

√
(U + 2t)2 + 32t2 − 4

3

√
U 2 + 27t2 cos(φU, t ) (for t > tb2),

S2 − S4 : μ = U

2
(t > tb3),

S̃3 − S3 : H = J − 2U

3
+ 2

3

√
U 2 + 27t2 cos(φU, t ) (for t > tb2),

S̃3 − S4 : H = J + 2μ − 5U

3
+ 2t +

√
(U + 2t)2 + 32t2 − 4

3

√
U 2 + 27t2 cos(φU, t ) (for t > tb2),

S3 − S4 : H = J + 2μ

3
− U + 2t

3
+ 1

3

√
(U + 2t)2 + 32t2 (for t > tb1),

S3 − S5 : H = J + 2μ − 2U + 2t,

S4 − S5 : H = J − 2μ + U − 2t +
√

(U + 2t)2 + 32t2 (for t > tb1),

S5 − S6 : H = J + 2μ − 2U − 4t.

In the above, tb1, tb2, and tb3 are given by Eqs. (9), (10), and (11), respectively.
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[16] N. S. Ananikian, J. Strečka, and V. V. Hovhannisyan, Sol. State

Commun. 194, 48 (2014).
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