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Periodically driven systems are a common topic in modern physics. In optical lattices specifically, driving is
at the origin of many interesting phenomena. However, energy is not conserved in driven systems, and under
periodic driving, heating of a system is a real concern. In an effort to better understand this phenomenon, the
heating of single-band systems has been studied, with a focus on disorder- and interaction-induced effects, such as
many-body localization. Nevertheless, driven systems occur in a much wider context than this, leaving room for
further research. Here, we fill this gap by studying a noninteracting model, characterized by discrete, periodically
spaced energy levels that are unbounded from above. We couple these energy levels resonantly through a periodic
drive, and discuss the heating dynamics of this system as a function of the driving protocol. In this way, we show
that a combination of stimulated emission and absorption causes the presence of resonant stable states. This will
serve to elucidate the conditions under which resonant driving causes heating in quantum systems.
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I. INTRODUCTION

Periodically driven systems are ubiquitous in physics. In
optical lattices, the introduction of periodic driving allows one
to modify the hopping parameters in the Hamiltonian in a
variety of ways. First, one can shake the lattice, which simply
renormalizes the hopping parameters [1,2]. This can be used to
tune the behavior of the Dirac cones in honeycomb lattices, for
example [2,3], but it can also be used to tune a superfluid-Mott
insulator transition [4—6]. Shaking in a nonlinear manner does
not just change the hopping amplitude, but also impinges a
phase to the hopping term, which corresponds to the generation
of an effective gauge field to the lattice. This technique was
used to simulate classical frustrated magnetism in a triangular
optical lattice filled with bosons [7], and later it has been,
together with laser-assisted tunneling through the use of
Raman excitations, a very efficient tool to realize fermonic
topological phases with ultracold atoms in optical lattices [8].

Recent studies have shown that it is possible to generate
even more complex scenarios in driven systems. An interesting
possibility is the shaking of Feshbach resonances, which
induces a renormalization of the hopping parameter in a way
that depends on the density operator in the initial and final sites.
The original theoretical predictions by Greschner et al. [9] for
bosons have been recently experimentally verified [10]. For
fermions, this procedure allows for the quantum simulation
of a well-known model studied in the context of high-T,
superconductors, the so-called correlated hopping model [11].

Despite these efforts, shaking remains the most common
tool in optical lattices [12]. One can distinguish three separate
shaking regimes [13]. First is the so-called quasiequilibrium
regime, where J < liw < Ajhere J is the hopping parameter,
which is roughly the bandwidth of the relevant set of bands,
w is the shaking frequency, and A is the gap to the nearest
set of bands. It is the regime that has been most studied
[3,4,6,14,15]. Second, is the regime where J < fiw ~ A. This
regime is starting to attract interest in optical lattices [16—18].
Finally, there is the regime where J ~ liw < A, in which
resonances due to the driving play a major role in the dynamics
of the relevant bands, and Floquet topological phases can be
realized [19].
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However, driven optical lattices heat [20,21], which puts
restrictions on the possible duration of experiments. The reason
why the first regime described above is so much better explored
is the absence of resonances, which lessens heating. This
process of heating is a generic feature of driven systems,
although the system can be stable for very long time scales
in the many-body case [22-25]. Especially if the underlying
system is ergodic, the driving is expected to heat the system
to infinite temperature [26,27]. Nevertheless, not every system
is ergodic, and a great deal of research has been done on the
heating behavior within a band structure in the presence of
interactions, disorder, and many-body localization [28-31].

It is known that the presence of symmetries will restrain
the level statistics of the heated system [32], which is taken to
the extreme in the case of integrability. Without integrability,
however, systems usually thermalize because the driving
couples large numbers of different energy states [33]. A notable
exception is the phenomenon of freezing, which has been
predicted theoretically [34,35], and observed experimentally
[36], in some systems with bounded spectrum. However, one
would expect that systems with a spectrum unbounded from
above tend to accept energy indefinitely. Indeed, bound states
tend to be more unstable in driven systems with unbounded
energy, even without interactions [37]. Nevertheless, the
driving might couple different modes in a controlled manner,
and this can prevent the system from thermalizing. A canonical
example of this behavior is the quantum kicked rotor. For
certain driving protocols, the model can be mapped onto the
Anderson model [38], and the driving prevents a delocalization
of the system in energy space due to Anderson localization.

In the above example, the localization in energy space is
a consequence of disorder in the kinetic energy. However, it
is possible to create a system that also has discrete, periodic,
and unbounded spectrum, but which localizes in energy space
without resorting to randomness. In this paper, we introduce
such a driven model, in which most of the Floquet modes
are local in energy space. This behavior is a consequence of
choosing a driving protocol that features notable stimulated
emission of energy. Since Floquet modes do not gain or lose
energy over a cycle, this means that the system hosts a large
number of states that do not heat. We show which states do
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and do not heat, and discuss how to separate them by a proper
choice of initial condition. This ties into the discussion above,
since the driving protocol is perfectly resonant, showing that it
is, in principle, possible to drive a system at resonance without
pumping heat into it.

