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Stochastic differential equations are of utmost importance in various scientific and industrial areas. They are
the natural description of dynamical processes whose precise equations of motion are either not known or too
expensive to solve, e.g., when modeling Brownian motion. In some cases, the equations governing the dynamics
of a physical system on macroscopic scales occur to be unknown since they typically cannot be deduced from
general principles. In this work, we describe how the underlying laws of a stochastic process can be approximated
by the spectral density of the corresponding process. Furthermore, we show how the density can be inferred from
possibly very noisy and incomplete measurements of the dynamical field. Generally, inverse problems like these
can be tackled with the help of Information Field Theory. For now, we restrict to linear and autonomous processes.
To demonstrate its applicability, we employ our reconstruction algorithm on a time-series and spatiotemporal
processes.

DOI: 10.1103/PhysRevE.96.052104

I. INTRODUCTION

Stochastic differential equations (SDEs) play an impor-
tant role in a variety of scientific fields [1] and industrial
designs [2]. SDEs are a flexible tool to model dynamical
processes and traditionally serve as a useful prior for the
inference of dynamical fields. In recent decades the inverse
problem gained considerable attention as well. The goal of
the inverse problem is to infer the dynamical properties of
the system from observations of an evolving field. To tackle
this problem a variety of methods have been proposed in the
past [3,4]. These range from parametric methods which aim
to parametrize the process either in the temporal [5] or the
frequency domain [6] to nonparametric and Bayesian methods
[7–9].

In a number of physical disciplines (e.g., astrophysics
or plasma-physics) the dynamical quantities of interest may
evolve not only in time but are also extended in space.
To infer the underlying spatiotemporal dynamical process,
a variety of methods have been proposed. These include
kernel-based methods [10], approaches using spatiotemporal
Kriging [11] as well as Bayesian nonparametric approaches for
multidimensional spatial evolution [12]. Some methods aim
to tackle this problem assuming separability of the spatial and
the temporal evolution which helps to simplify the inference
problem. In many physical applications, however, separability
cannot be assumed due to the entanglement of structures in
space and time.

For autonomous processes, the dynamics is fully deter-
mined in terms of the spectral density of the dynamical
field. In this work we will use this property to model linear,
nonseparable, SDEs. Furthermore, the proposed method is
able to reconstruct the spectral density also for noisy and
masked observations of the dynamical field using Bayesian
inference.

Physical fields usually can be defined in a corresponding
configuration space and linear differential equations can be
described as linear operators acting on field vectors in this
space. We model the problem with the help of probabilities
over the elements of this configuration space directly to reflect

the mentioned properties of the field. To this end, we rely
on the language of information field theory (IFT) [13,14],
which extends information theory to fields. The restriction of
this work to spatially and temporal autonomous differential
operators enables us to describe those in terms of fields over
the joint Fourier spaces and to derive posterior distributions
for the corresponding fields directly. Due to the fact that the
resulting equations are often not analytically traceable, the
computations ultimately are performed on a finite grid on
a computer. However, as IFT is independent of the chosen
discretization, one can always choose a representation which
is convenient for the problem at hand. In this work, the
discretization is achieved using the software package NIFTY 3

(Numerical Information Field Theory) [15], which allows
building algorithms using a field theoretical language, while
the framework takes care of the underlying discretization.
To introduce the notation and field theoretical language used
throughout this paper, we continue with a brief introduction
to IFT.

A. Introduction to IFT and notation

IFT is a statistical field theory that allows doing probabilis-
tic calculations for fields (in the physical sense) defined over
continuous space (or space-time). It is already used in various
inference tasks, such as astrophysical imaging [16], component
separation [17], numerical simulations of dynamical systems
[18], and others. IFT has also previously been applied in
the context of dynamical system inference [19]. The theory
enables the user to work directly in the field configuration
space, which for many applications involving fields is the
natural space to define problems.

