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Dynamic scaling in the two-dimensional Ising spin glass with normal-distributed couplings
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We carry out simulated annealing and employ a generalized Kibble-Zurek scaling hypothesis to study the two-
dimensional Ising spin glass with normal-distributed couplings. The system has an equilibrium glass transition at
temperature T = 0. From a scaling analysis when T → 0 at different annealing velocities v, we find power-law
scaling in the system size for the velocity required in order to relax toward the ground state, v ∼ L−(z+1/ν), the
Kibble-Zurek ansatz where z is the dynamic critical exponent and ν the previously known correlation-length
exponent, ν ≈ 3.6. We find z ≈ 13.6 for both the Edwards-Anderson spin-glass order parameter and the excess
energy. This is different from a previous study of the system with bimodal couplings [Rubin et al., Phys. Rev. E
95, 052133 (2017)] where the dynamics is faster (z is smaller) and the above two quantities relax with different
dynamic exponents (with that of the energy being larger). We argue that the different behaviors arise as a
consequence of the different low-energy landscapes: for normal-distributed couplings the ground state is unique
(up to a spin reflection), while the system with bimodal couplings is massively degenerate. Our results reinforce
the conclusion of anomalous entropy-driven relaxation behavior in the bimodal Ising glass. In the case of a
continuous coupling distribution, our results presented here also indicate that, although Kibble-Zurek scaling
holds, the perturbative behavior normally applying in the slow limit breaks down, likely due to quasidegenerate
states, and the scaling function takes a different form.
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I. INTRODUCTION

Spin glasses are benchmark models for studying complex
physical systems and optimization problems. Due to the
disorder and frustration (random mixed-sign couplings), the
energy landscapes of these systems are very rough, with many
local minimums, and it is very challenging to find the true
global minimum (ground state) through Monte Carlo (MC)
simulations [1–4]. Among the common spin glass systems,
the two-dimensional (2D) Ising spin glass (2DISG) is special
in that the paramagnetic-glass phase transition occurs exactly
at temperature T = 0. The system has long-range spin-glass
order [defined with the Edwards-Anderson (EA) order param-
eter] at T = 0, and the correlation length diverges as a power
law, ξ ∼ T −ν when T → 0. Many works have been devoted to
the nature of the critical behavior and to obtaining the critical
exponents of 2DISG system with both normal-distributed
(Gaussian) and bimodal couplings [5–8]. However, due to the
considerable challenges with MC simulations, especially for
large systems at low temperature, there are still significant
issues under debate. For example, whether or not the 2DISG
with bimodal J = ±1 and Gaussian couplings belong to the
same universality class in their equilibrium criticality is still in
question [9–14]. Undisputed is the fact that the ground-state
properties of the two models are different. The system with
Gaussian couplings has a unique (nondegenerate) ground state,
up to a trivial spin reflection, while the model with bimodal
couplings has infinite degeneracy in the thermodynamic
limit.

Given the difficulties in studying the critical behavior
through equilibrium simulations, the recently developed
nonequilibrium approach based on generalized Kibble-Zurek
(KZ) scaling [15–22] provides a powerful alternative method
for studies of spin-glass models. KZ scaling of simulated

annealing (SA) results has been successfully applied to three-
and two-dimensional spin glass systems in order to extract
the dynamic exponent z and other critical exponents [23,24].
The key aspect of the KZ mechanism used in this context is
the prediction that slow (close to equilibrium) and fast (far
from equilibrium) SA processes are separated by an annealing
velocity vKZ that scales with the system size (length) L

as

vKZ ∝ L−z−1/ν, (1)

where ν is the standard equilibrium correlation-length expo-
nent. Here we apply this approach to the 2DISG with Gaussian
couplings, following the recent work on bimodal couplings
[24].

In Ref. [24] a surprising behavior with dual time scales gov-
erning the relaxation when T → 0 was discovered. Contrary to
the general expectation that the order parameter is the slowest-
relaxing physical observable, and that most other quantities
are asymptotically governed by that same time scale, a larger
dynamic exponent, zE ≈ 10.3, was found for the excess energy
than zq ≈ 8.3 for the EA order parameter. The physical
mechanism proposed to underly the two time scales relies
on the backbone (largest common cluster) and droplet (zero-
energy flippable cluster) structure of the massively degenerate
ground states of the J = ±1 model [11,25], which leads to a
concentration in the configuration space of low-energy states
that entropically attracts the SA process. The proximity of true
ground states and low-energy excitations to each other within
this region was proposed to lead to an insensitivity of the
replica-overlap definition of the order parameter to low-energy
excitations, so that the final relaxation of the energy leads to
only subleading corrections to the already equilibrated mean
order parameter. This T → 0 relaxation process is of particular
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relevance in related optimization problems, where currently
there is much interest in comparing SA and quantum annealing
protocols and the connectivity (especially the dimensionality)
of the the spins (qubits in quantum annealing) may play a very
important role [26].