The layout of this paper is as follows. In Sec. II, we
discuss some generalities about Floquet systems, and how the
expected energy in a system can change during a period of
the driving. In Sec. III, we introduce a one parameter family
of Hamiltonians, inspired by a massless boson in a finite
one-dimensional wire with a boundary mass at the edges. We
solve these Hamiltonians, and construct the unitary operator
relating the Hilbert spaces at different boundary mass. Using
these results, we construct a driven system in Sec. IV, by
varying the boundary mass in time. We analyze the resulting
Floquet system for two different choices of parameters to
demonstrate the features of the model. In Sec. V, we discuss
how the results from the previous section depend on the
choice of parameters, and what this means for the stability
of the system. Finally, we provide a summary and outlook in
Sec. VL.

II. FLOQUET SYSTEMS AND ENERGY PUMPING

Before we introduce the model to be treated in this paper, we
summarize some important results of the Floquet framework
used to analyze time-periodic out-of-equilibrium systems.
Then, we introduce the energy-pumping operator and discuss
some of its useful properties.

In a Floquet system, the Hamiltonian is explicitly time
dependent in a periodic manner, so energy is no longer
conserved, and there are no longer any stationary states in the
system. However, due to the periodicity of the Hamiltonian,
the propagator is also periodic, U(¢ + T,t' + T) = U(¢,t’) and
therefore U(nT,0) = U(T,0)". Floquet theory is the analysis
of the propagator U := U(T,0), which gives full information
about the stroboscopic behavior of the system. Because energy
is not conserved in a Floquet system, such systems can exhibit
a richer behavior than equilibrium systems. This can already
be seen in the stroboscopic behavior of the system, and
hence in the spectral behavior of U. The simplest case is
when U has a complete basis of normalizable eigenstates,
and the Hamiltonian is bounded. Because U has a basis
of normalizable eigenstates, the system repeatedly returns
arbitrarily close to its initial state; since the Hamiltonian is
bounded, the energy is as well, and the system is stable [39].

If the Hamiltonian is unbounded, or the propagator has
unnormalizable eigenstates (i.e., states of infinite norm), the
energy in the system may increase indefinitely, and more
complicated behavior can occur. In order to quantify this
analysis, it is useful to consider the energy pumping over a
single cycle, which is given by the operator

AE=U"'HU — H. (1)

If vis aneigenvector of U, and both v and H v are normalizable,
then (v|AE|v) = 0. This implies that if U is diagonalizable
with finite-energy states (for example if U is diagonalizable
and the Hamiltonian is bounded), then Tr(AE) = 0, which
follows by evaluating the trace using the eigenstates of U.
This argument fails if there are eigenstates v of U for which
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either (v|v) or (v|H |v) is infinite. In this case, (v|AE|v) # 0
is possible, and there exist steady states that emit or absorb
energy indefinitely. Note that this is possible because these
states are at infinite energy. We conclude that a Floquet system
can only be stable if Tr(AE) = 0.

We will show below that since AE contains detailed
information about the energy pumping of the system, it can
be a useful tool in analyzing the stability of Floquet systems.
Because A E is Hermitian (while U is not), numerical methods
adapted specifically to such matrices can be applied.

For the system we consider below, Tr(AE) # 0, so it must
have states that are not stable in energy. We use the information
provided by AE to identify the problematic states, and find
conditions under which the system can be stably driven.

III. ENERGY EIGENSTATES

In this paper, we consider a noninteracting boson field ¢
defined on a line segment of length /, with a boundary mass
 on the edges that we will modulate in time. At a fixed time,
the field theory has the Lagrangian

Ru (11
L =15 /0 {;qbf(x) 162

+ ()8 — 1) — 3(X)]}dx, @

where subscripts denote derivatives, and u is a characteristic
velocity. Furthermore, x = (x,?) to make the notation more
concise. Interacting versions of this Lagrangian have been
used to model a variety of boundary effects, such as boundary
critical behavior [40] and the thermal Casimir effect [41].
One can also consider this Lagrangian to be a continuum
approximation of the Bose-Hubbard model, as discussed in
Refs. [4-7] in the limit of linear dispersion. The boundary
mass term can then be considered to describe the effect of
coupling the system to a reservoir. The convention is such
that the field ¢ and the boundary mass w are dimensionless.
To properly define the action, we need to define the boundary
conditions for the field and implement them. The most sensible
boundary condition for the field is the Neumann boundary
condition ¢, (0,1) = ¢.(l,t) = 0, for reasons that will become
clear below.

