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Static analysis including finite-size effects
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After constructing a formalism to analyze spatial stress correlations in two-dimensional equilibrated liquids, we
show that the sole conjunction of mechanical balance and material isotropy demands all anisotropic components
of the inherent state (IS) stress autocorrelation matrix to decay at long range as 1/r2 in the large system
size limit. Furthermore, analyzing numerical simulation data for an equilibrated supercooled liquid, we bring
evidence that, in finite-sized periodic systems, the autocorrelations of pressure and shear stresses present uniform
backgrounds of amplitudes proportional to the inverse cell area. These backgrounds bring relevant contributions
to macroscopic IS stress fluctuations, with the consequence that the latter scale as inverse area, yet in an anomalous
way, inconsistent with viewing an IS as equivalent, in the thermodynamic limit, to an ensemble of independent
finite-sized subsystems. In that sense, ISs are not spatially ergodic.
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I. INTRODUCTION

At low temperature, equilibrated supercooled liquids evolve
via rare transitions between the basins of attraction of inherent
states [(ISs), i.e., local minima of the potential energy surface]
around which they are most of the time just vibrating [1,2].
Inherent states, hence, largely determine the thermodynamic,
dynamic, and transport properties of supercooled liquids [3–6]
and are also the glassy solids formed when a liquid is quenched
well below the glass transition. A detailed knowledge of their
properties is thus crucial to these various topics.

On this matter, it was recently found, in both two- and
three-dimensional (3D) numerical models of equilibrated
supercooled liquids [7,8], that ISs carry long-range anisotropic
stress correlations of a form similar to elastic Green’s
functions. This finding raises many questions, for example,
about how the thermodynamic limit is reached in the presence
of such long-ranged correlations, or about their role in the
relaxation process, e.g., by inducing correlations between
relaxation events [7]. In one instance, the impact of stress
correlations on macroscopic properties is already documented
as they were found to induce similar long-range correlations
of the local elasticity tensor [9], and thus to enhance sound
damping in glasses, in a manner that agrees with experimental
data [10–13].

Basic questions, however, remain about the origin and
structure of IS stress correlations. They can be viewed as
resulting from the accumulation of relaxation events akin
to Eshelby transformations, i.e., local rearrangements that
imprint long-range elastic deformations in the surrounding
amorphous medium [7,14], an effect observed in quiescent
colloidal formers [15,16]. Yet, similar stress correlations were
also found in granular systems close to jamming, i.e., in near
the point where elasticity breaks down [17]. It is thus unclear
under which general conditions long-range stress correlations
exist, or why the amplitudes of certain components of the IS
stress autocorrelation matrix were systematically found to be in
simple ratios [7,8]. Besides, the analysis of these correlations
faces significant technical hurdles arising from the tensorial
character of stress: Stress anisotropies, which exist both in

ISs and parent liquid configurations [7,18,19], were initially
believed to be a hallmark of elasticity, and later understood
to be an artifact of the representation of stress in a unique
reference frame [8,20].

In this paper, with a view to preparing future studies of
both relaxation in supercooled liquids and sound damping in
glasses, we focus on the static autocorrelation of IS stress,
and provide a step-by-step account of how it is measured and
analyzed in two dimensions using a formalism that extends
and adapts a previous study of 3D systems [8].

Three main results will emerge from our analysis. First, it
will appear that the sole conjunction of mechanical balance and
material isotropy constrains so tightly the overall structure of
the whole autocorrelation matrix that it is entirely fixed, in the
infinite medium limit, by the pressure autocorrelation only.
It will follow, as a corollary, that all anisotropic correlation
components decay at large distance as 1/r2.

Second, using a 2D numerical model of equilibrated liquid,
we will evidence that the Fourier components of the IS stress
autocorrelation matrix are completely devoid of finite-size
deviations in periodic cells. This empirical finding will allow
us to write, for the real-space autocorrelation, a general
expression valid in sufficiently large (well beyond the atomic
scale) but finite-sized periodic systems. The autocorrelation
field will appear to be the sum of: its infinite medium limit
value; the trivial superposition of periodic images; and a
uniform background of amplitude proportional to the inverse
system area.

Third, we will use this general expression to decompose
macroscopic stress fluctuations into microscopic contributions
associated with distinct features of the autocorrelation matrix.
The long-range anisotropic correlations will appear irrelevant
by reasons of symmetry, and only two terms will contribute:
one originating from local stress inhomogeneities; the other,
from the autocorrelation backgrounds. This second term, while
respecting the inverse area scaling, causes macroscopic stress
fluctuations to take values that are incompatible with viewing
a large IS as statistically equivalent to a set of independent
finite-sized subsystems. We will refer to this nonequivalence
by saying that ISs are not spatially ergodic.
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Our paper is organized as follows. Section II expounds how
IS stress fields are computed either via coarse graining or in
Fourier space. Sections III and IV present our formalism along
with data analysis in, respectively, real and Fourier space.
Our main results are reached in Sec. V, where we derive a
general expression for the real-space autocorrelation in an
infinite medium, and in Sec. VI, where we study finite-size
effects.

II. INHERENT STRESS FIELD

The Fourier coefficients of a L × L-periodic scalar field
f (r) are defined as:

f̂k =
∫

A

dr f (r) e−ik·r (1)

with A = L2 the area. They take values on the discrete recip-
rocal space, k = 2π

L
n with n ∈ Z2. The inverse transformation

is

f (r) = 1

A

∑
k

eik·r f̂k, (2)

where the sum runs over the reciprocal space. In some cases,
our argument will involve nonperiodic functions f (r) defined
on the infinite plane; their Fourier transforms are defined just
as in (1), but will be denoted f̂ (k) to emphasize that they take
values on the k continuum; the inverse transform then reads:

f (r) = 1

(2π )2

∫
dk eik·r f̂ (k). (3)

A. Coarse graining

1. Method

Local stress is measured using the method proposed by
Goldhirsch and Goldenberg, which proceeds by identification
of the fluxes appearing in conservation equations [21] after
microscopic density is defined as ρ(r) = ∑

i φ(r − ri), with
φ is a coarse-graining function that is positive and isotropic,
vanishes beyond a cutoff rc, and integrates to unity. In inherent
states, local stress is found to read:

σαβ(r) = 1

2

∑
i,j ;i �=j

F α
ij r

β

ij

∫ 1

0
ds φ(r − ri − srij ) (4)

with ri the position of particle i, rij ≡ rj − ri (modulo cell
periodicity), and F ij = [V ′

ij (rij )/rij ] rij the force exerted by j

on i, which derives from the pair potential Vij . The symmetry
of stress is guaranteed by F ij rij = rij F ij (juxtaposition
denotes tensor products).