It should be noted that the relaxation dynamics in an SA
process for T → 0 can be very different from the dynamics
associated with ergodic sampling at fixed T > 0. The latter
should be associated with a divergent dynamic exponent when
T → 0 in 2D Ising spin glasses [27], which also is consistent
with the nonergodicity of local spin moves at T = 0. In SA the
temperature is constantly changing, and naive arguments based
on activated dynamic scaling to overcome energy barriers do
not necessarily apply in all cases, since the details of the
energy landscape matter. In Ref. [24] it was argued that the
droplet structure of the 2D Ising spin glass corresponds to a
funnel-like feature of the energy landscape where high-energy
barriers can be overcome at high temperatures and the barriers
remaining as the ground state is approached when T → 0
become typically smaller, such that a power-law scaling of
the annealing time required to reach the ground state is
obtained. This situation is also of great interest in the context
of optimization and computational complexity, as a case where
the typical exponential scaling to find an optimal solution can
be avoided [26].

In the case of Gaussian-distributed couplings, which we
study in this paper, the backbone structure can be defined
only as an approximation with low-energy states instead of
true ground states [28,29]. Strictly speaking, there is no
definable backbone and zero-energy clusters in that model
due to the lack of ground-state degeneracy. Because of this
qualitative difference of the ground-state landscape, one can
expect different dynamical properties for the Gaussian model
(or any other continuous coupling distribution). The aim of
the work presented here is to apply exactly the same scaling
approach as was done with the bimodal 2DISG in Ref. [24]
and test whether a clearly different asymptotic relaxation
mechanism can be detected. We will show that, indeed, in
this case the excess energy and the EA order parameter
relax with the same dynamic exponent, and the value of the
exponent, z = 13.6(2) (where here and later the number in
parentheses indicates the statistical error of the preceding digit)
is significantly larger than both exponents found in the bimodal
case.

The organization of the rest of the paper is as follows:
In Sec. II we discuss the known equilibrium properties and
expected finite-size behaviors near the T = 0 critical point of
the 2DISG model with Gaussian couplings. These properties
are important when extending finite-size scaling to nonequi-
librium setups where the annealing velocity enters as another
variable. We describe the SA simulation procedures, where
we have applied graphics-processing-unit (GPU) computing
for very efficient MC sampling with the Metropolis algorithm,
and summarize the KZ scaling procedures we have applied
to quantify the relaxation behavior as a function of system
size and annealing velocity. In Sec. III we present results of
the scaling analysis for the excess energy and the EA order
parameter. Last, in Sec. IV we further discuss our findings and
contrast them with the conclusions previously drawn for the
bimodal case.

II. MODEL AND METHODS

The Hamiltonian of the 2DISG is

H =
∑
〈ij〉

Jijσiσj , σi = ±1, (2)

where, in the case considered here, 〈ij 〉 stands for nearest-
neighbor spins on a 2D square lattice with L2 sites and
periodic boundary conditions. The couplings Jij are drawn
from some distribution, here Gaussian with mean 0 and
standard deviation 1.

A. Equilibrium finite-size scaling

The primary quantity capturing the spin-glass phase transi-
tion is the EA order parameter,

q = 1

N

N∑
i=1

σ
(1)
i σ

(2)
i , (3)

where (1) and (2) stand for two independently generated
configurations (two different MC simulations), also referred
to as “replicas,” of systems with the same coupling realization
{Jij }. In this paper, we focus on the mean squared EA
order parameter, 〈q2〉, as well as the internal energy density
E = 〈H 〉/N in the limit T → 0 reached in SA simulations
with Metropolis dynamics. For simplicity of notation, we use
〈...〉 to denote the combined MC expectation value and the
average over disorder samples.

It is known that the 2DISG with Gaussian couplings has
a phase transition exactly at T = 0, and its critical behavior
has been studied extensively [5–7]. Unlike the 2DISG with
J = ±1 couplings, where there are many degenerate ground
states, there is only a unique ground state (and the state with all
spins reversed). Thus, as T → 0 all the independent replicas
will eventually fall into the same ground state configuration in
the limit of a very slow SA process, and the EA order parameter
〈q2〉 must approach 1 without any finite-size corrections in the
T = 0 value. However, according to the study in Ref. [6],
the equilibrium ground-state energy density has a finite-size
correction of the form

E(L) − E∞ = aL−(d+ 1
ν

). (4)

Here the energy per spin for infinite d = 2 dimensional
system is E∞ = −1.314788(4) [30] and the most precise value
available for the critical exponent ν of the correlation length
ξ (where in the case Tc = 0 we have ξ ∼ T −ν) is ν = 3.56(2)
[6]. The prefactor a of the scaling in L was claimed to be
exactly a = 1. In the following analysis of SA data, we will
make use of the form (4) with the previously determined values
of E∞ and ν (while the value of a is less important).

