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We use the H theorem to establish the entropy and the entropic additivity law for a system composed of
subsystems, with the dynamics governed by the Klein-Kramers equations, by considering relations among the
dynamics of these subsystems and their entropies. We start considering the subsystems governed by linear Klein-
Kramers equations and verify that the Boltzmann-Gibbs entropy is appropriated to this dynamics, leading us to the
standard entropic additivity, S

(1∪2)
BG = S1

BG + S2
BG, consistent with the fact that the distributions of the subsystem

are independent. We then extend the dynamics of these subsystems to independent nonlinear Klein-Kramers
equations. For this case, the results show that the H theorem is verified for a generalized entropy, which does
not preserve the standard entropic additivity for independent distributions. In this scenario, consistent results are
obtained when a suitable coupling among the nonlinear Klein-Kramers equations is considered, in which each
subsystem modifies the other until an equilibrium state is reached. This dynamics, for the subsystems, results
in the Tsallis entropy for the system and, consequently, verifies the relation S(1∪2)

q = S1
q + S2

q + (1 − q)S1
qS

2
q/k,

which is a nonadditive entropic relation.

DOI: 10.1103/PhysRevE.96.052109

I. INTRODUCTION

Entropy is one of the most universal tools used to obtain
information for a system from the particles’ microscopic
dynamics details, which can be connected to macroscopic
quantities and, consequently, with thermodynamics quantities.
The first steps towards the concept of entropy started with
Clausius’s studies of thermal machines [1]. Afterwards, the
Boltzmann and Gibbs works incorporated the concept of
probability, leading us to the fundamentals of statistical
mechanics [2–5].

One of the greatest success of the Boltzmann-Gibbs statis-
tical mechanics is the agreement with the thermodynamics,
which is essentially restricted to a class of additives and
extensive phenomena. This feature may be directly related
to the dynamics exhibited by these systems, which are, in
general, characterized by short-range interactions [6] and
Markovian processes. This scenario, typically additive and
extensive, is suitably described in terms of the Boltzmann-
Gibbs (BG) entropy (SBG = −kB

∑
i ρi ln ρi), which verifies

the entropic additivity S1∪2
BG = S1

BG + S2
BG (in the sense of

Penrose [2]), for two independent subsystems 1 and 2, when
ρ1,2 = ρ1ρ2 (independent probabilities). However, systems
with long-range interaction [7–10], long-range correlations
[11], and memory effects [12] may not preserve the additivity
and/or extensivity properties. A suitable description for these
systems has been investigated by different approaches [6]
and, in particular, by extending the BG entropy in order to
incorporate these scenarios. In this regard, the Tsallis entropy,

Sq = k

q − 1

(
1 −

∑
i

ρ
q

i

)
, (1)

where k is a constant and q is a parameter, has been successful
applied in several contexts such as black holes [13,14],
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random chains of spins [15], standard maps [16], nonlinear
Fokker-Planck equations [17–20], quantum problems [21], and
quantum dissipation [22], which are not suitably described in
terms of the standard statical mechanics. It is worth mentioning
that Eq. (1) recovers the Boltzmann-Gibbs entropy for q → 1,
and the parameter q may be considered a measurement of the
interactions [23–26]. Thus, it leads us to an extension of the
Boltzmann factor, i.e., distributions of short- and long-tailed
behaviors, which can be linked to a generalization of the central
limit theorem [27,28]. Another important property related to
this entropy concerns the entropic additivity law: S(1∪2)

q =
S1

q + S2
q + (1 − q)S1

qS
2
q/k for two independent subsystem (in-

dependent probabilities), which is nonadditive. Both entropies
verify the H theorem [4,29,30], which represents one of the
most important results of nonequilibrium statistical mechanics,
by ensuring that a system will reach an equilibrium after a long-
time evolution. Thus, this theorem shows that for each dynam-
ics, there is one entropy. For example, the BG entropy leads to
the standard Fokker-Planck (FP) and Klein-Kramers equations
[31], which are governed by the same stochastic process. In the
context of the Tsallis entropy, Refs. [32,33] have shown that
the dynamics is given in terms of the nonlinear FP [34–38] and
nonlinear Klein-Kramers equations [39–41]. Other situations
have also been investigated with the H theorem by taking
into account nonlinear extensions of the FP equation related
to general entropies [37] such as Rényi [42] and Kaniadakis
[43–45]. In this perspective, the H theorem establishes a
connection between the dynamics and entropy, which may be
used to investigate the dynamics behind the entropy additivity
law of these entropies. In this sense, by considering the linear
and nonlinear Klein-Kramers equations, the H theorem can
be used to show how these entropic additivity laws can be ob-
tained when a system composed of subsystems is considered.