To define probabilities for fields we introduce a scalar
product for fields (φ(x), ψ(x) with x ∈ � = Rn) as

φ†ψ =
∫

�

φ∗(x)ψ(x) dx, (1)

where ∗ denotes complex conjugation. Note that throughout
this paper we restrict ourselves to scalar fields, for simplicity,
although a generalization to vector fields is possible. As an
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example, a Gaussian distribution for a field can be written as

P(φ) = G(φ − m,�)

= 1√|2π�| exp

{
−1

2
(φ − m)†�−1(φ − m)

}
, (2)

where m denotes the mean and � is a linear, self-adjoint, and
strictly positive operator that maps from the field configuration
space to itself. In other words, it is the continuous version
of a covariance. Note that � is sometimes referred to as
a covariance matrix, although it is actually a continuous
operator. |�| denotes the functional determinant of the operator
�. The exponential factor in Eq. (2) reads

φ†�−1φ = φ∗
x�

−1
xy φy =

∫
dx

∫
dy φ∗(x) �−1(x,y) φ(y),

(3)

where we also introduced the continuous version of the
Einstein sum convention.

Although it is natural to formulate many physical problems
in a field theoretical language, the data that we observe is
always finite. Therefore, we need to translate between the
field configuration space (called signal space) and the so called
data space. To illustrate this procedure consider the following
measurement scenario:

du = Ru[φ] + nu, (4)

where R denotes a projection operator that projects from the
infinite-dimensional configuration space of φ to a finite set
of M measurement points du (with u ∈ {1,..,M}) and n is the
measurement noise. Using this data model and Bayes theorem,
the posterior of φ given d reads

P(φ|d) ∝
∫

Dn P(d|φ,n)P(φ)P(n). (5)

If we assume n and φ to be independently Gaussian distributed
with zero mean and covariances N and �, respectively, and
also assume R to be a linear operator, then the posterior is also
a Gaussian, i.e.,

P(φ|d) = G(φ − m,D), (6)

with mean

m = Dj = (�−1 + R†N−1R)−1R†N−1d, (7)

and covariance D = (�−1 + R†N−1R)−1. These equations
resemble the famous Wiener filter equations [20], which is
the optimal linear filter, applied to a field theoretical setting.

In a nonlinear setting, however, the exact form of the
posterior or corresponding expectation values are often not
analytically traceable. Therefore, in this work we rely on
maximum a posteriori (MAP) estimates, which we obtain by
minimizing the so-called information Hamiltonian defined as

H(x) = − ln [P(x)], (8)

where ln(x) is the natural logarithm. In addition, the second
derivatives of the Hamiltonian give rise to the Laplace
approximation of the uncertainty maps, as we will discuss
in Sec. III E.

To motivate the application of IFT to the inference of
dynamical systems we note that linear differential equations

can be rewritten as linear (differential) operators acting on a
field of interest. As we will point out in the next section, these
operators serve as a building block for the covariance function
in the context of SDEs. Specifically, we draw the connection
to the spectral density of the field, which is defined as the
diagonal of the covariance operator in harmonic space.

B. Structure of this work

The rest of this work structures as follows: In Sec. II
we briefly outline how SDEs are connected to the spectral
density of a random process. Consequently, in Sec. III we
describe the key properties of our inference method of spectral
densities from field realizations as well as noisy measurements
thereof. In Sec. IV we apply our method to different mock
data examples, including one- and two-dimensional examples.
Finally, in Sec. V we conclude the paper with a short summary
as well as a small outlook to possible applications and further
projects.

II. FROM A SDE TO THE SPECTRAL DENSITY

In this section we outline how the properties of a linear SDE
are encoded in the spectral density of a spatiotemporal dynam-
ical process. Furthermore, we introduce the key assumptions
that are necessary to ensure that all relevant information is
encoded in the density.

A suitable starting point is a linear SDE of the form

(Lφ)(x,t) = ξ (x,t), (9)

where L is a linear (differential) operator acting on a field
φ, and ξ is a random process. x ∈ Rd and t ∈ R denote the
spatial and temporal coordinates, respectively. Note that the
distinction between space and time is for convenience only,
i.e., all formulas treat space and time on the same footage,
which means that the analysis is also valid for a general
multidimensional process.