B. Simulated annealing

Most of the simulations were run on Nvidia CUDA-enabled
GPUs, with single-spin Metropolis updates and multispin
coding where the Ising spins σi = ±1 of the model [Eq. (2)]
are coded as bits of 32-bit integers. Thus, with the same set
of random couplings, one simulation propagates 32 replicas
from different initial conditions and the order parameter q2 is
computed at the end of the run (at T = 0) from the overlap,
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of the form Eq. (3), among these replicas. One sweep of
MC updates involves N = L2 Metropolis spin-flip attempts,
carried out successively in two groups corresponding to the
standard checkerboard decomposition of the lattice, so that
all spins in a given sublattice can be updated in parallel
independently of each other. For each of the 32 replicas,
different random numbers are generated in order for the
updating processes to be fully independent. Our program
achieves around 2 × 109 attempted spin flips per second on
a single GPU. Further discussion on how to implement these
updates on GPUs can be found in Refs. [31–40].

In an SA procedure, after initial equilibration of the system
at a high temperature Tini, the temperature T (t) is lowered as a
function of the simulation time t according to some protocol.
In the context of the KZ mechanism one normally considers the
approach to a phase transition using a linear protocol, or, if the
transition point is known, one can approach it with a nonlinear
power-law protocol (or in principle some other protocol). Note
that we are here not interested in finding an optimal SA
protocol (i.e., the one that would bring us to the ground state
in the shortest time), but aim to test the power-law KZ scaling
hypothesis for the 2D Ising glass with transition temperature
exactly at T = 0, and use it to extract dynamic information.

The general power-law protocol takes us to T = 0 as a
function of the total simulation time tmax according to

T (t) = Tini(1 − t/tmax)r . (5)

Here r = 1 corresponds to the standard SA protocol where
the temperature is decreased linearly. In order to disentangle
the exponents z and ν involved in KZ scaling, e.g., in Eq. (1),
it is also useful to study other values of r , as exemplified in
the previous study of the 2DISG with bimodal couplings [24].
There a consistency check was provided by the fact that the
entropy exponent �S , which plays the role of 1/ν in that case
[11], was determined independently and agreed with previous
calculations. In the work reported here, we only consider r =
1 and use the known value of ν to extract z, because the
calculations with Gaussian couplings are very expensive (even
with the use of GPUs), mainly due to the fact that longer
times are needed to reach close to the unique ground state.
Another reason for only considering r = 1 is that the value of
1/ν is small, around 0.28, and it is then hard to determine it
independently from simulations of two or more r values within
the error levels we can reach for the KZ exponent, z + 1/ν in
Eq. (1) for r = 1 [and z + 1/rν for other r > 0 [17], which
we do not consider here].

The annealing velocity is defined as v = Tini/tmax. At the
last step of the annealing process, when T has reached 0, we
take measurements of the EA order parameter q2, the energy
(per site) E of the system, as well as the minimum energy per
spin, Emin, among any of the 32 replicas. The SA process is
repeated many times for different realizations of the random
couplings.

To test the SA program, for L � 6 we used sufficiently
long simulations for several disorder realizations to relax the
systems all the way to the ground state. We checked these
results against exact ground states, which can be obtained using
an exhaustive search in the state space or using a matching
algorithm such as those described in Refs. [30,41]. Based on
the tests we know that the ground states are indeed reached

in the simulations for sufficiently slow v, as expected. For the
mean values taken over a large number of samples that we
report below, because of the long simulation times we were
not able to use low enough v for even the small-L systems to
reach their ground state in all cases, and for larger L none of
the systems reached the ground state. As we will see below, the
mean values still do reach sufficiently close to their ground-
state values to test the asymptotic KZ relaxation behavior.

C. Dynamic scaling

In a generalized KZ scaling ansatz, for a system reaching
the critical point through the annealing protocol expressed in
Eq. (5), a physical quantity A evaluated at the critical point can
be written in the following finite-size scaling form [19,20,22]:

A(v,L) = Aeq(L)f (v/vKZ), (6)

where the “critical” KZ velocity for the linear SA protocol,
r = 1 in Eq. (5), is given by Eq. (1) up to an undetermined
and essentially arbitrary factor. This velocity demarks the
borderline between fast and slow annealing processes. The
function Aeq(L) in Eq. (6) stands for the equilibrium finite-size
dependent quantity A at the critical point, which normally is
a power of L to leading order but also can include scaling
corrections. The dynamic exponent relates the scaling of the
relaxation time to the correlation length through τ ∼ ξz, which
at the critical point for finite-size systems turns into τ ∼ Lz by
the standard substitution ξ → L in critical finite-size scaling.
Recall the discussions in Sec. II A, that when the system is
in equilibrium at T = 0 the order parameter 〈q2〉 = 1 without
any finite-size effect, while the excess energy density has a
finite-size correction of the form Eq. (4). These behaviors will
be reflected in the corresponding Aeq(L) in Eq. (6).