Here we investigate by using the H theorem the suitable en-
tropy for a system composed of the subsystems with dynamics
governed by Klein-Kramers equations. We first consider the
dynamics of the subsystems governed by linear independent
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Klein-Kramers equations, which are related to Markovian
processes. We then extend this scenario to nonlinear Klein-
Kramers equations, which can be related to non-Markovian
processes and, consequently, anomalous relaxation processes.
For the first case, we verify that the dynamics of the subsystems
results in the BG entropy and, consequently, in the standard
entropic additivity, which is consistent with the fact that the
probability distribution of system should be the product of
probabilities of each subsystems. We next extend this scenario
to nonlinear Klein-Kramers equations and show that if they are
independently considered, each subsystem satisfies the Tsallis
entropy. However, the entropic additivity found for a system
composed of these subsystems is inconsistent with the fact
that the probability distribution of the system should be the
product of the probabilities of each subsystem, as expected
in a statistical mechanics when the equilibrium is reached.
To overcome this point, we consider a coupling among the
nonlinear Klein-Kramers equations, which lead us to the

Tsallis entropy for the system composed by these subsystems
and verify the relation S(1∪2)

q = S1
q + S2

q + (1 − q)S1
qS

2
q/k,

which is a nonaddictive entropic relation. This result is
consistent with the fact the probability distribution of system
should be the product of probabilities of each subsystem when
the equilibrium is reached. Afterwards, we extend this case by
considering n subsystems, and we show that the H theorem can
be used to obtain the Boltzmann-Gibbs and Tsallis entropies.
These developments are performed in Sec. II and Sec. III. Our
conclusions are presented in Sec. IV.

II. KLEIN-KRAMERS EQUATION: LINEAR CASE

Let us start our investigation about the thermodynamic
proprieties of a system by considering, for simplicity, that
it is composed of two subsystems (1 and 2) with the dynamics
defined in terms of the following Klein-Kramers equations:

∂ρ1

∂t
+ p1

m

∂ρ1

∂x1
= − ∂

∂p1

[(
− γ

m
p1 + μ1

)
ρ1

]
+ �

2m2

∂2ρ1

∂p2
1

, (2)

∂ρ2

∂t
+ p2

m

∂ρ2

∂x2
= − ∂

∂p2

[(
− γ

m
p2 + μ2

)
ρ2

]
+ �

2m2

∂2ρ2

∂p2
2

, (3)

in which μi = −dφi/dxi (φi(xi) is a confining potential, where i = 1 and 2, for the corresponding subsystem) and ρi =
ρi(pi,xi,t). We also consider that the current probability densities, Ji = (Jxi

,Jpi
), with Jxi

= (pi/m)ρi and Jpi
= Ji + μiρi ,

where

Ji = − γ

m
piρi − �

2m2

∂

∂pi

ρi, (4)

related to these equations are subjected to the boundary conditions Jxi
(±∞,xi,t) = Jxi

(pi, ± ∞,t) = 0 and Jpi
(±∞,xi,t) =

Jpi
(pi, ± ∞,t) = 0. It is worth mentioning that these subsystems are independent of each other and the probability distribution

of the system can be written as ρ1,2 = ρ1ρ2, i.e., the product of probabilities of each one. The internal energy for this system,
composed of two subsystems, is additive, U = U1 + U2, and it is given by the following expression:

U =
∫ ∞

−∞
· · ·

∫ ∞

−∞
ρ1(p1,x1,t)ρ2(p2,x2,t)H(p1,p2,x1,x2)dp1 dp2 dx1 dx2, (5)

in which H = H1 + H2 is the Hamiltonian of the system, with Hi = p2
i /2m + φi(xi), respectively. By using these equations

and the H theorem [46,47], we may obtain the suitable entropy for this system and, consequently, the entropic additivity behind
the dynamics chosen for the subsystems. For this reason, we assume for the entropy the following expression:

S = k

∫ ∞

−∞
· · ·

∫ ∞

−∞
g[ρ1(p1,x1,t),ρ2(p2,x2,t)]dp1 dp2 dx1 dx2, (6)

in which g(ρ1,ρ2) is an arbitrary function of the probabilities. Thus, the dynamics will naturally lead to the suitable form for the
entropy when the H theorem is verified, by determining the function g(ρ1,ρ2).