Assuming ξ to be Gaussian distributed with a covariance
matrix � and using Eq. (9) yields the probability distribution
for φ:

P(φ|L,�) =
∫

Dξ P(φ|L,ξ ) G(ξ,�) = G(φ,�), (10)

where

� = (L†�−1L)−1. (11)

As we can see, all relevant information concerning the
statistical properties as well as the dynamic evolution is
encoded in the correlation matrix � if the underlying process
is linear and invertible.

Assuming L to be local and homogeneous in both space
and time implies that the operator can be written as

Lxx ′ = δ(d+1)(x − x ′) g(∂t ,∂x), (12)

where we introduced the space-time vector x = (t,x) and the
differential operator encoding function g. Fourier transforming
Eq. (12) yields

Lkk′ = (2π )d+1δ(d+1)(k − k′) f (k), (13)

where k = (ω,k) denotes the coordinates in harmonic space
and f (k) = g(i ω,i k) is a complex scalar field, with i being
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the imaginary unit. Note that if the differential equation is real,
then f ∗(ω,k) = f (−ω,−k) and therefore L is Hermitian.

Assuming further that also � is diagonal in harmonic space
with the spectral density Pξ (k), Eq. (11) can be rewritten as

�kk′ = (2π )d+1δ(d+1)(k − k′)
Pξ (k)

|f (k)|2
=: (2π )d+1δ(d+1)(k − k′)Pφ(k), (14)

where we defined Pφ(k), the spectral density of φ.
As we can see, Pφ encodes the properties of a SDE up to

the complex phase of f . Therefore, we seek to find a way to
infer it from observations of the field φ. To derive the posterior
distribution of the spectrum, in the following, we propose a
way to model the key features of Pφ .

III. SPECTRAL DENSITY INFERENCE

To model Pφ we notice that if f and Pξ are continuous and
smooth functions of their arguments, then Pφ is a rational and
positive function. We therefore model the spectral density as

Pφ(k) = exp {τ (k) + tan [δ(k)]}. (15)

The idea behind this definition is that we want to reduce Pφ to
its two key properties: either Pφ is a smooth, positive function
of k, which we model by exp(τ ), or it diverges as

|f (k)|2 → 0, (16)

which is modeled by exp[tan(δ)]. We therefore define suitable
prior distributions for τ and δ, which aim to support these
features.

A. τ -Prior

To constrain τ to be a smooth function of its arguments, we
impose a smoothness prior on τ (see, e.g., Ref. [21]). To get an
idea about smoothness and the corresponding prior consider
the following 1D example: Suppose Pφ models a power-law,
i.e.,

Pφ(y) = yα, (17)

with y,α ∈ R and assume for the moment δ = 0. Then

τ = ln
[
Pφ(y)

] = α ln (y), (18)

is linear in ln(y), which implies that the second logarithmic
derivative vanishes. We therefore built our prior such that it
minimizes the curvature of τ on a logarithmic scale. This reads

P(τ ) = G(τ,Tσ ), (19)

with Tσ such that

τ †T −1
σ τ = 1

σ 2

∫
d( ln (y))

∣∣∣∣ ∂2τ (y)

∂ ln (y)2

∣∣∣∣
2

, σ ∈ R, (20)

where σ is an overall hyperparameter controlling the degree
of smoothness one wants to impose on τ .

In higher dimensions, this constraint has to be imposed
for all quadratic, logarithmic variations of the field simulta-
neously. A derivation of the exact form as well as a short
discussion can be found in Appendix A. Furthermore, in some
applications it is necessary to impose smoothness also for

negative y. To do so, we extend this prior using the complex
logarithm, which is also defined on a negative scale. Details
of this approach as well as the treatment of the special point
y = 0 are discussed in Appendix B.

B. δ-Prior

The prior distribution for δ is constructed in a way such that
δ allows for a transition of the spectral density from smooth
to divergent regions. We therefore also impose a smoothness
prior on δ, which implies that for small δ, where

tan(δ) ≈ δ, (21)

the spectrum remains smooth. However, as δ approaches
±π/2, small changes in δ result in large, abrupt changes of the
spectrum.