In Fourier space, Eq. (4) becomes: σ̂
k

= φ̂(k) σ̂ δ

k
, with

σ̂ δ
αβ k = 1

2

∑
i,j ;i �=j

F α
ij r

β

ij

e−ik·ri − e−ik·rj

ik · rij

(5)

showing that the Goldhirsch-Goldenberg local stress is just
a convolution by φ of the microscopic stress σ δ [22]. The δ

indicates that σ δ is the stress in the limit when φ is the 2D Dirac
delta function. The coarse-grained field σ is thus expected to
carry the same long-range correlations as σ δ , but to present
some blurring at small scales.

2. Two essential properties

Stipulating that φ integrates to unity guarantees a crucial
consistency requirement: the space average of the local stress
field 1

A

∫
σ (r) = σ the Irvin-Kirkwood macroscopic stress,

which is defined as:

σαβ = 1

2 A

∑
i,j ;i �=j

F α
ij r

β

ij . (6)

Inherent states being mechanically stable, one expects their
local stress fields to be divergence free. It is instructive to
check that this property is indeed satisfied. To do so, we write
ik · σ̂

k
= iφ̂(k) k · σ̂ δ

k
and find:

ik · σ̂ δ

k
= 1

2

∑
i,j ;i �=j

F ij (e−ik·ri − e−ik·rj )

=
∑

i

e−ik·ri F i, (7)

where F i = ∑
j �=i F ij is the total force applied by the system

on atom i. Quite consistently, local stress is strictly divergence
free in ISs because of mechanical balance at atom scale, i.e.,
the vanishing of all F i’s.

3. Technicalities

The simulation data used in this work were obtained from
equilibrated configurations of the same binary Lennard-Jones
(LJ) mixture as in previous studies [7,14]. All quantities are
given in LJ units. Only one temperature was used, T = 0.28,
for which the relaxation time of shear stress is about 2000. ISs
are computed using the fast inertial relaxation engine (FIRE)
algorithm [23] with a precision 10−10, defined as the maximum
acceptable value of any component of the residual atomic
force.

In practice, the stress field is sampled on a grid in either
real or Fourier space and computed using the corresponding
expression, Eq. (4) or Eq. (5). Using either computation
method may entail very different numerical costs. Suppose
indeed that, in dimension d, we seek to compute stress in
an Ld system for a fixed spatial discretization 	: either in
real or Fourier space, we need to evaluate (L/	)d points. In
expression (4), the stress at any point r only depends on the
contribution of pairs of atoms that lie withing the range rc; it
can hence be computed using Verlet lists in an L-independent
number of operations. So the complete calculation of a stress
field using the Goldhirsch-Goldenberg coarse graining can be
performed using ∝Ld operations. In contrast, computing stress
in Fourier space, using Eq. (5), requires, for every k, to add
the contributions of all atoms in the system, i.e., to perform
a number of operations that scales as Ld . In total, a complete
stress field evaluation thus requires ∝L2d operations.

This difference in computational costs is a minor issue for
small systems, but becomes determining for large ones. For
example, on a given AMD Opteron computer, it takes about
10 s to compute a stress field using the real-space expression (4)
for our largest systems (45395 atoms), at a resolution 	 =
0.5a, with a the large atoms’ size. On the same computer,
at the same resolution, the Fourier calculation takes over 4 h
[24]. Such a duration is impracticable since, to gain accuracy
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about long-range correlations, we need to accumulate data
from �50000 ISs in a given equilibrium ensemble.

Computing stress via coarse graining, hence is the only
usable method for very large systems, yet has the drawback
that local stress, as defined by Eq. (4), is nonzero only within
the distance rc from the segments joining atoms in interaction.
If rc is much smaller than the typical interatomic distance,
sampling stress on a grid of fixed spatial step 	 may not
provide statistically meaningful data because too many grid
points only carry zero values. For this reason, the real-space
expression must be used with rc large enough that most points
σαβ(r) capture the contribution of at least one neighboring pair,
which necessarily introduces some blurring at short distance,
and modifies the shape of stress correlations at short range.
We will show, however, that it does not affect long-range
correlations and that relevant short-range correlations of stress
can easily be accessed nevertheless. The effect of coarse
graining on correlations will be addressed when necessary.

We use φ(r) = 15
8πr2

c
[1 − (r/rc)4]2 for r < rc, φ(r) = 0

otherwise. The real-space discretization step needs to be
small enough to resolve short-range correlation peaks; 	 =
0.5a, was found satisfactory. The smaller rc, the faster the
computation, and the better we avoid blurring. Yet, as we
explained before, if rc is too small, i.e., when φ is too close
to a Dirac δ function, we risk losing accuracy due to poor
sampling. The choice of rc results from a balance between
these constraints. We have tested different values ranging from
0.5–4 and observed they provided fully consistent results. If
not explicitly stated, we use rc = 1, which provides a fair
compromise.

B. Stress decomposition and corresponding maps

Stress, being symmetric, has three independent components
in two dimensions. The Cartesian components σxx , σyy , and σxy

are a poor choice of representation because they do not reflect
clearly how stress behaves under rotations. As in Ref. [7], we
decompose stress as follows:

σ1 = − 1
2 (σxx + σyy)

σ2 = 1
2 (σxx − σyy) (8)

σ3 = σxy.

We will see later that this representation tremendously sim-
plifies the analysis of stress correlations, especially in view
of probing material isotropy. Of course, σ1 is just pressure.
The component σ2 is the shear stress in a frame rotated by
π/4, so it is expected to share, in an isotropic medium, the
same statistical properties as σ3 up to this rotation. These three
components define a vector representation of stress denoted
σ∼ ≡ (σ1,σ2,σ3); the tilde is used to distinguish it from usual
vectors.

Maps of σ1(r), σ2(r), and σ3(r), computed in a single
inherent state of an L = 80 system (in equilibrium at T =
0.28), are displayed on Fig. 1. As noted in Ref. [7], while
pressure does not display any hint of anisotropy, the deviatoric
fields do present marked orientations: along diagonals for σ3

and along the x and y axes for σ2.

FIG. 1. Coarse-grained fields—pressure (a) σ1, (b) σ2, and (c)
σ3—measured in one IS of a L = 80 system equilibrated at T = 0.28,
using rc = 2 for better visibility.

III. STRESS AUTOCORRELATION IN REAL SPACE

A. Raw data analysis

Our study focuses on the IS stress autocorrelation matrix:

C≈
(r) ≡ 〈σ∼ (r0 + r; t) σ∼ (r0; t)〉c (9)

with 〈AB〉c = 〈AB〉 − 〈A〉〈B〉 the second cumulant. As
juxtaposition denotes the tensor product, C≈

is the matrix
with components Cab = 〈σa(r0 + r; t) σb(r0; t)〉c. It does not
depend on time t , because our systems are equilibrated. Thanks
to translation invariance, it does not depend on r0 either, hence
is a function of r only, and also verifies Cab(r) = Cba(−r).
Together with inversion symmetry, Cab(r) = Cab(−r), the
latter relation guarantees matrix symmetry: Cab = Cba .