Applying these definitions in the Helmholtz free energy of the system, F = U − T S, it is possible to show that

dF

dt
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
ρ2H − kT

∂g

∂ρ1

)
∂ρ1

∂t

+
∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
ρ1H − kT

∂g

∂p2

)
∂ρ2

∂t

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
ρ2

p1

m
− kT

∂ρ1

∂p1

∂2g

∂ρ2
1

)
J1(p1,x1,t)

+
∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
ρ1

p2

m
− kT

∂ρ2

∂p2

∂2g

∂ρ2
2

)
J2(p2,x2,t)
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−
∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
ρ2H − kT

∂g

∂ρ1

)(
p1

m

∂ρ1

∂x1
+ μ1

∂ρ1

∂p1

)

−
∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
ρ1H − kT

∂g

∂ρ2

)(
p2

m

∂ρ2

∂x2
+ μ2

∂ρ2

∂p2

)
. (7)

From the previous equation, we can define the quantity

�1(2) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
ρ2(1)H − kT

∂g

∂ρ1(2)

)(
p1(2)

m

∂ρ1(2)

∂x1(2)
+ μ1(2)

∂ρ1(2)

∂p1(2)

)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2ρ2(1)

(
φ1(2)

p1(2)

m

∂ρ1(2)

∂x1(2)
+ p2

1(2)

2m
μ1(2)

∂ρ1(2)

∂p1(2)

)
, (8)

which, after performing integration by parts on variables x2(1) and p2(1), allows us to show that �1(2) = 0. By using this result in
Eq. (7), it is possible to show that

dF

dt
= − 1

γ

∫ ∞

−∞
· · ·

∫ ∞

−∞

(
J 2

1
ρ2

ρ1
+ J 2

2
ρ1

ρ2

)
dp1 dp2 dx1 dx2 � 0, (9)

with γ = �/(2m2kT ), for a general entropy, in which g(ρ1,ρ2)
should simultaneously satisfy the following equations:

1

ρ2

∂2g

∂ρ2
1

= − 1

ρ1
and

1

ρ1

∂2g

∂ρ2
2

= − 1

ρ2
. (10)

Thus, for this system, the H theorem is established through
Eq. (9), which enables us to obtain the entropy related to
the dynamic of the subsystems by solving the previous set of
equations. In particular, after performing some calculations, it
is possible to show that

g(ρ1,ρ2) = −ρ2ρ1 ln ρ1 − ρ1ρ2 ln ρ2 = −ρ2ρ1 ln (ρ1ρ2) (11)

when conditions g(1,1) = g(1,0) = 0 and g(0,1) =
g(0,0) = 0 are required. By substituting Eq. (11) in Eq. (6),
we obtain the Boltzmann-Gibbs entropy,

SBG(ρ1,2) = −kB

∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2(ρ1,2 ln ρ1,2),

(12)

in which ρ1,2 = ρ1ρ2 and kB is Boltzmann constant. This
analysis shows that the entropy of the system is determined
by the dynamics present in the subsystems, i.e., (2) and
(3), and it is consistent with the fact that the probability
distribution of the system is the product of the probabilities
related to the subsystems. It also reveals for the system
the entropic additivity law behind the dynamic present in
the subsystems, which, in this case, corresponds to the
standard entropic additivity, S

(1∪2)
BG = S1

BG + S2
BG. These re-

sults, when the equilibrium is reached, may be connected
to equilibrium distribution ρ = exp (−βH)/Z , in which Z =∫ ∞
−∞ · · · ∫ ∞

−∞ exp (−βH)dp1 dp2 dx1 dx2, and with the princi-
ple of maximum entropy [48,49]. In next section, we extend our
analysis by considering nonlinear Klein-Kramers equations for
the subsystems.