The full prior reads

P(δ) ∝ G(δ,Tμ) G(δ,ν21), δ ∈ [−b,b], μ,ν ∈ R, (22)

where we also included a term to the prior that punishes
larger values of δ. This ensures that δ remains zero in regions
where the data does not support a divergence. Note that we
restrict the support of δ to b = (π/2 − ε), where ε serves as a
“high-energy” cutoff to avoid infinities during reconstruction.
Since the length-scale of δ is π/2 we note that ν ≈ π/2 is a
reasonable choice.

C. Perfect data posterior

Using the priors and the likelihood, defined in Eq. (10), we
can immediately write down the posterior distribution,

P(τ,δ|φ) ∝ G(φ,�) P(τ ) P(δ), (23)

and the corresponding information Hamiltonian,

H(τ,δ|φ) = − ln (P(τ,δ|φ))

= 1
2

[
φ†�−1φ + ln (|�|) + τ †T −1

σ τ

+ δ†
(
T −1

μ + ν−2
)
δ
] + H0, (24)

where H0 is a constant that is independent of τ and δ.
Minimizing this Hamiltonian with respect to τ and δ leads
to their maximum a posteriori estimates, given perfect data on
the realization of φ.

D. Noisy data posterior

In reality, we are usually only able to retrieve noisy
measurement data, d, of φ. We therefore seek to find a way
to infer the spectral density from noisy measurements rather
than from φ itself. Using the notation introduced in Sec. I A
and the data model [Eq. (4)], the joint distribution reads

P(d,φ,τ,δ) = G(d − Rφ,N )G(φ,�)P(τ )P(δ). (25)

Depending on the measurement process, in particular the form
of R, the optimal way to proceed may differ significantly. As
this is a general issue concerning Bayesian inference and well
discussed in literature, we want to focus the discussion on our
definition of the spectral density rather than all possible ways
of inference.
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However, we note that there exist in principle two different
approaches to reconstruction in this case. One way is to mini-
mize the information Hamiltonian corresponding to Eq. (25),
with respect to all quantities of interest (φ, τ , δ), to obtain a
maximum a posteriori solution. In cases of high quality data,
this is a good way to proceed.

However, in cases of high measurement uncertainty, the
high frequency modes of φ are suppressed in the reconstruction
as they are indistinguishable from the noise. Due to the fact that
the natural domain of (τ , δ) is the harmonic domain, the lack
of high-frequency modes restricts a reliable reconstruction of
τ and δ to low frequencies.

A possible way to resolve this issue is to marginalize out φ in
Eq. (25). For a linear R marginalization is obtained analytically
and the marginal information Hamiltonian is given by

H(τ,δ|d) = 1

2

[
ln

( |�|
|D|

)
− j †Dj + τ †T −1

σ τ + δ†T −1
μ δ

]

+ 1

2ν2
δ†δ + H0, (26)

with

D = (R†N−1R + �−1)−1, j = R†N−1d, (27)

analogous to Eq. (7). Minimizing Eq. (26) leads to the posterior
estimates which we will call τ̄ and δ̄ in the following.

In the spirit of the empirical Bayes approach [22], where
we treat these estimates as the true values irrespective of their
corresponding uncertainties, the approximate posterior of φ

reads

P(φ|d,τ̄ ,δ̄) = G(φ − D̄j,D̄), (28)

where D̄ denotes the information propagator, evaluated
at τ̄ , δ̄.

E. Hamiltonian gradients and curvature

To obtain maximum a posteriori solutions as well as
uncertainty estimates from the information Hamiltonians
presented in the previous sections, we need to evaluate the
corresponding gradients and curvatures.