According to the general nonequilibrium scaling form that
describes the dynamics in its full regime of velocities and
sufficiently large system sizes, the order parameter 〈q2〉 can
be written in the following way [20]:

〈q2(v,L)〉 ∝

⎧⎪⎨
⎪⎩

f0(vLz+1/ν), v � vKZ,

(vLz+1/ν)−x, vKZ � v � 1,

L−2f1(1/v), v � 1.

(7)

Here the first line describes the slow velocity regime, where the
function f0 normally would be a regular (Taylor-expandable)
function of the KZ-scaled velocity vLz+1/ν , although below we
will argue that, in the case considered here, a corresponding
function of a power of the KZ variable has to be used for
this to be true. As discussed above, there should not be any
dependence on the system size asymptotically for v → 0 since
〈q2〉 → 1 because of the unique ground state. In principle there
could be L-dependent corrections for v > 0, but the form of
these are not presently known. The third line describes the fast
velocity regime, in which the system size is larger than the
correlation length ξv at the end of the annealing process and,
thus, there is no dependence on L, other than the trivial factor
L−2 that follows from Eq. (3) when the spin-glass correlation
length is finite. The function f1 should be Taylor-expandable
in 1/v. The second line in Eq. (7) describes the intermediate
power-law regime that connects the two other regimes. It
follows from the scaling hypothesis, Eqs. (6) and (1), where
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the behavior when L → ∞ at fixed v must reduce to (connect
smoothly to) the form on the third line, again because ξv 	 L

in this limit. The only way to make this possible (i.e., to ensure
the same L dependence in the two forms) is with the power-law
form f (v/vKZ) → (vLz+1/ν)−x , where the exponent x must
be given by

x = 2

z + 1/ν
, (8)

so that the power-law form can also be written as 〈q2〉 ∝
L−2v−x . Then the connection between lines 2 and 3 in Eq. (7)
corresponds to the function f1(1/v) crossing over into the form
v−x and the connection between lines 1 and 2 corresponds to
f0(vLz+1/ν) taking the form (vLz+1/ν)−x for large vLz+1/ν .
In other words, the KZ scaling form in Eq. (6), with the KZ
velocity given by Eq. (1), covers the first and second lines of
Eq. (7), while the third line represents the breakdown of this
form for higher velocities.

We also consider the excess energy density, which we here
define relative to the known infinite-size equilibrium T = 0
value E∞,

�E(v,L) = E(v,L) − E∞, (9)

i.e., it contains contributions from both finite size and nonzero
velocity. In analogy with the above discussion of the EA order
parameter, and considering the equilibrium finite-size scaling
given in Eq. (4), the behaviors in the three different velocity
regimes should be given by

〈�E(v,L)〉 ∝

⎧⎪⎨
⎪⎩

L−(2+1/ν)g0(vLz+1/ν), v � vKZ,

L−(2+1/ν)(vLz+1/ν)−x ′
, vKZ � v � 1,

g1(1/v), v � 1,

(10)

where, unlike Eq. (10), there is no L dependence on the third
line because the excess energy is defined per spin and takes a
constant value when v → ∞ (i.e., in the initial state). In this
case, for the power-law regime to be valid, i.e., for there to
be no size dependance on the second line (�E ∼ v−x ′

), the
exponent x ′ is given by

x ′ = 2 + 1/ν

z + 1/ν
. (11)

In the next section, we will present our results of the application
of the above scaling forms.

III. RESULTS

All simulations reported here started from Tini = 8, where
the system can be easily equilibrated. Starting from a random
configuration for each disorder sample, we used 10 MC sweeps
at this initial temperature. From there, we used the linear SA
process, i.e., r = 1 in Eq. (5), and measurements were taken
at the last step of the annealing process where T = 0. We
used system sizes from L = 4 to L = 64. To span a wide
range of velocities, we take the total time for the simulations
as tmax = 2n, where n = 2,3, . . . ,30 for small system sizes,
while for large system sizes we only used n up to 28 to stay
within reasonable computing times. To obtain good statistical
averages, we simulated at least 5 × 103 coupling realizations
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FIG. 1. (a) Velocity scaling of the mean excess energy density,
�E = E(v,L) − E∞. The data collapse for system sizes in the range
L = 8 to 64 is optimal for z = 13.6(4). The straight line indicates the
power-law regime with the expected exponent x ′ given by Eq. (11).
(b) The same data graphed according to the third line of Eq. (10).
The line shows the expected power-law behavior with exponent −x ′.
(c) The data graphed versus ln(1/v).

in most cases and 103 realizations for the lowest velocities and
largest system sizes.