III. KLEIN-KRAMERS EQUATION: NONLINEAR CASE

In this section, we extend the previous scenario by con-
sidering that the dynamics of the subsystems is governed by

nonlinear Klein-Kramers equations [39,40]. In this context, we
analyze two possible situations involving the dynamic of the
subsystems. In the first one, we consider that the dynamics of
each subsystem is independent each other. In the second one,
we consider a coupling between the subsystems, by implying
that the dynamic of each one is influenced by the other.

A. First case: Independent dynamics

In this case, we consider that the subsystems are governed
by the following nonlinear Klein-Kramers equations:

∂ρ1

∂t
+ p1

m

∂ρ1

∂x1
= − ∂

∂p1

[(
− γ

m
p1 + μ1

)
ρ1

]

+ �

2m2

∂2ρ
q

1

∂p2
1

, (13)

∂ρ2

∂t
+ p2

m

∂ρ2

∂x2
= − ∂

∂p2

[(
− γ

m
p2 + μ1

)
ρ1

]

+ �

2m2

∂2ρ
q

2

∂p2
2

, (14)

with μi = −dφi/dxi , in which φi is a confining potential,
as in previous section. The current densities related to these
equations are Jxi

= (pi/m)ρi and Jpi
= Ji,q + μiρi , with

Ji,q = − γ

m
piρi − �

2m2

∂

∂pi

ρ
q

i . (15)

These equations are subjected to the boundary conditions
Jxi

(±∞,xi,t) = Jxi
(pi, ± ∞,t) = 0 and Jpi

(±∞,xi,t) =
Jpi

(pi, ± ∞,t) = 0, as in the previous case. A system com-
posed of subsystems governed by these equations [Eqs. (13)
and (14)] verifies the H theorem for an general entropic form
given by Eq. (6), which implies a set of equations

1

ρ2

∂2g

∂ρ2
1

= − q

ρ
2−q

1

and
1

ρ1

∂2g

∂ρ2
2

= − q

ρ
2−q

2

(16)

which are simultaneously satisfied. The solution for these
equations can be found as a superposition of particular
solutions. In particular, it is possible to show that the solution
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is given by

g(ρ1,ρ2) = −ρ2
ρ1 − ρ

q

1

1 − q
− ρ1

ρ2 − ρ
q

2

1 − q
(17)

and it satisfies the conditions g(1,1) = g(1,0) = 0 and
g(0,1) = g(0,0) = 0. From this result, by simple integrations
of Eq. (17), we obtain that the entropy of the system is the
sum of entropies of each subsystem, S1∪2 = S1

q + S2
q , where

the entropy of each of the subsystems is given in term of the
Tsallis entropy. It is worth mentioning that this result does not
preserve the additivity in Penrose sense [2]. Thus, the entropy
for the system, when the equilibrium is reached, does not
verify the condition S(ρ1,2) = S(ρ1ρ2) usually required for a
system composed of independent subsystems. Consequently,
it is not possible to verify for a system composed of these
subsystems an equilibrium scenario for S1∪2 in connection
with the thermodynamics as a single system as in the previous
case, with the probability of the system defined as ρ1,2 = ρ1ρ2.

B. Second case: Coupled dynamics

The result obtained in previous section evidences that a
coupling between these subsystems needs to be considered
in order to verify a consistent entropic additivity law with a
thermodynamical equilibrium for a system composed of these
subsystems. Consequently, the suitable result should preserve
the conditions required for the system to be considered as a
single system in the thermodynamics sense, with the entropic
additivity determined by the dynamics of the subsystems. For
this, we consider that the subsystems are governed by the
following equations:

∂ρ1

∂t
+ p1

m

∂ρ1

∂x1
= − ∂

∂p1

[(
− γ

m
p1 + μ1

)
ρ1

]

+D1(t)
�

2m2

∂2ρ
q

1

∂p2
1

, (18)

∂ρ2

∂t
+ p2

m

∂ρ2

∂x2
= − ∂

∂p2

[(
− γ

m
p2 + μ2

)
ρ2

]

+D2(t)
�

2m2

∂2ρ
q

2

∂p2
2

, (19)

with

D1(t) =
∫ ∞

−∞

∫ ∞

−∞
dp2 dx2ρ

q

2 , and

D2(t) =
∫ ∞

−∞

∫ ∞

−∞
dp1 dx1ρ

q

1 . (20)