In order to quantize the theory, we first determine the
structure of the classical system. The variation of the action
reads

_hu

88, = -

l
5¢(x){ — 2 Pu(X) + [ax(x)

+up(x)[8(x —1) — B(x)]}dx +...,

where the ellipsis denotes a boundary term, coming from an
integration by parts, that does not contribute to the equations
of motion. From the bulk term, we read off

2
ﬁz{qsn(x) — Ul (x) — ”Tpcas(x)[a(x —1)— a(x)]} =0.

Note that we have multiplied both sides of this equation
with a nonzero prefactor. To find the independent dynamical
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degrees of freedom, we decompose the spatial part of this into
eigenfunctions

2
> ), 3
R2u? '

where the primes denote derivatives with respect to x, and E,
is the energy of the system. We obtain from the equations of
motion

E; / 6 fu(x)dx = R*u? / (;ufn(x)am - f,;’(x))dx
0

€
0

—fl(x) — %fm)w(x — 1) —8()] =

_ h2u?
T

By sending € | 0 and using the Neumann boundary condition,
we obtain If,(0) = pf,(0). We can repeat this argument at
x =1, so that Eq. (3) reduces to —hzuzfn”(x) = E2 f, with
boundary condition If, (0) = puf,,(0) and If, (1) = f,(1). The
effect of the boundary term is to change the boundary condition
in the Lagrangian, with u = oo corresponding to Dirichlet
boundary conditions. From this, we can obtain the functions
fn solving Eq. (3):

1fn(0) — R*u? £ (€).

Jolx) =

)

%_ H euX/l
I exp2un) — 1

These solutions are orthonormal with respect to du; = dx /1.
Since the Laplacian is Sturm-Liouville on the interval with
Robin boundary conditions, these solutions form a complete
basis. The corresponding energies are

2 2
E§=—(”7”> . E= (””f”) L@

For u — 0, the solutions just become cosines, corresponding
to the Neumann boundary conditions, and fy is just the
constant solution at zero energy. In general, f; is an expo-
nentially decaying state bound to the edge due to the negative
mass term there. For u — oo, fy becomes proportional to
a § function, which can be expressed in terms of the other
solutions, which are sines corresponding to Dirichlet boundary
conditions. Consequently, fy decouples from the system at
= o0o. We can expand the field ¢ on these eigenfunctions
d(x) =, ¢u(t) fu(x), to rewrite the Lagrangian as

1 hl . E2]
LL:_§ :_ 2 _ Tn 2.
! 2 - u¢” hiu & ©)

fn(x) =

Since we no longer have spatial derivatives appearing, we
revert to an overdot for time derivates from now on. The La-
grangian in Eq. (5) does not yield a model with a well defined
particle number in the standard canonical quantization. This
is because the n = 0 mode has imaginary frequency, yielding
an inverted harmonic oscillator in the canonical quantization
procedure [42]. Since the inverted harmonic oscillator does
not have bound states, this situation is clearly unsatisfactory.
On the other hand, the path integral quantization for this
system yields exponentially decaying correlation functions for
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¢o, due to the imaginary frequency. In the canonical picture,
these exponentially decaying correlations correspond to so-
called Gamow states [43-45], which are non-normalizable,
exponentially decaying states that describe unstable modes in
the system. In this picture, we can interpret the boundary mass
in Eq. (2) as an effective term after integrating out a system
coupled to the line segment. The state ¢y then describes a state
bound to the edge of the line, which decays into the coupled
system at an exponential rate.

We quantize the n = 0 mode in this way, and all the other
modes in the usual manner. The Hamiltonian then reads

H, = Z E,alay,, (6)

1 Enl¢ L u
= — —_— l | —7TT .
W= AN TN EmT

Here, m, is the canonical momentum conjugate to ¢,, making
a, an annihilation operator, and E; is purely imaginary.
Because the system consists of noninteracting bosons, we
now project onto the single-particle subspace H, since this
completely determines the dynamics of the many-particle
system. It should be noted that H is equal to the span of the
functions f;, which are now interpreted as the wave functions
of a particle, and that this span is independent of L.

We will give the overlap of the various basis elements of
‘H corresponding to different . To indicate the value of the
boundary mass, we now add superscripts u,v to make the
dependence of the basis on the boundary mass explicit; we will
also introduce such a superscript in the Hamiltonian. The
overlap between the different basis vectors reads

where

)= 7 .
(f1f) = " Vu(coth u — 1)y/v(coth v — 1),
(£ £2) = V2[(=1)"e" — 1] (v — u)+/v(cothv — 1)

" ST @ )

wim* + pv

23 vy —

(£l 50) NN
(FE1fY) = 2(1 = (1)) (1 — v)

(m2 — n2)\/m? + p2/m2/m? + v2/n?
From these expressions, we can show that if either m or n
is large, (fm|f’) = Sm.n, so the modes decouple at high
frequencies. For (f|f"), this follows from the inequality
|m? — n?| > 2min(|m|,|n|). As we will see, this behavior is
crucial for the existence of stable states in the system.