For the perfect data Hamiltonian defined in Eq. (24), we
find

∂H(τ,δ)

∂τk

= 1

2
(1 − φ∗

k φke
−τk−tan(δk )) + (

T −1
σ τ

)
k
, (29)

and

∂H(τ,δ)

∂δk

= 1 − φ∗
k φke

−τk−tan(δk)

2 cos(δk)2

+
[(

T −1
τ + 1

ν2

)
δ

]
k

. (30)

To get an estimate of the spectral uncertainty, we have to
consider the transformed posterior distribution of τ and tan(δ)
as they enter the logarithmic spectrum. Specifically,

P(τ, tan(δ)|φ) = P(τ,δ|φ)

∣∣∣∣δ tan(δ)

δδ

∣∣∣∣
−1

, (31)

where | • | denotes the functional determinant. The corre-
sponding information Hamiltonian reads

H(τ, tan(δ)|φ) = H(τ,δ|φ) − Tr{ln[cos(δ)2]}. (32)

The second derivatives of this Hamiltonian can be used to
get a Gaussian approximation of the posterior from which
we retrieve an uncertainty estimate for the log-spectrum. The
derivatives read

∂2H(τ, tan(δ))
∂τk ∂τq

= 1

2
φ∗

k φke
−τk−tan(δk )δkq + (

T −1
σ

)
kq

, (33)

and

∂2H(τ, tan(δ))
∂ tan(δk) ∂ tan(δq)

= 1

2
φ∗

k φke
−τk−tan(δk )δkq

+ cos2(δk) cos2(δq)

(
T −1

τ + D−1
η + 1

ν2

)
kq

− 2

[
cos3(δ) sin(δ)

(
T −1

τ + 1

ν2

)
δ − 1

]
k

δkq . (34)

The square root of the diagonal of the inverse operators (which

we call
√

Ô) can then be regarded as the one-sigma uncertainty
estimate of the corresponding quantity. Further details are
described in Ref. [21]. For the noisy data posterior [Eq. (26)],
the derivations are completely analogous.

Since now all ingredients that are necessary for inference
are available, consistency tests as well as mock data applica-
tions are presented in the next section.

IV. APPLICATION

For the first consistency check we restrict the analysis to
one dimension, the time axis. Consider a differential equation
of the form (

α ∂2
t + β ∂t + m2

)
φ = ξ, (35)

with (α,β,m2) = (0.0003,0.001,0.5). This is the stochastic
version of a damped harmonic oscillator. If we assume ξ to
be a white noise process with covariance � = 1, the spectral
density of φ becomes

Pφ(ω) = 1

(γ − α ω2)2 + (β ω)2
. (36)

A signal φ [displayed in Fig. 1(b)] can then be generated
by drawing one sample from the probability distribution
corresponding to Pφ . Assuming that one is given φ, Eq. (24)
can be used directly to infer the spectrum by maximizing the
corresponding Hamiltonian. In this application the hyper-prior
values are set to (σ,μ,ν) = (2.0,2.0,0.5π ). The results of
the reconstruction are shown in Fig. 2, where we depict Pφ

as well as the reconstruction on a log-log-scale. One can
see that both fields behave as expected, i.e., τ models the
smooth background of the spectrum while δ reconstructs the
divergence and is zero everywhere else. In addition, one sees
that the assumption of linearity is true up to the divergent part,
as expected.
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FIG. 1. Data d (a), signal φ (b), and reconstruction mφ (c) using
the MAP estimate of the spectrum. The gray area denotes the one σ

uncertainty of the reconstruction.

Now we assume that instead of φ we are only given noisy
and incomplete measurements d of φ, as shown in Fig. 1. We
generate mock data assuming Gaussian noise with variance
σn = 16. To mimic a more realistic measurement scenario
we built the response operator R such that it only measures
the signal for certain time intervals. This means that R masks
the signal in certain regions and the resulting data, displayed
in Fig. 1(a), is a noisy and incomplete version of the original
signal.

As described in Sec. III D, we first reconstruct the spectrum
by minimizing the marginal Hamiltonian [Eq. (26)] with
respect to τ and δ to get maximum a posteriori solutions.
Thereby we used the same values for the hyper-priors as in the

FIG. 2. Reconstruction of Pφ , given φ (Fig. 1, middle panel), on a
log-log-scale. The solid line is the theoretical spectrum corresponding
to Eq. (36) and the black dots display the spectrum of the actual
sample φ. The dashed line is the maximum a posteriori estimate
obtained by maximizing Eq. (24) and the dotted line is the MAP
estimate of τ alone. The gray area denotes the one σ uncertainty of
the reconstruction as described in Sec. III E.