A. Mean excess energy density

Figure 1(a) shows the velocity scaling of the average of
the excess energy density, Eq. (9), with E∞ = −1.31479
from Refs. [6,30]. The overall expected size dependence in
equilibrium from Eq. (4) has been divided out, and the velocity
has been rescaled according to the expected KZ form in Eqs. (6)
and (1). Here we use data points from system sizes L = 8 to
L = 64 in the data-collapse procedure, for each L excluding
velocities too high to give results on the common scaling
function. We vary the scaling exponent z + 1/ν to achieve
optimal collapse relative to a fitted polynomial, repeating the
procedure many times with Gaussian noise added to the data
points in order to compute the statistical error. We obtain
z + 1/ν = 13.9(4). Since ν ≈ 3.56 [6], the dynamic exponent
governing the excess energy is z = 13.6(4).
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In Fig. 1(a) it is clear that data points for larger v

systematically peel off from the collapsed function and the
region of data collapse in the rescaled variable is pushed further
out to the right as L increases. Figure 1(b) shows the same data
graphed according to the third line of Eq. (10). The data now
collapse well for high velocities, and instead the data for slower
velocities peel off systematically from the common function
as equilibrium is approached for each system size (i.e., the
correlation length ξv becomes of the order of the system size).
In both Figs. 1(a) and 1(b), the straight lines indicate power-law
behavior as described in the second line of Eq. (10) with the
expected slopes, x ′ and −x ′, respectively, given by Eq. (11).

In order to test alternatives to the KZ scenario, we have
also analyzed the data in other ways. One might naively
expect that the SA relaxation of the system should involve
an exponentially long time scale when T → 0, given energy
barriers that have to be overcome when the system becomes
trapped in local energy minimums. The resulting activated
scaling is reflected in a divergent equilibrium dynamic
exponent zeq(T ) when T → 0 [27]. In Fig. 1(c) we test
for activated scaling of SA in the thermodynamic limit by
graphing the same data as in Fig. 1(b) versus ln(1/v) instead
of 1/v, still using logarithmic scales on both axes. On this plot
a linear dependence would imply �E ∼ ln−a(1/v) with some
positive exponent a, instead of the behavior �E ∼ vx′ that we
argued for above. We do not see any clear-cut linear behavior
on the log-log plot, with more curvature in the system-size
converged data for the lowest velocities than in the KZ-scaled
data in Fig. 1(b). While one could perhaps argue that the data
approach a straight line also here, we point out that the KZ form
�E ∼ vx′ with a small exponent x ′ ≈ 0.17 will inevitably
look similar to the form �E ∼ ln−a(1/v) in a limited window
of the argument ln(1/v), because a small power looks very
similar to a logarithm. Thus, if in the window in question we
have ln(1/v) ∼ v−b for some small value of the exponent b,
then the KZ form will look like �E ∼ ln−x′/b(1/v), so that
the exponent a above is roughly x ′/b.

Note again that the KZ scaling demonstrated in panels (a)
and (b) of Fig. 1 is not merely relying on the power-law scaling
in the limit L → 0 in a rather small window of velocities that
we have achieved, but is mainly manifested in the generalized
finite-size scaling form that applies also when equilibrium is
reached for the smaller system sizes in panel (a). Importantly,
there is full consistency of the asymptotic slope in panel (b)
with the exponent x ′ defined in Eq. (11) with the value of z that
also describes the data collapse to the left of the power-law
regime in Fig. 1(a), i.e., the KZ scaling hypothesis also
describes the deviations from the infinite-size collapsed curve
for the smaller system sizes (L = 8 and 12) in Fig. 1(b). In
combination with the previous results for the bimodal coupling
distribution in Ref. [24], where the dynamic exponent is
smaller and the KZ behavior can be seen even more clearly, we
take these results as strong evidence of KZ scaling also with the
normal-distributed couplings. In the following sections we will
present further extensive quantitative support for this scenario.

B. Minimum excess energy density

In Figs. 2(a) and 2(b) we present the velocity scaling of
the minimum energy, �Emin, defined for each disorder sample
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FIG. 2. (a) Velocity scaling of the minimum excess energy �Emin

per spin, where the exponent z + 1/ν = 13.9 is the same as in
Fig. 1(a). (b) Scaling of both �E and �Emin, with the same exponent
as in (a) and only including the well-collapsed data in order to make
the scaling functions better visible. The straight line is the same as in
Fig. 1(a). In both panels, the asymptotic value of the scaled quantities
for small vLz+1/ν is consistent with the coefficient a = 1 in Eq. (4),
as indicated by the dashed lines.