To provide a general overview of the spatial structure of
these correlation fields, we display all of them (for L = 160
systems) on Fig. 2, as a matrix of pictures. Using translation
invariance, we position the origin of coordinates at the center
of each picture. The autocorrelation of σ1 (pressure) shows a
visible nonzero value only at the origin of space—a tiny white
spot that manifests a sharp correlation peak. We will see later
that σ1 does not vanish away from the central peak, but decays
toward a small but nonzero background value.

To the exception of the pressure autocorrelation, all the
fields of Fig. 2 present long-range anisotropic tails. In
particular, the autocorrelations of σ2 and σ3 display a clear
± cos(4θ ) symmetry: σ2 positively correlates along horizontal
and vertical directions, while σ3 positively correlates along
diagonals. These features correspond to the anisotropies seen
on the stress maps of Fig. 1. The complete set of correlation
fields, however, also reveals anisotropic cross correlations
between pressure and shear stresses, as well as between σ2

and σ3, with complex angular dependencies that could not be
guessed by visual inspection of stress maps.

Close examination of these pictures shows that C22 and
C33 present—like pressure—a positive central peak, a feature,
however, absent on all cross correlations. To emphasize this
point, we report on Fig. 3(a) various cuts along the lines of
maximum intensity: for C22 and C33 along the x and θ = π/4
axes; for C12 along x; and C13 along the θ = π/4 axis (both
cuts along negative lobes). Clearly, C22 and C33 present the
same central peak of width of order rc = 1, while C12 and C13

vanish at r = 0.
Away from the peak, the C22 and C33 cuts along either

positive and negative lobes collapse. Moreover, the four cuts
made through negative lobes (from C12, C13, as well as
C22 and C33) merge at long range showing that these cross
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FIG. 2. The IS stress autocorrelation measured in L = 160
systems equilibrated at T = 0.28 and presented as a matrix of pictures
corresponding to the fields Cab with a,b = 1 . . . 3. In each frame, the
origin of space lies at the center. The matrix is clearly symmetric:
Cab = Cba . Note that C11 resembles a δ function, and that C22 and
C33 have opposite signs.

correlations and self-correlations have the same amplitude—a
rather intriguing feature that will be explained at the end of
Sec. V. The long-range decay of these correlations is further
characterized by reporting the cuts of C22 and C33 in a log-log
plot [Fig. 3(b)], which shows the 1/r2 decay (dashed line) to be
very nicely satisfied. This analysis thus supports that beyond
a central peak the autocorrelations C22 and C33 essentially
match the + cos(4θ )/r2 and − cos(4θ )/r2 forms. We will see,
however, that a more quantitative analysis shows evidence of
slight, but important, departure from these expressions.

Let us close this section by examining the effect of coarse
graining. Our above discussion used stress fields computed
with rc = 1. We expect that this parameters plays little role
since varying it amounts to convolving the fields σ δ

a (r) [defined
by Eqs. (5) and (8)] with kernels of increasing width. This is
verified on Fig. 3(c), where cuts of C33 along its positive,
θ = π/4, lobe are reported for three values of rc = 0.5, 1,
and 2. As expected, the width of the central peak grows with
rc, while the long-range correlation tails are essentially cutoff
independent.

B. Radial form

In Ref. [8] we showed that stress anisotropies are a
consequence of material isotropy. Here, we adapt to the 2D
case the formalism presented then, which is based on accessing
stress correlation in radial frames.

The reference Cartesian (lab) frame is denoted F =
(ex,ey). For any vector r , we define r̂ ≡ r/r and introduce

1 10 100r10-4

10-3

10-2

10-1

100

101

Cab
C22 along the x axis

 -C22 along the θ =π/4 axis
 -C33 along the x axis
C33 along the θ =π/4 axis

(b)

0 2 4 6 8 10 12 14r

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1Cab C22 ,  along the x axis
C22 ,  along the θ=π/4 axis
C33 ,  along the x axis
C33 ,  along the θ=π/4 axis
C12 ,  along the x axis
C13 ,  along the θ=π/4 axis

shoulder

(a)

1 10 100r10-4

10-3

10-2

10-1

100

101

C33

rc = 0.5
rc = 1
rc = 2

cuts along the θ =π/4 axis

(c)

FIG. 3. Cuts of the spatial autocorrelation functions from Fig. 2
(L = 160, T = 0.28) along the x and the θ = π/4 axes. (a)
Comparing C22 and C33 along both axes with C12 along x and C13

along θ = π/4: the central peak is displayed by the self-correlations
(C22 and C33) but not by the cross correlations (C12 and C13); its
width �1.5 compares with the coarse-graining radius rc = 1. (b)
log-log plots of C22 and C33 cuts modulo a minus sign to make the
tail data positive; the dashed line is ∝1/r2. (c) C33, θ = π/4 cuts
obtained with different values of the coarse-graining radius rc: the
peak width grows with rc, but the tail is unchanged.

the frame F r̂ ≡ (er ,eθ ), with

er ≡ r̂ =
∣∣∣∣cos θ

sin θ
eθ =

∣∣∣∣− sin θ

cos θ
. (10)

By extension of the terminology used for 3D tensors, we call
spherical components the coordinates of stress such as defined
in (8). More specifically:

(i) we call Cartesian spherical (CS), the vector σ∼ as defined
in (8), i.e., using the matrix components of σ in the reference
frame F ;

(ii) we call radial spherical (RS) and denote σ∼
r̂ the

spherical vector representation based on the matrix expression
of stress in some arbitrary frame F r̂ , i.e., with components:

σ
r̂

1 = − 1
2 (σrr + σθθ )

σ
r̂

2 = 1
2 (σrr − σθθ )

σ
r̂

3 = σrθ.

(11)

The great interest of using these spherical components is
that σ∼ and σ∼

r̂ are related by a very simple expression:

σ∼
r̂ = Dr̂ · σ∼ (12)
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with

Dr̂ =
⎛⎝1 0 0

0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

⎞⎠, (13)

which is a rotation matrix, since (Dr̂ )T is its inverse. It is
immediately obvious from this expression that a π/4 rotation
of the frame swaps the values of σ2 and σ3, which is the basis
of our previous comment that the CS fields σ2(r) and σ3(r) are
expected to be essentially equivalent up to this rotation.

The RS stress autocorrelation field is defined as:

C̊≈ (r) = 〈σ∼
r̂ (r0 + r) σ∼

r̂ (r0)〉c. (14)

For any pair of points, r0 and r0 + r , it is the correlation matrix
between the stress components in frame F r̂ . It is clearly
independent of r0, thanks to translation invariance, and like C≈is a symmetric matrix of centrosymmetric fields. Using
Eq. (12), it reads:

C̊≈ (r) = Dr̂ · C≈
(r) · (Dr̂ )T . (15)

C. Case of isotropic media

A key element in our argument is that the RS autocorrelation
[Eq. (14)] is r̂ independent in an isotropic medium. It is then a
function of distance r only, and can be denoted C̊≈ (r) with the
consequence that the CS autocorrelation,

C≈
(r) = (Dr̂ )T · C̊≈ (r) · Dr̂ (16)

is angle dependent. We will later show that this relation
accounts for the anisotropies seen in Fig. 2.