FIG. 3. Reconstruction of Pφ given noisy data d (Fig. 1, top
panel). We note that due to the Gaussian approximation the uncer-
tainty estimates are significantly underestimated, in regions of low
power.

perfect data case. The results are displayed in Fig. 3. Using
the results from Eq. (28) we also obtain a reconstruction of
the original signal φ as well as corresponding uncertainties
[Fig. 1(c)]. We see that even in regions of no data, we
partially infer the correct signal since we were able to obtain
a good reconstruction of the spectrum in the first place.
The quality of these inter- and extrapolations of the mean
reconstruction strongly depends on the correlation length
of the corresponding dynamical process. This means that if
the process is dominated by random excitations rather than
deterministic evolution, interpolation over length scales much
larger than the correlation length is in principle not possible.
However, due to the fact that we infer the full statistics of
the process, even in these cases we are able to state the
probability of each possible interpolation in terms of the
posterior distribution. Due to the empirical Bayes approach
spectral uncertainties are ignored for the reconstruction of
φ. Therefore, posterior uncertainties of φ are underestimated,
particularly concerning the overall power of the oscillations.
This becomes obvious in the regions of no data.

Spatiotemporal evolution

In the next example, we extend the analysis to two
dimensions, a spatial and a temporal one. The analysis follows
the same spirit as described in the previous section. Using a
stochastic process of the form(

α∂2
t − β∂2

x − γ ∂x − ρ∂t + m2
)
φ = ξ, (37)

we first generate mock data d [Fig. 4(c)] from a sig-
nal φ [Fig. 4(a)] using a noise variance of σn = 7.
ξ is again a white noise process and (α,β,γ,ρ,m2) =
(0.00007,0.0002,0.0014,0.0012,0.1). The MAP estimate of
the spectrum as well as the spectrum itself is displayed in
Fig. 5. In this case, the hyper-priors are set to (σ,μ,ν) =
(2.5,2.5,0.5π ). We see that in this setting we are able to recover
the dominant features of the spectrum, while features of lower
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FIG. 4. Signal φ [(a), drawn form the process corresponding to Eq. (37)], resulting noisy measurement data d (c), reconstruction mφ (b),

and uncertainty map
√

D̂ (d) of the reconstruction.

power are not recoverable due to noise. This becomes even
clearer when we look at Fig. 6. Here we present slices through
the spectrum for different frequency values of k and ω. We see

that all features with significant power above the noise level are
reconstructed well, while features which are indistinguishable
of the noise get suppressed in the reconstruction.

FIG. 5. For the field and data shown in Fig. 4, logarithmic spectrum ln(Pφ) (a), projected data ln (|d|2) (c), reconstruction τ + tan(δ) (b),

and uncertainty estimate
√

Ô (d) as defined in Sec. III E.
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FIG. 6. Slices through the logarithmic spectrum, the data, and the reconstruction, shown in Fig. 5. The left panels show the spectrum
as a function of k for fixed ω = 0 (a) and ω = −30 (c). The right panels show the spectrum as a function of ω for fixed k = −20 (b) and
k = 70 (d).

Using the MAP estimate for the spectrum we also recon-
struct φ itself, as displayed in Fig. 4(b). We see that even in
regions of no data, we reconstruct the dominant oscillations of
the system, while small-scale structures cannot be recovered.
Again, in Fig. 7, we present slices of the data, the signal,
and the reconstruction for different time-steps and at different

locations. Subplot (c) shows the spatial structure at a very
late time-step, namely in a region where no measurement
was made at all. This means that the reconstruction is based
entirely on the spectral reconstruction, which serves as a
prior, and the constraints that come from data at previous
time-steps. Nevertheless, a reasonable estimate of the field

FIG. 7. Slices through the full field, the data, and the reconstruction, shown in Fig. 4. The left panels show the spatial structure for t = −0.27
(a) and t = 0.38 (c). The right panels show the temporal evolution at x = −0.15 (b) and at x = 0.17 (d).
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configuration is still possible for a certain period after the last
measurements.