as the lowest energy reached at T = 0 among any of the 32
replicas run in parallel. We fix the exponent z = 13.6 to be
the same as that for the average energy shown in Fig. 1. We
see that the scaling also works very well here. If we instead
treat the exponent as a variable and optimize its value for
the best data collapse, we obtain z = 13.5(5) in excellent
agreement (within the error bars) with the one previously
obtained. Thus, as expected, the two energies scale in the same
way and the agreement also serves as a consistency check on
the procedures. Note that, although the dynamic exponent is
the same, the scaling functions are clearly different. In Fig. 2(b)
we plot out the two scaling functions in the same graph by only
showing the data points that fall clearly on the collapsed curve.
Given how the quantities are measured, at a given velocity, the
minimum energy reached is always lower than (or in some
cases equal to) the average energy after the final MC step.
Based on a rough estimation from the two curves, 〈�Emin〉
relaxes about 104 times faster to the asymptotic minimum
value than 〈�E〉. However, for larger values of the scaled
velocity, and for sufficiently large system sizes, we expect the
two energies to converge to the same power-law behavior with
the exponent given by Eq. (11), and we see indications of
this convergence as well in Fig. 2(b). We can also see that our
results for �Emin are consistent with the prefactor a = 1 in the
equilibrium size dependence, Eq. (4), as the scaled quantity
is close to 1 in the low-velocity limit (though a may also be
marginally above 1).
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FIG. 3. Velocity scaling of the EA order parameter. (a) The
horizontal axis is rescaled according to the KZ ansatz with the
dynamic exponent z = 13.6 having the value extracted from �E

in Fig. 1. The straight line corresponds to the expected asymptotic
power-law behavior with the exponent −x given in Eq. (8). To show
more explicitly the quality of the collapse, the inset includes only the
data points used in the fitting procedure and the polynomial fitting
function (black curve). (b) The goodness of the fit, χ2 per degree
of freedom, versus the scaling exponent z + 1/ν. (c) The data are
graphed according to the third line of Eq. (7), to show the nonuniversal
high-velocity behavior and its crossover into the size-independent
power-law behavior. The straight line has the same slope x (up to the
sign) as in (a).

C. Order parameter

We next turn to the EA order parameter. Figures 3(a)–3(c)
show different aspects of the scaling of 〈q2〉 with the velocity
and the system size. In Fig. 3(a), 〈q2〉 is graphed against
the KZ-scaled velocity, using the same value of the dynamic

exponent as was extracted above using the excess energy. Here
we cannot reach as close to the equilibrium behavior as for the
energy (especially the minimum energy), but the approach of
〈q2〉 to 1 is still obvious and the data for the smaller system
sizes collapse very well in this regime, as shown more clearly
in the inset of Fig. 3(a). The expected pure power-law behavior
for large arguments vLz+1/ν is not yet reached with the system
sizes accessible here—the corrections to the power law as the
equilibrium behavior is approached appear to be much larger
than in the energy. The behavior is nevertheless consistent with
an approach to the predicted asymptotic power-law scaling
(indicated by the line in the figure). We also carried out the
data collapse procedure with z as a free parameter, using
system sizes L = 8 − 24 for which sufficient overlaps in the
scaling variable exist so that the data-collapse procedure is well
defined. Figure 3(b) shows a clear minimum in the χ2 value
of the fit versus the scaling exponent, in very good agreement
with the best exponent obtained for the energy scaling in Fig. 1.
A full error analysis gives z = 13.6(2), which is consistent
with but statistically better than z = 13.6(4) from the energy.
Thus, in contrast to the bimodal 2DISG, where a difference
in dynamic exponents for the two quantities was found to
be zE − zq ≈ 2 (zE ≈ 10.3 and zq ≈ 8.3) [24], in this case a
single exponent governs the relaxation dynamics (as we had
fully expected for this case where the ground state is unique).

In Fig. 3(c) we analyze the high-velocity limit of the
order parameter, which eventually should cross over into the
power-law regime. Recall that the collapse of data graphed
versus the velocity (here the inverse velocity) at high velocities
is trivial, merely reflecting the correlation length at the end of
the SA process being much less than the system size (in the
limit of v → ∞ simply being the correlation length of the
starting high-temperature equilibrium state), so that there is
no size dependence. The initial state determines the details of
the corresponding function f1(1/v) on the third line of Eq. (7)
at high velocities, before the crossover into the universal form
written explicitly on the second line. Here again, we see a very
slow approach to the pure power law, similar to the crossover
from the low-velocity side, and we can only say that the be-
havior is consistent with the expected behavior with z ≈ 13.6.