Isotropy has another important implication. In three dimen-
sions, we found that invariance under axial rotations about an
arbitrary r̂ strongly constrains the form of correlation fields
[8]. This invariance also applies in two dimensions: indeed,
considering the plane as embedded in the 3D space, the axial
rotation about r̂ by π maps the plane onto itself; it reduces there
to mirror symmetry and transforms (er ,eθ ) into (er , − eθ ), and
σ∼ into DM · σ∼ , with:

DM =
⎛⎝ 1 0 0

0 1 0
0 0 −1

⎞⎠. (17)

In an isotropic problem, the RS stress autocorrelation must be
invariant under axial symmetry, i.e., verify:

C̊≈ (r) = DM · C̊≈ (r) · DT
M, (18)

which constrains it to be of the form:

C̊≈ (r) =
⎛⎝ C1(r) C2(r) 0

C2(r) C3(r) 0
0 0 C4(r)

⎞⎠ (19)

with components Ci that are functions of r only. Importantly,
only four of the correlation components are nonzero. In three
dimensions, correlation tensors are 6 × 6 symmetric matrices,
and invariance under axial rotations restricts them to having
five nonzero components [8].

In an isotropic medium, the simple structure of the RS stress
autocorrelation permits us to write, using Eq. (16), a general

expression for the corresponding CS form:

C≈
(r)

=
⎛⎝ C1(r) C2(r) cos 2θ C2(r) sin 2θ

C2(r) cos 2θ C ′(r)+C ′′(r) cos 4θ C ′′(r) sin 4θ

C2(r) sin 2θ C ′′(r) sin 4θ C ′(r)−C ′′(r) cos 4θ

⎞⎠
(20)

with C ′ = 1
2 (C3 + C4) and C ′′ = 1

2 (C3 − C4). Since the Ci’s
are radial functions, all the angular dependencies of C≈

(r)
appear explicitly here. They clearly correspond to those found
in the CS correlation maps of Fig. 2.

The r → 0 limit deserves special attention. At r = 0,
Eq. (16) can be written for arbitrary values of direction r̂ ,
which amounts to requiring C≈

(0) to be invariant under all

rotations and thus equal to C̊≈ (0). In view of Eq. (13), it implies
that C≈

(r) is diagonal in the r → 0 limit—local pressure and
deviatoric stresses do not cross correlate—with moreover C22

and C33 being identical. Equation (20) is compatible with this
requirement provided the prefactors of anisotropic terms, C2

and C ′′ vanish in the r → 0 limit. This condition is fully
consistent with our observation in Figs. 2 and 3(a) that C12

and C13 vanish at r = 0, but not the functions C1 and C ′,
which correspond to the peaks in stress correlation maps.

D. Testing isotropy in real space

Now we use the formalism presented so far and analyze our
2D real-space correlation data. The RS autocorrelation matrix
is computed from the CS data of Fig. 2 using Eq. (15). The re-
sults are reported in Fig. 4 as a matrix of pictures, each of which
is centered around the origin of space, just as in Fig. 2. These
fields clearly appear isotropic (r̂ independent) in the region
where data are visible, i.e., away from cell boundaries. More-
over, we do find that several fields essentially vanish, just as
predicted by Eq. (19), leaving only five nonzero components.

To further characterize these data, we report in Fig. 5(a)
the angle-averaged values of all the C̊ab’s: the coefficients C̊13

and C̊23 that are predicted to be equal to zero by Eq. (19) are
reported in thin black lines, which track perfectly the x axis,
thus confirming their vanishing. The nonzero components are
plotted in colors, and we clearly see that C̊22 and C̊33 have the
same peaks but tails of opposite signs. Note that the peak of
pressure fluctuations is twice as large as the peaks associated
with deviatoric stress fluctuations. Also, C̊12 does not present
a peak, but vanishes at r = 0, as expected.

To test the quality of the expected 1/r2 scaling, we plot
in Fig. 5(b) angle-averaged values of r2C̊ab vs r , up to the
boundary of the domain, r = L/2. It is very clear here that
the pressure autocorrelation presents no long-range tail. In
contrast, r2C̊22 and r2C̊33 do exhibit a flat plateau over some
intermediate range, which marks the 1/r2 scaling; yet, they
also strongly deviate from it and increase in values, starting
around r � 20, which is small compared with the half system
size L/2 = 80, where the domain boundary lies.

The quantitative analysis of RS data runs here into a
difficulty because it is not clear what causes the observed
departures from scaling. They may arise, for example, from
a breaking of isotropy caused by boundaries, but we will see
this is not the case. Further progress will come from analyzing
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FIG. 4. The RS inherent stress autocorrelation in L = 160 sys-
tems, from the data of Fig. 2, using Eq. (15). The data are presented as
a matrix of pictures corresponding to the fields C̊ab with a,b = 1 . . . 3.
In each case, the origin of space lies at the center. The color map is
the same as in Fig. 2. Note that only the fields corresponding to the
non-zero matrix components in Eq. (19) are visible, as predicted. The
white spots at the centers of C̊11 and C̊33 mark the presence of positive
correlation peaks.

correlations in Fourier space where important simplifications
arise.

IV. STRESS AUTOCORRELATION IN FOURIER SPACE

A. Constraints and symmetries in Fourier space

1. RS and CS forms

The Fourier transform of C≈
(r) is the function:

Ĉ≈ k = 1

A
〈̂σ∼k σ̂∼

∗
k〉c (21)

with ∗ the complex conjugate. For L × L periodic cells, it
takes values on the discrete reciprocal space, k = 2π

L
n with

n ∈ Z2. The RS field is defined as the autocorrelation of the
corresponding radial Fourier components, i.e., as the matrix:

˚̂C≈ k = 1

A

〈̂
σ∼

k̂

k

(
σ̂∼

k̂

k

)∗〉
c

(22)

where σ̂∼
k̂

k ≡ Dk̂ · σ̂∼k is the spherical representation of tensor

σ̂
k

in frame F k̂ . The relation between the CS and RS forms

reads exactly the same as in real space [Eq. (15)]:

˚̂C≈ k = Dk̂ · Ĉ≈ k · (Dk̂)T . (23)

Both matrices ˚̂C≈ k and Ĉ≈ k are real-valued thanks to spatial
inversion symmetry.
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2
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3 r2Cab
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r2C11
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FIG. 5. Angle-averaged values of the RS correlation fields C̊ab in
L = 160 systems. (a) C̊ab vs r . (b) r2C̊ab vs r . The fields C̊13 and
C̊23 are shown on both graphs using thin black lines: they uniformly
vanish as expected from isotropy.