To demonstrate the advantage of this nonparamet-
ric approach we apply the analysis to a highly
structured setting, namely with a spectrum of the
form

Pφ(k,ω) = 2

[m2 − sin(αk2 − βω2)]2 + (γ k + ρω)2
, (38)

with (m2,α,β,γ,ρ) = (1.1,0.0025,0.0011,0.002,0.004). Al-
though this spectrum is completely artificial, we note that
similar periodic and highly structured spectra also exist in
reality. Such are observed, for example, in helioseismology
[23]. We use the same setup as described in the previous
example but reduce the noise variance to σn = 1 to capture
more structure of the spectrum. In addition, the hyper-prior
parameters were set to (σ,μ,ν) = (4.0,4.0,0.5π ). The results
are shown in Figs. 8 and 9.

V. CONCLUSION

Spectral density estimation is a powerful technique for field
dynamics inference. In this work, posterior distributions for
the spectral density and the field itself have been derived,
which ultimately are used to retrieve maximum a posteriori
estimates as well as corresponding uncertainties. The one-
and two-dimensional tests indicate that the method behaves as
expected in self-consistent scenarios.

Possible applications of this method involve fields that
have a nontrivial entanglement between spatial and temporal
evolution. One example is the inference of the dynamics
of a plasma from observations. Another example is the
area of numerical simulations. In particular, in astrophysical
applications one is often interested in the dynamics of fields
that are computationally too expensive to simulate. Treating
a few expensive simulations as observations of the field of
interest, our method can provide an approximate dynamics,
which can mimic essential properties of the real evolution of
the field.

The distinction between smooth and divergent parts of the
spectrum as well as the corresponding properties of the prior
choices for responsible fields τ and δ appears to be reasonable
in this setting. However, other choices may also be possible.
A future goal would be to study other parametrizations of the
spectrum in terms of fields, in particular, in a four-dimensional
high-resolution setting where a reconstruction of the full
spectrum exceeds the range of computability.

Despite the fact that linear autonomous SDEs are an
important class of SDEs to study dynamical evolution, an
extension to nonautonomous as well as nonlinear problems
is a desired goal for future work. However, for these cases it
appears to be indispensable to have a general method for linear
processes first. This is provided by this work.
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APPENDIX A: SMOOTHNESS PRIOR IN HIGHER
DIMENSIONS

A smoothness prior in higher dimensions is sometimes
constructed by imposing the constraint that, at each point g,
the log-Laplacian ∂2/∂[ln(g)]2 of the field should be small.
This, however, is not sufficient to impose smoothness in cases
where one encounters concave and convex curvature along
different directions simultaneously (e.g., saddle surfaces). In
the following, we briefly outline why this is the case.

If we consider the logarithmic Hessian of a field ψ at each
point y ∈ RN , defined as

(H [ψ])ij (y) = ∂2ψ(y)

∂ ln(yi) ∂ ln(yj )
, i,j ∈ {1,...,N}, (A1)

we notice that the log-Laplacian is equal to the trace of
the Hessian and therefore to the sum of the corresponding
eigenvalues. This indicates that if the eigenvalues are positive
and negative (corresponding to convex and concave curvature
along the eigendirections), the Laplacian can become zero
even though the surface has nonzero curvature. As a result,
saddle-surfaces with equal absolute curvature and constant
surfaces are equally likely in the corresponding prior. This is
not a desired behavior. The goal of a generic smoothness-prior
should be to assign lower probabilities also to surfaces with
altering curvature.

We therefore propose to use a prior, which aims to
minimize all quadratic, logarithmic variations of a field ψ

simultaneously. For a M-dimensional space the exponential
factor of the prior reads

ψ†T −1
σ ψ = 1

σ 2
ψ†

M∑
i=1

⎛
⎝T −1

ii + 2
i−1∑
j=1

T −1
ij

⎞
⎠ψ, (A2)

with Tij such that

ψ†T −1
ij ψ =

∫
dM [ln(y)] |(H [ψ])ij (y)|2. (A3)

Note that this prior is rotationally invariant which indicates
that curvature in all directions is treated in the same way.