To investigate the approach to equilibrium in more detail,
in Fig. 4(a) we analyze the deviation 1 − 〈q2〉 of the EA order
parameter from the asymptotic size-independent equilibrium
value 1. Here again we see good data collapse setting in
from the left side of the graph and extending further to
the right with increasing system size. In the region where
1 − 〈q2〉 is small, the behavior follows a power law with a
small, noninteger exponent. Here one would normally expect
an integer exponent, corresponding to an analytic function
f0(v/vKZ) = f0(vLz+1/ν) on the first line of Eq. (7). This has
been observed in KZ scaling studies of nonrandom isolated
quantum systems under Hamiltonian dynamics [44], for which
the leading power laws for different quantities were also de-
rived using adiabatic perturbation theory. Here the value of the
exponent a ≈ 0.073 in the power law (Lz+1/ν)a is very close
to half of the value of the exponent x in Eq. (8). Assuming that
a = x/2 = (z + 1/ν)−1, we see that the asymptotic form is

〈q2〉 = 1 − bL/ξv, (L/ξv → 0), (12)
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FIG. 4. (a) The deviation 1 − 〈q2〉 from the asymptotic size-
independent value 1 graphed against the KZ-scaled velocity. The
collapsed low-velocity data are fitted to a power-law form (the line),
1 − 〈q2〉 ∝ (vLz+1/ν)a with the exponent a = 0.073. (b) The same
data as in (a) graphed against L/ξv , where the velocity-dependent
correlation length is ξv defined in Eq. (13) with the same exponent
z + 1/ν = 13.9 as in (a). The straight line here has slope exactly 1.

where ξv is the KZ correlation length corresponding to finite
velocity in the thermodynamic limit [17–19],

ξv ∝ v−1/(z+1/ν), (13)

which can also be simply obtained from Eq. (1) by replacing
L by ξv . Thus, we conclude that, unlike other cases studied
so far [20,44], here f0(vLz+1/ν) is not Taylor-expandable but
a corresponding function f̃0(L/ξv) is. We do not have an
explanation for this apparently different analytic form of the
scaling function in this case, but empirically the evidence is
compelling, as seen more directly in Fig. 4(b) where we plot
the data against L/ξv and compare with a power law with
exponent exactly 1, i.e., testing the asymptotic form Eq. (12).

One might perhaps question the claim that the observed
power-law behavior in Fig. 4 should reflect the true asymptotic
form, given that the scaling variable vLz+1/ν is still very large
in this region, roughly in the range 104–108 in the power-law
region. However, the alternative scaling variable L/ξv is much
smaller, of the order 1. Since a scaling variable is always
determined only up to some essentially arbitrary factor, a
more relevant measure of closeness to the asymptotic behavior
should be the value of the quantity studied. Considering that
〈q2〉 is as large as 0.8, or, in other words, in two typical replicas
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FIG. 5. Scaling of the deviation 1 − 〈q2〉 of the EA order
parameter from its size-independent equilibrium value 1, showing
results only for small system sizes. (a) The velocity is scaled according
to the standard KZ form; the same as in Fig. 4(a). (b) The scaling
argument vLz+1/ν(1 − aL−b) contains a correction, with optimized
parameter values a = 1.7 and b = 0.39. The line has the same slope
as in Fig. 4(a).

≈90% of the spins are the same, and approximately the same
fraction of the spins should then be in their ground-state config-
urations. We would then expect that the remaining relaxation of
a dilute concentration of spins should already be governed by
the asymptotic form, although we cannot completely exclude a
crossover into a different form still closer to equilibrium. As we
will see below, we can push a bit further into the low-velocity
regime by considering smaller system sizes.

In the above analysis of the EA order parameter, the smallest
system size used in Figs. 3 and 4 was L = 8. For smaller sizes
we see behaviors that can be explained only with substantial
scaling corrections included. Figure 5 focuses on the scaling
of 1 − 〈q2〉 for small system sizes, from L = 4 to L = 16. In
Fig. 5(a), even though the L � 8 data collapse well in a region
of slow velocities with standard KZ scaling and the same value
of z used above, the data for L = 4 and L = 6 clearly deviate
substantially from a common scaling function. Staying within
the subset of possible scaling corrections with no velocity
dependence, we add a correction to the KZ argument vLz+1/ν

by multiplying it with 1 − aL−b, with a and b optimized
for the best data collapse (keeping z at the previous value).
With a ≈ 1.7 and b ≈ 0.4, the data collapse is very good
on the left side, where also the power-law behavior found
previously is substantially extended, with no detectable change
in the exponent. This gives added support to the power-law
form corresponding to Eq. (12) indeed being the asymptotic
behavior.
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We have also tried to analyze the asymptotic approach
of the energy density to its equilibrium value. Here we can
in principle use the KZ ansatz following from the known
equilibrium finite-size scaling form Eq. (4) written in the
following way:

E(v,L) = E∞ + aL−(2+1/ν)f (vLz+1/ν)

= E(0,L) + aL−(2+1/ν)g(vLz+1/ν), (14)

where f (x) → 1 when x = vLz+1/ν → 0 and g(x) → 0 in
this limit. Using the form of the equilibrium value, E(0,L) =
E∞ + aL−(2+1/ν), with the parameters determined previously
[6], as mentioned below Eq. (4), we can analyze [E(v,L) −
E(0,L)]L2+1/ν . Within the standard scenario it should be a
Taylor-expandable function g(x) without constant term for
small values of x. Unfortunately, here our results from Fig. 1
(from which we just need to subtract 1 if the factor a above
really is exactly 1, which is certainly consistent with our data
in Fig. 2) are not good enough (the statistical errors are too
large) to extract any meaningful behavior in the low-velocity
limit. We can therefore at present not determine whether an
integer power in x obtains, or whether the leading behavior is
instead an integer power of L/ξv as in the case of 1 − 〈q2〉.