IV. EFFECTS OF DRIVING

Now that we have analyzed the Hamiltonian at a single
instant in time, we can formally introduce our driving protocol.
In terms of the Hamiltonians H*, it reads

H,, t € [0,7T)) mod(T),
H = @)

H,, telT,Ti+T>) mod(T),
where T = Ty + T is the driving period. Since the Hamil-
tonian, by construction, obeys H(t + T) = H(t), we can
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use Floquet theory to get information from the system.
Accordingly, we analyze the spectrum of the propagator,

U= Z ei(E,lTl-‘rE,,Tz)/h|fn;;.>(fnlj|fuv)<fo"| ’ft)(fnﬂ

m,n,o

. ®)

It should be noted that unless u, v are either O or oo, U contains
an exponentially decaying mode, making the propagator
nonunitary. This is consistent with the interpretation of ¢y as
an unstable mode that decays out of the system, which causes
probability to be nonconserved.

A. Conformal limit

An interesting warmup case is the limit u — oo, v — 0, so
that U is unitary, supplemented by the choice T} = T, = T/2,
so that we can write E,T; = nn6h for 6 = uT /2l. For these
parameters the system is conformally invariant, since 6 does
not change under scaling of 7,/, and the Floquet spectrum is
expected to exhibit periodicities. In this case, the overlap of
the basis elements becomes

(f5°]v) =0, V¢ e H,

V2[1 = (=1)"]
oo| £0y __
(el = =,
2m[1 — (=1)"*"] mtn
(frZO|fn0) — n—(m2 _ nZ) ’ 5
0 ., m=n.

Substituting these expressions into Eq. (8), we find that the
propagator splits up into an odd and an even part,

U=,

m,n

|f2m 1 f2n 1|+Z mn|f2m f2n|

As we demonstrate in Appendix A, U° and U° can be
calculated in closed form due to the conformal symmetry.
The asymptotic form as n — oo is especially simple:

Ultsn = 204 sinc(an0), 9)

which is valid for a # 0, and holds up to a global phase. The
diagonal elements, with a = 0, can be extracted by requiring
unitarity. In Eq. (9), a symmetry is present: a change in n
only modifies the phase, meaning that all the columns of the
propagator, and hence the eigenvectors, are related by a shift
operator in the asymptotic limit. This is due to the conformal
symmetry, which causes all energy levels to be equivalent as
soon as one forgets about the ground state.

From Eq. (9), the asymptotic behavior as n — co of
(fYAE|f%) can be calculated, and it is infinite for all
n, implying that the system is completely unstable as a
consequence of the scaling symmetry. From a mathematical
point of view, we see that all eigenstates of U have infinite
norm, which implies that Tr(AE) = oco. This is consistent
with the discussion in Sec. II, where this was pointed out as
one of the possible causes of instability. This is a result of
choosing v = 0o, which physically corresponds to an infinite
driving strength.
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B. Finite driving strength

Interestingly, by choosing v in Eq. (7) to be finite, this
problem is solved at the cost of manually breaking the scaling
symmetry, and introducing the decaying mode. It turns out
that in this case, there are many energetically stable modes
that lose as much energy to stimulated emission as they gain
through absorption. Physically, this can be traced back to the
Lagrangian in Eq. (2). The energy flux at space-time point x is
given by the stress energy tensor 7, ,(x) = :mw(x)¢p,(x):, where
:...: denotes normal ordering, and the subscripts do not denote
derivatives but tensor indices. As we show in Appendix B, the
flux into the system is proportional to

Z\f [fa0) S )](alal, — anan).

This shows that the energy flux into the system vanishes in the
single-particle sector. If this term were nonzero, there would
be an energy flux in addition to that caused by switching the
boundary mass, which would make the existence of stable
states impossible.

Because the sum over o in Eq. (8) cannot be performed in
closed form for finite v, we will rely on numerics. We choose
the values u© = 0,v = 20 for the two boundary masses. For the
driving phase we use 6 = 1/20. Finally, we add a mass term

2[2M/ q) (x)dx

to the Lagrangian. In this convention, M is dimensionless, and
we choose M = 1. This does not change the eigenfunctions,
but it sends nwr > +/n2x? + 1 in the expression for E,, which
has the effect of removing the perfect periodicity in the energy
spectrum for the lowest few energy modes (since M = 1, the
effect quickly becomes negligible for increasing n). Breaking
the periodicity improves the convergence of the numerics, as
we discuss in Sec. V. Note that because u > 1, the lowest
energy mode still has imaginary energy, so the fundamental
behavior of the system is not altered. The absolute value of the
2000th column of the propagator is shown in Fig. 1 for these
parameter values.