For q → 1, these equations recover the standard Klein-
Kramers equations given by Eqs. (2) and (3), which were
analyzed in connection with the Boltzmann-Gibbs entropy. It
is worth mentioning that the dynamics of the subsystems are
coupled to each other only for q �= 1 by the diffusive term,
exhibiting a time dependence before reaching the equilibrium.
In addition, this coupling between these equation enables us
to make a connection with the zeroth law of thermodynamics
presented in Refs. [50–52], as we will discuss later. From
these nonlinear Klein-Kramers equations, for the subsystems,
we may define the current density Jpi

as Jpi
= J̄i,q + μiρi ,with

J̄i,q(pi,xi,t) = − γ

m
piρi − Di(t)

�

2m2

∂

∂pi

ρ
q

i , (21)

subjected to the boundary conditions Jpi
(±∞,xi,t) =

Jpi
(pi, ± ∞,t) = 0, which recovers the previous structure of

the current probability density connected to Eqs. (2) and (3)
for q → 1. The component Jxi

is the same as the previous
ones. In this scenario, we assume for the system the general
entropic form

S = k

∫ +∞

−∞
· · ·

∫ +∞

−∞
dp1 dp2 dx1 dx2g(ρ1ρ2), (22)

in which g(ρ1,2) (with ρ1,2 = ρ1ρ2) is an arbitrary function,
by taking into account the fact that the probability distribution
related to independent processes is given by the product of
them.

For this case, by taking the time derivative of the Helmholtz
free energy, we obtain that

dF

dt
=

∫ +∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

×
(
H − kT

dg

dρ1,2

)
∂

∂t
(ρ1ρ2). (23)

Equation (23) can be written as

dF

dt
= ϒ1 + ϒ2, (24)

with

ϒ1 =
∫ +∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
Hρ2 − kTρ2

dg

dρ1,2

)
∂ρ1

∂t

=
∫ +∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
Hρ2 − kTρ2

dg

dρ1,2

)

×
{
−p1

m

∂ρ1

∂x1
− ∂

∂p1

[(
− γ

m
p1 + μ1

)
ρ1

]
+ �

2m2
D1(t)

∂2ρ
q

1

∂p2
1

}
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= −
∫ +∞

−∞

∫ ∞

−∞
dp1 dx1

1

ρ1

{[∫ +∞

−∞

∫ ∞

−∞
dp2dx2

(
p1

m
ρ2ρ1 − kTρ2

2ρ1
d2g

dρ2
1,2

∂ρ1

∂p1

)]

×
[∫ +∞

−∞

∫ ∞

−∞
dp2 dx2

(
γ

m
p1ρ1ρ2 + �

2m2
ρ

q

2 qρ
q−1
1

∂ρ1

∂p1

)]}

= − 1

γ

∫ +∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
ρ2

ρ1

)
J̄ 2

1,q , (25)

and

ϒ2 =
∫ +∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
Hρ1 − kTρ1

dg

dρ1,2

)

×
{
−p2

m

∂

∂x2
ρ2 − ∂

∂p2

[(
− γ

m
p2 + μ2

)
ρ2

]
+ �

2m2
D2(t)

∂2ρ
q

2

∂p2
2

}
,

= −
∫ +∞

−∞

∫ ∞

−∞
dp2 dx2

1

ρ2

{[∫ +∞

−∞

∫ ∞

−∞
dp1 dx1

(
p1

m
ρ2ρ1 − kTρ2

1ρ2
d2g

dρ2
1,2

∂ρ2

∂p2

)]

×
[∫ +∞

−∞

∫ ∞

−∞
dp1 dx1

(
γ

m
p1ρ1ρ2 + �

2m2
ρ

q

1 qρ
q−1
2

∂ρ2

∂p2

)]}

= − 1

γ

∫ +∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2

(
ρ1

ρ2

)
J̄ 2

2,q , (26)

where �/(2m2) = γ kT . Equations (25) and (26) imply that
ϒ1 � 0 and ϒ2 � 0 and, consequently, prove the H theorem,
for a function g(ρ1,2) which verifies the equation

d2g

dρ2
1,2

= −qρ
q−2
1,2 , (27)

under the condition g(0) = g(1) = 0. By simple integrations,
it is possible to show that the solution for this equation results
in the Tsallis entropy,