2. Implications of material isotropy

In an isotropic medium, ˚̂C≈ k is k̂ independent and, since
axial symmetry applies just as in real space, presents, for any
nonzero k, the same matrix structure as in Eq. (19):

∀k �= 0 , ˚̂C≈ k =
⎛⎝ Ĉ1(k) Ĉ2(k) 0

Ĉ3(k) Ĉ4(k) 0
0 0 Ĉ5(k)

⎞⎠. (24)

Our notation emphasizes that, while ˚̂C≈ k is defined at discrete
k’s, its values are (real) functions of the amplitude k of
the wave vector only. It follows from the above expression
that the corresponding Cartesian form Ĉ≈ k presents the same
anisotropies as in Eq. (20).

It is important to note that, the reciprocal space being
discrete, the k = 0 coefficient cannot be deduced by continuity
from the k �= 0 ones. As in real space, rotation invariance
entails that it is of the form:

Ĉ≈ 0 = ˚̂C≈0 =
⎛⎝Ĉ0 0 0

0 Ĉ ′
0 0

0 0 Ĉ ′
0

⎞⎠ (25)

with Ĉ0 and Ĉ ′
0 two real numbers.

3. Implications of mechanical balance

We are interested in analyzing stress fields that are com-
puted in ISs and hence are divergence free, i.e., verify ik · σ̂

k
=

0 (see Sec. II A 2). Denoting (k,φ) the polar coordinates in
Fourier space, this condition is equivalent to requiring that
σ̂k kk = σ̂k kφ = 0 for any k �= 0. In the RS representation, it
becomes:

∀k �= 0

⎧⎨⎩ σ̂
k̂

k 1 = σ̂
k̂

k 2

σ̂
k̂

k 3 = 0
. (26)

This sole condition implies that the stress autocorrelation
matrix Ĉ≈ k verifies:

∀k �= 0 ˚̂C≈ k =

⎛⎜⎝ Ĉk Ĉk 0

Ĉk Ĉk 0

0 0 0

⎞⎟⎠ (27)

with a single, arbitrary, scalar function Ĉk .
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FIG. 6. The real part of ˚̂C≈ kab, for the same conditions as in Figs. 2
and 4, is presented as a matrix of pictures, each of which is centered
around k = 0. The structure of the fields corresponds precisely to the
form expected in Eq. (28).

4. Compounding mechanical balance and material isotropy

In view of Eqs. (27) and (24), if isotropy is satisfied, the
inherent stress RS correlation ˚̂C≈ k must present the following
remarkably simple structure:

∀k �= 0 ˚̂C≈ k =
⎛⎝ Ĉ(k) Ĉ(k) 0

Ĉ(k) Ĉ(k) 0
0 0 0

⎞⎠ (28)

with Ĉ a real-valued function of k. Meanwhile, the k = 0
matrix is not constrained by mechanical balance and may
hence present any value consistent with Eq. (25).

The prediction that the inherent stress autocorrelation of
isotropic systems should obey equation (28) is the key finding
of this work. It constrains extremely tightly the spatial structure
of stress correlations and will be shown in Sec. V to fix all
anisotropies and long-range decays. Before we develop this
argument, we check numerically that our data does abide by
this form.

B. Fourier space stress autocorrelation in the RS representation

1. Data analysis at non-zero k
¯

The Fourier space RS autocorrelation matrix ˚̂C≈ k is obtained
from coarse-grained stress data by first Fourier transforming
C≈

(r), and then applying the transformation (23). This was
performed using the data of Fig. 2. As all imaginary parts
vanish due to inversion symmetry, we only report on Fig. 6
the real parts of the components of ˚̂C≈ k as a matrix of pictures
centered around the origin, k = 0. These data are strikingly

˚
C0 11

˚
C0 22 and

˚
C0 33

˚
Ck ab

˚
Cδ

k ab

10−2 10−1 100 101
0

2

4

6

8

k

C̊k ab

L = 160

L = 80

L = 40

FIG. 7. Scatter plot of ˚̂Ck ab and ˚̂C
δ

k ab vs k, for all a,b ∈ {1,2},
all measured k values, and different system sizes. Only L = 40 and

L = 80 data are provided for ˚̂C
δ

k ab due the difficulty of its computation
in large systems.

consistent with Eq. (28) since all four components ˚̂Ck ab, with
a,b ∈ {1,2} look identical while all other clearly vanish.

On Fig. 7 we report the most stringent possible test that
our ˚̂C≈ k data agree with Eq. (28). Namely, we construct a
scatter plot, as a function of magnitude k, of all the measured
˚̂Ck ab values, for all our k’s, all a,b ∈ {1,2}, and using three
system sizes L = 40, 80, and 160. The collapse of the data
is absolutely remarkable. The four nonzero components of ˚̂C≈ k

are identical to each other—upon close inspection (not shown),
they lie on top of each other point by point. Moreover, their
values do not show any hint of dependence on the direction
k̂. Finally, as L increases, i.e., as the set of possible k values
densifies, the data points progressively fill in a single smooth
master curve that identifies with Ĉ(k).

We did not explore possible departures from collapse at
smaller system sizes: our aim being to evidence residual size
effects that are present in the thermodynamic limit, it is enough
for our argument that our data are size independent beyond
L = 40. This is what we imply below when referring to the
absence of size effect.

A remarkable feature of these data is the total absence of
finite-size deviations from collapse that, for any finite L, may
have arisen at the lowest accessible k’s. Indeed, the existence of
a thermodynamic limit only demands that ˚̂C≈ k achieves its L →
∞ limit value above some lower cutoff kc(L) that decreases
with increasing L. Here, all ˚̂C≈ k values collapse on a single
curve, hence achieve their infinite medium limit values down
to the lowest accessible k’s at any L. We cannot explain this
observation and just take it as an empirical fact.

2. k
¯

= 0
¯

values

The k = 0 values of ˚̂C≈ k are just the normalized macroscopic
stress fluctuations:

˚̂C≈0 = Ĉ≈0 = A 〈σ∼(t) σ∼(t)〉c (29)
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since, using translation invariance:

〈σa(t) σb(t)〉c = 〈σa(r0; t) σb(t)〉c
= 1

A

∫
A

dr Cab(r) ≡ 1

A

˚̂C0 ab, (30)

where the last step was made using Eq. (1). Following the

notation introduced in Eq. (25), which states that ˚̂C≈ 0 = Ĉ≈0 is
diagonal in isotropic media, we denote Ĉ0 = A〈σ 1(t) σ 1(t)〉c
and Ĉ ′

0 = A〈σ 2(t) σ 2(t)〉c = A〈σ 3(t) σ 3(t)〉c. These quantities
are reported on Fig. 7 using symbols positioned at an arbitrary
abscissa near the y axis: they show no significant size
dependence, so that macroscopic stress fluctuations scale as
1/A.