It can be seen that the highest weight is at value Uzg00,2000-
This is consistent with the observation that (fy | ") & Sp.ns
since it implies that the propagator becomes diagonal at high
energies. The propagator has a higher weight on the low-energy
states than on the high-energy states. Furthermore, a clear
resonance structure is present in the propagator elements,
which can be most clearly seen in Fig. 1(b). It should be noted
that the peaks have a spacing of 40, which is equal to 2/6. Since
1/6 = hw/(E, — E,_), i.e., the driving frequency in units of
the level spacing, these are driving resonances expected in any
Floquet system. These resonances occur at twice the driving
frequency because of an approximate parity symmetry. In the
conformal case, this symmetry was exact, and resulted in the
splitting of the Floquet propagator into an odd and an even
part. In this case, the symmetry is slightly broken due to the
finite boundary mass, but at large momenta the even and odd
modes still decouple, as can be seen in Fig. 1.

052105-4



RESONANCES IN A PERIODICALLY DRIVEN BOSONIC ...

(a)

10 F

0
0 1000 2000 3000 4000
i
b — —r—— —r—— —r—— —r—— —r——
®) 10 1 1
_ 87 1
S s
S te -
N 6 .' . .A. i
-~ [ o y M .o ﬂ Y
=) [ o . ° ® o : L4 : .. -‘. Fa)
\o_ 4 .. LY o . o. : o .- o. : 13 .ﬁ. i
°
20w LN e
0 r - e L) ™ q

2500 2550 2600 2650 2700 2750 2800
i

FIG. 1. (a) The value |U; 00| of the propagator (in units of 107°)
for u =0,v=20,6 =1/20, M = 1. This is the absolute value of
the 2000th column of the propagator. The highest weight is at i =
2000 since the propagator becomes diagonal at large frequencies. The
overlap with the low-energy states is higher than with the high-energy
states, which offsets the infinite tail on the right side. (b) Same as in
(a) but for a restricted range of values so that the resonance structure
is clearly visible. The peaks have a spacing of 40, which is precisely
twice the driving frequency.

The energy pumped into state | £0) over a cycle is given by

AE, :=(f|AE|f3) =Y (EdUinl") = En.  (10)

As we will discuss below, this sum is negative, except at low
column numbers. Note that because we calculate this quantity
for u = 0, for which Ejy = 0, this quantity is real, and can be
interpreted as the energy pumped over a cycle, as usual. For
this to be true, the propagator has to have higher weight on
low-energy states, to offset the infinite tail at high energies, a
property about which we remarked.

We have numerically calculated U; ; for 7, j < 4000, and
from this we can approximate AE,, simply by truncating the
sum at 4000. The result is shown in Fig. 2. We see that the result
is positive for small m, then becomes negative and tends to
zero from below. Numerical results indicate that the summand
E;|U;n|* of AE,, decays as 1/[10(i — m)?]. Therefore, we
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FIG. 2. The value of AE; for the first 100 values of i. It can
be seen that AE; is positive for i < 4, and is negative for larger
i. Although AE; stays negative for large i, it asymptotically tends
towards zero.

can find an upper bound for AE,, by considering

> 1
Z 10(n — m)?’

N
AEy, =Y EilUin <) EilUinl* +
i i=0 N+1

1

We have checked for several large m that this expression
becomes negative if N is large enough. Therefore, the general
behavior in Fig. 2 should be correct, although AE,, tends to
zero slightly faster than shown in the figure; the numerical
expressions go faster than —1/m. This implies that AE has
a negative, but finite, trace. As we discussed in Sec. II, if U
is unitary, this can be because U has eigenstates v for which
either (v|v) = oo or (v|H|v) = oo. Here, the propagator U is
not unitary, due to the imaginary Ej, which in itself causes
Tr(AE) < 0 due to decay of the zero mode. However, in
addition, there are eigenstates of U for which (v|H|v) = oo,
which causes further deviation from zero. Consequently, the
decaying mode is not the only instability in the system, and
there are states which will run off to large energy before they
slowly decay out of the system. If one were to stabilize the
zero mode, either by giving the system a mass larger than
i, or by manually making E, real, the only instability in
the system would be from the infinite-energy states, and
the system would actually heat to infinity for some initial
conditions. In the presence of the imaginary zero mode, the
decay always dominates at long time scales. However, since
AE,, approaches zero from below as m increases, it is possible
for U to have finite-energy eigenstates, as long as their weight
is not on the lowest few energy states. Because of this, there are
many stable states in the system at large momenta. Using the
truncated matrix U; ; with i,j < 4000, we can approximate
the eigenvectors of U through numerical diagonalization.
Although the propagator is not unitary, due to the decaying
zero mode, the procedure still works because the propagator
becomes diagonal at large energies. From the numerics we can
distinguish two kinds of eigenvectors, those with unit norm
eigenvalue, and those with an eigenvalue norm deviating from
unity. A typical example of an eigenvector with unit norm
is depicted in Fig. 3. In Fig. 3(a), the 1024th eigenvector,
having its highest weight on | f10024), is shown. It has a strong
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FIG. 3. (a) The components |v;| of the 1024th eigenvector v of U
foru =0,v =20,0 = 1/20, M = 1. The corresponding eigenvalue
has unit norm. The vertical lines serve as a guide to the eye, and
show that the function has extremely sharp peaks, with most weights
indistinguishable from zero. (b) A zoom of (a) to show the small
scale structure. A smaller range of components is depicted, and the
matrix elements are multiplied by 10, so the scales are comparable.
The decay of the peaks is now visible, but still rapid.