Sq(ρ1,2) = k

q − 1

(
1 −

∫ +∞

−∞
· · ·

∫ ∞

−∞
dp1 dp2 dx1 dx2ρ

q

1,2

)
,

(28)

for the system. By substituting ρ1,2 in terms of ρ1 and ρ2, we
have that

S(1∪2)
q = S1

q + S2
q + (1 − q)S1

qS
2
q/k, (29)

implying that for q �= 1 it is nonadditive. This result shows
that by considering a suitable coupling between the nonlinear
Klein-Kramers equations an entropic additivity law related
to the thermodynamical equilibrium can be found. Thus, the
Tsallis entropy [6] is verified as the appropriate entropy when
the dynamics of the subsystems is governed by Eqs. (18) and
(19) and the entropic nonadditivity appears as a consequence
of the dynamics exhibited by the subsystems, enabling a
thermodynamical equilibrium for a system composed of these
subsystems as a single system. In this sense, it is interesting
to mention that the zeroth law was introduced by considering
the maximum principle entropy condition on the entropy of
the system (composed of two subsystems) at the thermal
state of equilibrium. A relation was found which should be
satisfied by the subsystems in order to verify the zeroth law
of thermodynamic [50–52]. We may establish a connection of
the developments performed above with the results found in

Ref. [50] by assuming that

D1(t)

D2(t)
=

(Z1

Z2

)q−1

, (30)

with Z1−q

i = ∫ +∞
−∞ dxi

∫ +∞
−∞ dpiρ

q

i (xi,pi,t) and Di(t)−1 =
βi(t).

The previous result obtained for two subsystems can be
extended to a system composed of n subsystems. For this, we
consider that the ith subsystem is governed by the equation

∂ρi

∂t
+ pi

m

∂ρi

∂xi

= − ∂

∂pi

[(
− γ

m
pi + μi

)
ρi

]

+Di(t)
�

2m2

∂2ρ
q

i

∂p2
i

, (31)

with

Di(t) =
∫

∀j

n∏
j=1

dpjdxjρ
q

j , (32)

and j �= i, yielding the Tsallis for the system,

Sq(t) = k

q − 1

[
1 −

∫ ∞

−∞
· · ·

∫ ∞

−∞

n∏
i=1

dpi dxiρ
q

i (xi,pi,t)

]
,

(33)

after applying the previous procedure. Equation (33) recovers,
for q → 1, the BG entropy

SBG(t) = −kB

∫ ∞

−∞
· · ·

∫ ∞

−∞

n∏
i=1

dpi dxiρi(xi,pi,t)

× ln ρi(xi,pi,t), (34)

emphasizing that both results, Eqs. (33) and (34), preserve the
conditions required by a thermodynamical equilibrium.
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IV. CONCLUSION

We have analyzed, by using the H theorem, the entropies
and the entropic additivity laws which emerge from a system
composed of subsystems, with the dynamics governed by
linear and nonlinear Klein-Kramers equations. For the sub-
systems governed by a linear Klein-Kramers equations, the
H theorem has shown that the suitable entropy to describe the
behavior of the system is the Boltzmann-Gibbs entropy (which
is additive) with ρ1,2 = ρ1ρ2, i.e., the probability appears as
a product of probabilities related to the subsystems, which
is consistent with a thermodynamical equilibrium scenario.
Then we have analyzed the case for which the subsystems are
governed by uncoupled nonlinear Klein-Kramers equations.
This case has led us to results which are not consistent with
an equilibrium scenario, where the stationary distribution for
the system is the product of the probabilities related to the
subsystems systems. In order to overcome this situation, we
have shown that a suitable description, by accomplishing an
equilibrium scenario connected to a thermodynamical context,

can be obtained by coupling these equations. In particular,
we have considered that the equations are coupled by the
diffusive term. This feature implies that the dynamics of one
subsystem is influenced by the other until the equilibrium be
reached. This scenario can be related to the Tsallis entropy, in
which the nonadditive propriety appears as a consequence of
the dynamics considered for the subsystems. Other couplings
between the Klein-Kramers equations may lead us to a
different scenarios, where different entropies may be obtained
with different entropic additivies. Finally, we hope that the
results can be useful in the analysis of the entropy and
entropic additivity of systems composed of subsystems, when
nonequilibrium processes are considered.
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