Discrete derivatives

To apply the theoretic discussions above to a finite setting
(e.g., a finite grid on a computer) we need a discrete represen-
tation of the operators involved in the analysis, in particular of
the log-derivative operator. One usual way is to approximate
derivatives in terms of finite differences (see, e.g., Ref. [24]). A
possible way of discretizing the second logarithmic derivative
is described in the Appendix of Ref. [21].

However, in this particular setting there exists also another
way of differentiation in terms of Fourier transformation.
We note that, using the chain rule, the second logarithmic
derivative of y can be written as

∂2
ln(y) = y2∂2

y + y∂y, (A4)

where we restrict our discussion to one dimension, for
simplicity. Furthermore, as discussed in Sec. II, differentiation
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FIG. 8. Signal φ (a), noisy measurement data d (c), reconstruction mφ (b), and uncertainty map
√

D̂ (d), for the highly structured spectrum
given by Eq. (38).

can be translated to multiplication in harmonic space, i.e.,

∂yψ(y) =
∫

dk ik ψ̃(k) eiky, (A5)

which indicates that using discrete Fourier transformations,
derivatives can be represented by point-wise multiplication in
harmonic space.

FIG. 9. For the field and data shown in Fig. 8, logarithmic spectrum ln(Pφ) (a), projected data ln (|d|2) (c), reconstruction τ + tan(δ) (b),

and uncertainty estimate
√

Ô (d).
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At first sight, this may seem like a more complicated
method for differentiation. However, we note that on a
parallel machine, Fourier transformations as well as point-
wise multiplications can be fully parallelized while finite
differences methods always involve internode communication
due to subtracting shifted versions of the field representation.
On a single node, however, finite differences appear to be
computationally more efficient.

Therefore, depending on the problem setting, one method
may be superior to the other. Our tests indicate that both
methods of differentiation are applicable for prior construction
in our problem setting. However, we do not recommend to mix
both methods within one inference problem, as the exact form
of the derivatives might be incompatible. A more sophisticated
test in terms of computational time and accuracy is beyond the
scope of this work.

APPENDIX B: COMPLEX LOGARITHM
AND SMOOTHNESS AT ZERO

In some applications of the spectral density inference
method, we need to impose the smoothness-prior on a zero-
centered harmonic space, since the negative part of the density
can carry additional information and a shift to purely positive
values is not always possible.

As the smoothness-prior involves logarithmic derivatives,
we seek to find a way to define logarithmic derivatives for

negative values. This is achieved in terms of the complex
logarithm. Consider for example k > 0, then

ln(−k) = ln(eiπk) = ln(k) + iπ, (B1)

and therefore the infinitesimal line-element reads

|d ln(−k)| = |d ln(k)|, ∀k 
= 0. (B2)

This indicates that we can express the derivative with respect to
a negative k in terms of the corresponding positive differential,
i.e., ∣∣∣∣ ∂ψ(k)

∂ ln(k)

∣∣∣∣ =
∣∣∣∣ ∂ψ(k)

∂ ln(|k|)
∣∣∣∣, ∀k 
= 0. (B3)

As the logarithm of zero is not defined, the smoothness-
prior is also not defined at zero. In this work, we fix this
problem by adding a prior to the analysis, which aims to
minimize the second derivative with respect to k. Therefore,
the Hamiltonians of τ and δ get modified by a term:

Hη(ψ) = 1

2
ψ†D−1

η ψ = 1

2η2

∫ ∣∣∣∣∂
2ψ(k)

∂k2

∣∣∣∣
2

dk, ψ ∈ {τ,δ}.
(B4)

Note that for small k this prior dominates the smoothness prior,
while for larger k the logarithmic derivatives are dominant and
this second prior does not contribute significantly any more.
All applications shown in Sec. IV use η = 0.1.
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