weight on a single eigenstate of H°, with a quick decay away
from the peak. A resonant structure is visible in the weights
of the eigenvector, with peaks appearing at a spacing of 20.
The decay of the peaks is rapid, so a vertical filling has been
used in the graph as a guide to the eye. In Fig. 3(b), where a
zoom of Fig. 3(a) is shown, the peaks can be seen to consist
of more than one point, although the decay is very sharp. The
spacing between the peaks is precisely the driving frequency,
so the resonant behavior of the driving is also visible in
the eigenvectors. The sharpness of the resonant peaks shows
that the system efficiently excites the resonant states, while
coupling the off-resonant states only very weakly. Finally, the
tails of the eigenstates decay faster than 1/n so that the mean
energy in such an eigenstate is finite. Numerical results indicate
that it is roughly equal to the energy at the peak weight, which
is consistent with the slower decay of the resonances to the
left.

Although the energy in the state remains roughly the same
before and after driving, the resonances in the quasistable states
have a measurable effect on the wave functions. Let v be
the 1024th eigenvector, whose weights are shown in Fig. 3.
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d(x) = fr(x)
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x/1

FIG. 4. The real part of ¥ (x) — fio24(x) is shown for the first
quarter of the interval. The function fj(p4(x) is substracted to display
the various beat frequencies present in ¥ (x). The beat has a period
of 1/20, which is the driving frequency, as expected.

This state has the majority of its weight on the eigenfunction
f1024(x) of the undriven Hamiltonian Hj. Let {(x) denote the
wave function of v in position space. To show the effect of
the resonances, the real part of the function ¥ (x) — fio24(x) is
shown in Fig. 4. By substracting the wave function fjgp4 from
the parent state, the presence of beat frequencies in the real part
of ¥(x) becomes visible. The beats repeat at a multiple of the
driving frequency, as is expected from using the addition law
for trigonometric functions. We do not show the imaginary part
because it does not beat with the parent state (which has real
wave function), and merely oscillates at very high frequency.
There are also the eigenvectors corresponding to an
eigenvalue that is not of unit norm, an example of which
is depicted in Fig. 5. These eigenvectors have most of their
weight on the low-lying states, and their eigenvalues all have
norm smaller than 1. The eigenvalues of these eigenvectors
cannot have unit norm because there is energy emitted out
of these states. This happens because states slowly lose their
momentum due to the driving protocol, and when they start to

04
03 e ]

02 ]
01, ]
O ' 0 .Q.... m""\—- .‘. . _ _

0 20 40 60 80 100 120 140
i

FIG. 5. The components |v;| of an eigenvector v different from
that in Fig. 3, but for the same parameters. The corresponding
eigenvalue has norm smaller than unity. The peak weight is one
of the eigenstates that gains energy over a cycle.
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significantly overlap with the bound state fj, they will decay
out of the system. Because the propagator becomes diagonal
at large momenta, the high-momentum eigenstates do have
unit norm, as is consistent with the results from Fig. 2. The
system is prevented form gaining arbitrary amounts of energy
because the propagator becomes diagonal at large momenta,
and because there is the decaying zero mode. This prevents
arbitrary heating of the system. Therefore, all the singular
behavior due to the driving occurs at low energies.

V. STABILITY ANALYSIS

We now discuss the stability of our results under the various
choices that we have made to generate the results described
above.