Let us beware of our inclination to take such a law-of-large-
numbers scaling as a self-evident: it usually arises because
correlations vanish beyond some finite length scale, so that
it is legitimate to consider a large system as a collection
of independent subsystems. However, the fat tails of the
stress autocorrelation rule out the validity of this assumption.
For now, we also take as numerical fact that the quantities
A 〈σ∼(t) σ∼(t)〉c are size independent [for L � 40] and will come
back later to discussing why.

3. k → 0 limit

A conspicuous feature of our ˚̂C≈ k data is the discrepancy
between the k → 0 limit and the k = 0 values. Ĉ ′

0 is much
above Ĉ(0) ≡ Ĉ(k → 0), and Ĉ0 is slightly, but decidedly,
below. Their measured values are: Ĉ(0) � 6.0, Ĉ0 � 5.75, and
Ĉ ′

0 � 7.8.
Let us emphasize that none of these three values depends

on our computation method, which involves coarse graining.
This is evident for Ĉ0 and Ĉ ′

0 because the spatial average of
stress σ is coarse-graining independent [Eq. (6)]. However,

Ĉ(k) does depend on coarse graining. To illustrate how, we
report on Fig. 7 the scatter plot of ˚̂C≈

δ
k , the correlation matrix

of stress fields computed in Fourier space using Eq. (5),
which corresponds to the limit case φ = δ(2), the 2D δ

function. The data are found again to satisfy Eq. (28) and
to be size independent; they depart from our coarse-grained
values at high k, but match them in the low-k limit. These
features result from the definition of coarse-grained stress as
σ̂

k
= φ̂(k) σ̂ δ

k
, which implies that ˚̂C≈ k = |φ̂(k)|2 ˚̂C≈

δ
k . In the low

k limit, ˚̂C≈ k and ˚̂C≈
δ
k merge because φ̂ smoothly converges to

φ̂(0) = ∫
φ(r)dr = 1. Therefore, coarse graining only affects

the high-k behavior of Ĉ(k), which corresponds to the shape of
the short-range peak, but not the Ĉ(0) ≡ Ĉ(k → 0) limit value.

V. INFINITE MEDIUM LIMIT

We showed in Sec. IV A that mechanical balance and
material isotropy strongly constrain the structure of the stress

autocorrelation matrix. This was expressed in Eq. (28) in terms
of its Fourier RS form and confirmed to hold in our data
analysis. Now, we would like to understand to what extent
these two conditions determine the real-space Cartesian stress
autocorrelation.

To do so, we consider the infinite medium limit, where the
Fourier RS stress autocorrelation is of the form:

˚̂C≈
∞(k) ≡

⎛⎝ Ĉ(k) Ĉ(k) 0
Ĉ(k) Ĉ(k) 0

0 0 0

⎞⎠ (31)

at any nonzero k in the whole plane; the smooth function
Ĉ(k) is supposed to have a finite, nonzero, k → 0 limit,
but is otherwise unspecified at present. Note that the k = 0
value of this field, ˚̂C≈

∞(0), obeys (25), hence cannot be the
limit ˚̂C≈

∞(k → 0); it remains undefined and will have to be
computed a posteriori.

The corresponding CS form is obtained by inverting
Eq. (23) [i.e., performing the same transformation as from
Eq. (19) to Eq. (20)]. It reads, for any k �= 0:

Ĉ≈
∞(k)

=

⎛⎜⎝ Ĉ(k) Ĉ(k) cos 2φ Ĉ(k) sin 2φ

Ĉ(k) cos 2φ Ĉ(k)
2 + Ĉ(k)

2 cos 4φ Ĉ(k)
2 sin 4φ

Ĉ(k) sin 2φ Ĉ(k)
2 sin 4φ Ĉ(k)

2 − Ĉ(k)
2 cos 4φ

⎞⎟⎠
(32)

with φ the azimuth of k.
The real-space CS autocorrelation is defined, on the infinite

plane, as the inverse Fourier transform [Eq. (3)]:

C≈
∞(r) = 1

(2π )2

∫
dk eik·r Ĉ≈

∞(k). (33)

We note that the k = 0 value of Ĉ≈
∞(k) is irrelevant to this

integral, hence does not need to be specified as yet.
The calculation proceeds noting that, for m integer:∫

dk eik·r f (k) cos(mφ)

= 2πim cos(mθ )
∫ ∞

0
dk kf (k)Jm(kr)∫

dk eik·r f (k) sin(mφ)

= 2πim sin(mθ )
∫ ∞

0
dk kf (k)Jm(kr) (34)

with Jm the Bessel function of the first kind of order m.
Introducing the functions

C(m)(r) ≡ 1

2π

∫ ∞

0
dk k Ĉ(k) Jm(kr) (35)

we finally obtain:

C≈
∞(r) =

⎛⎝ C(0)(r) −C(2)(r) cos 2θ −C(2)(r) sin 2θ

−C(2)(r) cos 2θ C(0)(r)
2 + C(4)(r)

2 cos 4θ C(4)(r)
2 sin 4θ

−C(2)(r) sin 2θ C(4)(r)
2 sin 4θ C(0)(r)

2 − C(4)(r)
2 cos 4θ

⎞⎠, (36)
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which presents the following RS form:

C̊≈
∞(r) =

⎛⎜⎝ C(0)(r) −C(2)(r) 0

−C(2)(r) 1
2 [C(0)(r) + C(4)(r)] 0

0 0 1
2 [C(0)(r) − C(4)(r)]

⎞⎟⎠. (37)

These two matrix fields are clearly compatible with our deductions of Sec. III C concerning the consequences of material isotropy.
Note, in particular, that C(2) and C(4) vanish at r = 0, so that C≈

∞(0) = C̊≈
∞(0) is diagonal with C∞

22 (0) = C∞
33 (0), as expected.

The function C(0)(r) is just C∞
11 (r), the pressure

autocorrelation—and can be pictured from the measured
function, C11(r) = C̊11(r), a cut of which was plotted on
Fig. 5(a). Thus, the master curve identified in our scatter plot
of Fig. 7, Ĉ(k) = Ĉ∞

11 (k), is the Fourier transform of pressure.
Note also that, since C(4) and its first three derivatives vanish at
r = 0, all three correlation peaks are ∝C(0)(r). This explains
the collapse seen on Fig. 5(a) of C̊22(r) and C̊33(r) near their
maximum, where they reach 1/2 of the pressure peak.