IV. DISCUSSION

We have studied relaxation dynamics in the 2DISG model
with Gaussian-distributed couplings by carrying out SA sim-
ulations in the T → 0 limit, where the system in equilibrium
goes through a phase transition into the glass state. Through
performing scaling analysis according to the KZ hypothesis,
we were able to extract the dynamical exponents associated
with the excess energy 〈�E〉 and the EA order parameter 〈q2〉.

For the excess energy density, defined with respect to a
previously determined value in the thermodynamic limit [6],
a data-collapse analysis yields z = 13.6(4), and the same kind
of scaling procedure applied to the order parameter gives
z = 13.6(2). Thus, there is a unique time scale governing
the relaxation of both the order parameter and the excess
energy. This in itself is not unexpected (as long as one
accepts that the KZ mechanism applies), but it is interesting
in light of the recent discovery of two substantially different
dynamic exponents in the 2DISG with bimodal couplings
[24]. The heuristic explanation provided for that behavior
relied on the massive degeneracy of the ground state, which
is lacking in the case of couplings drawn from a continuous
distribution. The ground-state degeneracy has consequences
for the relaxation of the mean order parameter as defined
using replica overlaps. Considering that we here used the exact
same kind of scaling procedures, our results for the Gaussian
couplings also lend further support to the anomalous behavior
in the bimodal case and its explanation in terms of ground-state
degeneracy.

The dynamic exponent we find here for the system with
Gaussian couplings is significantly larger than the two different
exponents for the bimodal couplings, where the larger of the
two dynamic exponent, i.e., the one governing the energy
relaxation, is z′ ≈ 10.4. While we do not have a rigorous
explanation for this difference, it should be related to the fact
that the ground state in the case of the bimodal couplings

is degenerate, and, therefore, the process does not have to
find a specific unique spin configuration but is entropically
attracted to a region with exponentially many ground states
and is relaxed once any one out of these many configurations
has been reached.

Our results also further reinforce the notion that the
relaxation dynamics of SA at these T = 0 phase transitions
is very different from the equilibrium dynamics, where it
is known that, with local updates, the exponent governing
the ergodic sampling process at fixed finite temperature
diverges, zeq(T ) → ∞, when T → 0 [27,42,43]. In contrast,
at T > 0 transitions, in both nonrandom and spin-glass models
[12,20,21], the dynamic exponent is finite and takes the same
value at equilibrium and in SA analyzed within the KZ
hypothesis. Clearly the source of this difference lays in the
fact that the equilibrium dynamics is nonergodic in the limit
T → 0.

Though the numerical evidence for KZ scaling of the SA
dynamics is very strong, we do not have a rigorous theoretical
explanation for why it applies, instead of some exponentially
slow relaxation dynamics related to naively expected activated
scaling. The fact that power-law scaling does hold, in the
model studied here as well as in the previously studied case
with bimodal couplings [24], must reflect a certain “funnel”
structure of the energy landscape where the energy and entropy
barriers along the walls down to the global minimum increase
sufficiently slowly with the system size. This should be a
consequence of the droplet picture in the model with bimodal
couplings [11], and also in the case of Gaussian couplings one
can construct a similar approximate droplet structure [25] that
may explain the behavior found here.

Given that KZ scaling in the form of data collapse
onto a common scaling function is observed, a surprising
behavior found here for the Gaussian couplings is that the
scaling function for the EA order parameter does not appear
to have a power-series expansion for small values of the
standard KZ variable vLz+1/ν ; instead the data show that the
the scaling function has a Taylor expansion in the related
variable Lv1/(z+1/ν) = L/ξv . This indicates a breakdown of
standard perturbative mechanisms behind KZ scaling in the
low-velocity limit, which have been worked out for quantum
many-body systems under Hamiltonian dynamics (quantum
annealing) [44] and have been shown to be applicable also
for stochastic SA dynamics of classical systems [20]. While
the reasons for the nonperturbative behavior found here are
not presently clear and deserve further study, one possibility
is the proliferation of excited states nearly degenerate with
the unique ground state, which may shrink the radius of
convergence of the perturbation series to zero in the ther-
modynamic limit. How these nonperturbative effects lead to
analytic behavior in the new scaling argument L/ξv is not clear
and is an important question for further study. Our result for
the excess energy are not sufficiently precise to analyze the
low-velocity corrections in that case.
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