First, we shall consider the impact of regularizing the
Hamiltonian with a small mass, like we did in Sec. IV B. What
ensures the stability of the Hamiltonian is that the overlaps
between the eigenfunctions at different 4 become diagonal
at large energies, together with the presence of the decaying
zero mode. For this effect, the precise value of the lowest
eigenvalues is irrelevant. The small mass therefore has no
effect here. However, as we mentioned before, U also has
eigenvectors for which (v|H|v) = oo. This implies that we

can write
v) = va| £7),

n

where v, decay faster than n~! but slower than n~%/?. Because
these states have such long tails, they lead to errors in the
numerical procedure. We obtain our numerical results by
considering the truncated matrix U; ; with i,j < 4000, and
this neglects the tails of these states. The mass breaks the peri-
odicity in the eigenvalues of the Hamiltonian at low momenta,
and causes the coefficients v, to decay slightly faster. This
causes the numerical determination of the eigenstates of U to
be more accurate, which allowed us to use a cutoff of 4000,
rather than even higher. The reason for the introduction of M
is therefore purely technical. Nevertheless, making the mass
large enough has an additional interesting effect. Initially, it
reduces the decay rate of | f), and reduces the rate at which it
is populated, lowering the rate at which probability leaks out
of the system. However, when M > u, | fy) is actually stable,
altering the qualitative behavior of the system. Since we have
chosen M much smaller than p, these effects play a negligible
role, and our results should accurately describe the system at
M =0.

Second, we consider increasing the driving strength pu,
which will cause the overlap of eigenfunctions to become
diagonal less quickly, increasing the size of U that must be
used in the numerics, but not significantly changing the results.
A similar consideration applies when one drives at a larger
resonant frequency. Modifying the driving frequency away
from resonance has the opposite result. The results above are
for a driving frequency resonant at 20 energy spacings. If
one makes the driving frequency off resonant, the resonant
peaks shown in Fig. 3 become less pronounced, improving
convergence.

Finally, it is not necessary to choose 77 = 75 in Eq. (7).
Choosing these two times to be unequal will result in an

PHYSICAL REVIEW E 96, 052105 (2017)

asymmetry in Fig. 3, with the resonance peaks on one side
becoming larger than on the other. Otherwise, no significant
change in the results is visible. On the whole, this shows that
the general features we describe in Sec. IV B are robust, and
do not depend on the specific choices we have made.

Now, the question of stability under long-term driving
remains. In general, when one starts driving the system
according to the protocol in Eq. (7), the system will not be in an
eigenstate of the Floquet propagator. As long as the initial state
has no overlap with the low-momentum states of the system,
the system is relatively stable. It will not heat, and it will only
slowly lose a small part of its energy through the decaying state,
because the coupling to low-momentum states is negligible.
Physically, one can prepare a stable state quite easily. The
high-momentum states in the system have negligible overlap
with the infinite-energy states, except at the resonant peaks.
By preparing the system in a high-momentum state that is
off-resonant with the decaying state, one gets a stable time
evolution. In this case, the initial state will consist mostly of the
Floquet eigenstate peaking at the same momentum value, and
the driving will create beat frequencies in the wave functions,
while leaving the energy behavior mostly untouched.

This situation becomes different when an uncertainty in the
driving protocol is considered. In the above, we analyzed the
stability of our results under changes in the driving parameters;
the presence of a random noise each Floquet cycle will have
different results. It might be tempting to draw an analogy
with spatial disorder, and hypothesize the onset of a kind
of Anderson localization in energy space. However, evidence
indicates that this is not the case [46]. Rather, what one can
expect is a diffusion in energy space. This can be intuitively
seen as follows: the propagator over a disordered driving can
be written as §U Uy, where Uy is a fixed unitary operator and
8U is arandom unitary matrix. The random §U will spread out
a wave function in energy space, and the amount of spreading
will be determined by the disorder. Iterating this process will
create a system reminiscent of a random walk, and diffusion
will result. This means that under disorder, the system would
heat in the long run if the decaying mode were not present;
this occurs because it has a lowest energy state, but no highest
one. The diffusion downward is therefore limited, while the
diffusion upward will continue arbitrarily. A recent result for
the Ising model with disordered driving is consistent with
this analysis [47]. In the presence of the decaying mode, this
diffusive behavior would result in a continual population of
the decaying mode, which would cause the particle to decay
out of the system.

VI. CONCLUSION

In conclusion, we have constructed a driven system that
demonstrates various regimes. At high momenta, the system
is stable under the driving; no energy is pumped into or out of
the system due to the driving protocol, and the wave functions
develop beat frequencies due to resonances in the driving. In
contrast, the states at low momenta are unstable under the
driving protocol; they lose their energy due to decay out of the
system. However, because the driving over a period is local
in momentum space, these two regimes can be separated. By
initializing the system with only high-momentum states, there
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is no overlap with the decaying state, and the system should
be stable under the driving. This shows that a careful choice of
the driving protocol, which incorporates stimulated emission
and stimulated absorptions in equal measures, can lead to a
quantum system that is actually stable under a periodic driving,
even in the absence of integrability. The notion that heating
rates can be controlled to some extent by choosing an efficient
driving protocol is relevant in the context of optical lattices,
where the experimental realizability of a variety of interesting
phases is limited by heating effects.