Let us recall that the k = 0 value of Ĉ≈
∞ has so far remained

unspecified. It is self-consistently defined as the k = 0 Fourier
transform of C≈

∞. From Eq. (36), the θ -dependent terms
integrate to zero, and it appears that:

˚̂C≈
∞(0) = Ĉ≈

∞(0) =
⎛⎝Ĉ(0) 0 0

0 1
2 Ĉ(0) 0

0 0 1
2 Ĉ(0)

⎞⎠. (38)

In Eq. (29), we saw that the diagonal components of
Ĉ≈0 in a finite-sized system are the corresponding scaled
macroscopic stress fluctuations. It will become clear in the
next section that Ĉ≈

∞(0) accounts for the contribution of
local inhomogeneities of pressure and deviatoric stresses to
the corresponding (scaled) macroscopic stress fluctuations,
A〈σ 2

a〉c, with a = 1,2,3. The finiteness of Ĉ(0) = ∫
dr C∞

11 (r),
which we observed in our Fourier data analysis, is required for
this contribution to remain finite, and entails that the infinite
medium pressure autocorrelation C(0)(r) must decay with a
finite characteristic length scale.

The most striking feature of Eq. (36) is that the two
functions C(2) and C(4), which set the r dependence of all
anisotropic terms, are just certain transforms of Ĉ, i.e., are fully
specified by the pressure autocorrelation C(0). Since the latter
vanishes beyond a finite length, we can get the leading-order
large r behavior of C(2) and C(4) by approximating C∞

11 (r)
by the 2D Dirac function Ĉ(0)δ(2)(r), which amounts to
considering Ĉ(k) ≡ Ĉ(0) at all k’s. At leading order, we
then get C(m)(r) � Ĉ(0) m/(2πr2), which not only accounts
for the 1/r2 decay of anisotropic terms, but also implies
C(2) � Ĉ(0) /(πr2) � C(4)/2, so that all tails have the same
amplitude, as seen on Fig. 3.

We find remarkable that all these properties now seem self-
evident: in the course of previous works [7,8], we attributed
the 1/r2 decay to elasticity. We had also observed that simple
ratios existed between correlation peaks or tails, and thought
that they had to be attributed to certain simplifications due to,
e.g., the pairwise nature of our system. In fact, detailed features
of the stress autocorrelation matrix, including anisotropy and
long-range decay, are found here to originate only from the
combination of isotropy and mechanical balance.

VI. FINITE-SIZE EFFECTS

A. Real-space IS stress autocorrelation in finite-sized cells

In Sec. IV B, we observed that our ˚̂C≈ k data obtained in
periodic cells were devoid of any finite-size deviation, i.e.,
that:

˚̂C≈ k = ˚̂C≈
∞(k) for k �= 0

˚̂C≈ 0 �= ˚̂C≈
∞(0)

(39)

the value ˚̂C≈0 being size independent. The same relation hence
holds between the CS forms Ĉ≈ k and Ĉ≈

∞(k). Here, we use
this empirical result to compute the real-space form C≈

(r) in
finite-sized periodic cells.

Let us introduce the sum of C≈
∞ and its images,

C≈
�(r) =

∑
n∈Z2

C≈
∞(r + Ln), (40)

which is a periodic function on the L × L cell. Its Fourier
coefficients are Ĉ≈

�
k = Ĉ≈

∞(k), for all k = 2πn/L, n ∈ Z.
Using Eqs. (39), (25), and (38), we thus find:

Ĉ≈ k = Ĉ≈
�
k for k �= 0

Ĉ≈ 0 = Ĉ≈
�
0 +

⎛⎝δĈ0 0 0
0 δĈ ′

0 0
0 0 δĈ ′

0

⎞⎠ (41)

with

δĈ0 = Ĉ0 − Ĉ(0)
(42)

δĈ ′
0 = Ĉ ′

0 − 1
2 Ĉ(0).

It follows that the real-space inherent stress autocorrelation
matrix in a finite-sized periodic cell reads:

C≈
(r) = C≈

�(r) + C≈
bg(r) (43)

with

C≈
bg(r) = 1

A

⎛⎝δĈ0 0 0
0 δĈ ′

0 0
0 0 δĈ ′

0

⎞⎠. (44)

We have thus obtained for the stress autocorrelation C≈
(r) a

complete expression that holds in finite-sized cells. It is the sum
of: the infinite medium solution C≈

∞, its periodic images, and
a uniform correlation background C≈

bg(r), which is diagonal
and of amplitude ∝1/A.

With these elements at hand, let us return to our attempt of
Sec. III D to capture in Fig. 5(b) the long-range 1/r2 scaling
using real-space RS data. It appears at present that the growth
at large distance of the angle averages of r2C̊22(r) and r2C̊33(r)
is likely to be caused primarily by the correlation background.
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FIG. 8. r2 C̊�
ab vs r , for three system sizes: L = 40 (open circles),

80 (filled circles), and 160 (lines).

We check this by computing C̊≈
�(r) using Eqs. (42), (43), and

(44), with the values δĈ0 � −0.25 and δĈ ′
0 � 4.8, obtained

from the data of Sec. IV B 3. Scaling is tested by plotting
on Fig. 8 the angle-averaged values of r2C̊�

ab(r) vs r . We use
the same colors as on Fig. 8, but now plot together our three
system sizes L = 40, 80, and 160. The collapse onto a unique
size-independent plateau is nearly perfect.

This graph provides a real-space visualization of the 1/r2-
scaling of stress correlations. On a practical level, it shows
that it is possible to access the scaling regime using our
smallest system size, L = 40, which sanctions a tremendous
simplification of the technology involved in analyzing stress
correlations. Indeed, we came to use very large systems in this
and previous studies because the range where it was possible
to see a clear scaling was limited. We now understand that
this difficulty is caused by background correlations that can be
easily identified and eliminated.

B. Macroscopic stress fluctuations

The general expression we have derived for the inherent
stress autocorrelation matrix, holds the key to understanding
how the fluctuations of macroscopic stress are related to local
stress inhomogeneities. Remember that the scaled (multiplied
by A) macroscopic stress fluctuations (which are the quantities
of interest in the large-size, thermodynamic limit), are just the
integrals

A
〈
σ 2

a

〉
c
=

∫
A

dr Caa(r). (45)

In view of the relation C≈
= C≈

� + C≈
bg [Eq. (43)], all the

contributions to macroscopic fluctuations other that due to
the background term are captured by:∫

A

dr C≈
�(r) =

∫
R2

dr C≈
∞(r) ≡ Ĉ≈

∞(0)

=
⎛⎝Ĉ(0) 0 0

0 1
2 Ĉ(0) 0

0 0 1
2 Ĉ(0)

⎞⎠,

(46)

where the last equality is just Eq. (38). The first step in the
above calculation,

∫
A

dr C≈
�(r) = ∫

R2 dr C≈
∞(r), shows that

image effects do not contribute to macroscopic fluctuations.
Next we have used that all long-range anisotropic terms
integrate out to zero, thus showing they do not contribute
either. The only nonzero contributions come from the integral∫

dr C(0)(r) = Ĉ(0) of the short-ranged, isotropic function
C(0)(r).