A possible future area of research would be the inclusion of
dissipation in the system. This would cause the system to decay
out of the high-momenta states, while stabilizing the ones at
low momentum. This might cause stable states to develop at

J

PHYSICAL REVIEW E 96, 052105 (2017)

the transition between these two regimes. Another interesting
possibility would be the inclusion of disorder, and interactions.
These will interfere with the transmission of energy through
the system, and will likely influence the heating properties in
interesting ways.
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APPENDIX A: ASYMPTOTIC FORM OF THE PROPAGATOR

Here we prove the asymptotic form

Uo.e — zeein9(4n+a) sinc(arr@),

n+a,n

(AD)

for the even and odd parts of the propagator, U, and U,, respectively.
By performing the sum in Eq. (8), the matrix elements for the odd part of the propagator can be written

1 . 1 3
U() — it0(2n+1) 2 _ 1 CD l,— _ q) 1’_ _
e nz(n—m)(n—i—m—l)e @m = 1)| @ 2+m A"

1 in0(2n+1) 3 1
im0y — D@ (1,2 —n) —@.(1,= ,
T —mntm—D° @n =D P\ 1.5 =n byt

where m # n, z := exp(2im6), and P is the Lerch transcendent. If m = n we get

o 1 it0(2n+1) 3 1 3 1
Un,,,:men 2m - 1120, l,z—n — 29, 1,§+n +Q2n—1| 9, Z,E—n - &, Z,E—i—n .

Using the recursion relation z®,(s,a + 1) = ®,(s,a) — 1/a*, we find that the Lerch transcendent becomes independent of a at
large a, up to a phase. Through numerical evaluation we find |®,(s, inf)| = 0, |®.(s,— inf)| = ¢y, where ¢, is independent of z,
but not of s. Including the phase z from the recursion relation, we find Uy, , .| = 22Uy, for m,n large. This periodicity is a
residue of the conformal symmetry. Far from the ground state, the system cannot distinguish between individual energy levels
due to the absence of an absolute energy scale in the system. Using ¢; = 7, we can further simplify, to obtain for large n,

UU

Cram = 20704 sinc(am6)

for a # 0, up to a global phase independent of a,n,6. The case a = 0 can be evaluated in terms of ¢, explicitly if one wishes.
We perform the same analysis for U¢, and obtain

UE I JT T B 1 0)48B 3 > siomn, | g 1 0)+8B 3 5
=———1{e¢ n|B,| = —m, A =—m,—2)|—e m - —n, — —n,—
mh w2 mn(n? — m2) “\2 “\2 “\2 “\2
1 3 ) 1 3
+m| B, §+n,0 + 8B, §+n,—2 — e M| B, §+m,0 + 8B, §+m,—2 ,

where B,(a,b) is the incomplete Beta function. Using the periodicity property

B.(a,b) = [(@ — DB.(a—,b) — (1 —2)"z*7 ],

a+b—1
together with the asymptotic behavior, B,(inf,—2)/m? = 0, B,(— inf ,—2)/m? = ¢, we can derive the same periodicity and

asymptotic as for U°.

APPENDIX B: EXPRESSION FOR THE ENERGY FLUX

Here, we derive the expression for the momentum flux 7; ,(0) — 7; (/) from the main text. We start from the expression
T, «(x) = :w(x)¢,(x): given in the main text. By using the expansion ¢(x) = >_ ¢,(¢) f,(x) and the expression for a, given in
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the main text, we obtain the expressions

PHYSICAL REVIEW E 96, 052105 (2017)

h
9(x) = Y |5 i 0lan(0) + al(o)

LE,h
T() =i )\ S h@laln) = an@)].

This allows us to write

Ey
E,

ih
177 (%) (X): % Y S @£

which can be rearranged to give

{a!(t) = @ (D[an (@) + al()]:

D> fn/(X)f,Z(x)\/Z [} (D)an(1) = a} (D (1) + @} (Dal(t) = aw(D)an 1))
n,n’ n

i ! .
Tix(x) = —% > \/g{[fn(X)f,}(X) — [0 fuw@af (Daw (@) + £, f)alOal () = fu(0) fr(Xanan(@)}.  (BI)

By using the Robin boundary conditions f’(x) = uf(x)/I at the boundary, we see that the term proportional to a'a vanishes,

and the total flux into the system is

Ta0.0) = Toal) = S 3 \/g LA ) = £(0) for O)(@) () (1) — an(D)an (1).

This is the expression quoted in the main text, with the constant of proportionality included.
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