Macroscopic stress fluctuations finally decompose into
A 〈σ 2

a〉c = ∫
A

dr C�
aa(r) + ∫

A
dr C

bg
aa(r), or:

A
〈
σ 2

1

〉
c

= Ĉ(0) + δC0

A
〈
σ 2

2

〉
c

= A
〈
σ 2

3

〉
c
= 1

2 Ĉ(0) + δC ′
0, (47)

which comprise only a peak and a background term.
To interpret these expressions, it is important to have clearly

in mind the classical case of an observable O that fully
decorrelates beyond a finite length scale �, with COO(r) �
C∞

OO(r) up to irrelevant corrections. The inverse area scaling
in the large-size limit then immediately follows from

A 〈O2〉c =
∫

A

dr COO(r) →
∫
R2

dr C∞
OO(r). (48)

Let us see why, in this case, spatial ergodicity holds, i.e.,
why O is statistically equivalent to (i.e., present the same

variance as) the mean of N local averages O
loc

defined on
independent, size-R, domains. The issue pertains to the � �
R � L limit, since the condition � � R is required to achieve
domain independence, and R � L for the thermodynamic
limit. Without loss of generality, we take as subdomains disks

of radius R, and define O
loc

(r) = 1
S

∫
|r ′−r|<R

dr ′ O(r ′), with

S = πR2. Introducing

IOO(R,L) =
∫

r<R

dr COO(r) (49)

the variance of O
loc

verifies S 〈(O loc
)2〉c � IOO(R,L), up to

�/R corrections, in the considered � � R � L limit. It is
key to spatial ergodicity that, in this limit, IOO(R,L) tends

precisely to A 〈O2〉c, so that 〈O2〉c � S
A
〈(O loc

)2〉c: the right-
hand side of this equation is indeed the variance of the mean

of N = A/S independent variables O
loc

, and the sought-after
equivalence is then established. It is in that sense that the
full decorrelation of O beyond a characteristic length scale
justifies viewing the macroscopic problem as equivalent to a
set of independent subsystems.

To contrast this classical scenario with our situation, let us
consider the integrals

Iab(R,L) =
∫

r<R

dr Cab(r), (50)

which are taken over the intersection of the [−L/2,L/2]2

square cell and the disk of radius R centered on the origin. All
the functions Iab are reported on Fig. 9 for a fixed L = 160,
and for R ranging from 0 to the maximum distance L/

√
2,

which corresponds to cell corners, where they achieve the
values Iab(L/

√
2,L) = A〈σa(t) σb(t)〉c by virtue of Eq. (30).

The color convention is the same as in Figs. 5 and 8. All
the Iab’s associated with cross correlations (i �= j , thin black
lines) vanish, as expected. Only remain the three integrals Iaa

for a = 1,2,3.
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FIG. 9. (a) Integrals Iab(R) vs R, using the same color convention
as in previous graphs. The purple line is the average I∗ = [I22(R) +
I33(R)]/2. The black and cyan lines tracking I11 and I∗ (respectively),
are the functions of the form A + B A as discussed in the text. (b)
I22 − I∗ and I33 − I∗.

Each of these three curves presents a rapid jump near the ori-
gin, which corresponds to the integration over the peak region.
Since correlation backgrounds and image superposition bring
negligible contributions over such a short range, and since
anisotropies do not contribute, in view of Eq. (36), the jumps
for pressure and deviatoric stress correlation integrals result
primarily from the integration of, respectively, C(0) and 1

2 C(0),
and consistently have amplitudes Ĉ(0) � 6 and 1

2 Ĉ(0) � 3. As
already said, these values are independent of coarse graining,
which only affects the width of the central peak, i.e., the small
distance over which the jump is completed.

Beyond the peak radius, I11, which slightly decreases, is
essentially equal to Ĉ(0) + δC0A/A (thick black line, using
δC0 = −0.25) with A the area of the integration domain:

A(R,L) = πR2 if R < L/2

A(R,L) = πR2 − 4R2 arctan

⎡⎣√(
2R

L

)2

− 1

⎤⎦
+L2

√(
2R

L

)2

− 1

if R > L/2. (51)

Meanwhile, the integrals I22 and I33 display strange shapes
that compel us to return to Eqs. (36), (40), and (43). We
note that, since the long-ranged cos 4θ terms—which are
irrelevant to macroscopic fluctuations—have opposite signs
in C22 and C33, they and all their images cancel exactly in
C∗ ≡ 1

2 [C22(r) + C33(r)]. The half sum C∗ is thus essentially
1
2C(0)(r) + δC ′

0/A, up to its own (negligible) periodic images;
beyond the correlation peak region, its integral, I∗ = 1

2 (I22 +
I33), reported on Fig. 9 in purple, matches nearly perfectly
the equation 1

2 Ĉ(0) + δC ′
0A/A (cyan line, using δC ′

0 = 4.8).
The quantities I22 − I∗ and I33 − I∗, plotted on Fig. 9(b),
only carry residues associated with the combined effects of
anisotropy and image superposition; they are consistently in
perfect symmetry with each other and vanish at the end point
R = L/

√
2 of the integration domain. It can also be checked

that, for any fixed R, these residues vanish in the L → ∞
limit.

The above plots highlight that, beyond the length � charac-
terizing the decay of C(0), I11 � Ĉ(0) + δC0A/A while I22 and
I33 are essentially equal to 1

2 Ĉ(0) + δC ′
0A/A up to irrelevant

contributions. It ensues that, in the � � R � L limit, the
integrals I11 on the one hand and I22 and I33 on the other,
converge, respectively, toward Ĉ(0) and 1

2 Ĉ(0). Moreover, in
the same limit, as we previously found when discussing the
classical case, the fluctuations of local stress σ∼

loc, averaged
on circular domains of radius R, verify S〈(σ loc

a )2〉c � Iaa ,
up to �/R corrections. Therefore, the two quantities Ĉ(0)
and 1

2 Ĉ(0) capture the contributions of local pressure and
shear stress fluctuations to their macroscopic counterparts.
This identification implies that, since correlation backgrounds
bring relevant contributions in Eq. (47), the macroscopic IS
stress fluctuations cannot be captured by a decomposition
into subdomains. We thus conclude that ISs are not spatially
ergodic.

To take the full measure of this finding, let us observe that,
in the normal case, if two observables O1 and O2 decorrelate
beyond �1 and �2 (respectively), the ratio of their macroscopic

fluctuations, 〈O2
1〉c/〈O

2
2〉c, is equal to the ratio of their local

fluctuations, 〈(O loc
1 )2〉c/〈(O loc

2 )2〉c, for any splitting of the
problem into R subsystems with R � max(�1,�2). Here, the
ratio of local pressure to shear stress fluctuations is necessarily
2, independently of our choice of R; but, due to the background
contributions in Eq. (47), macroscopic pressure fluctuations
are �30% smaller than those of deviatoric stresses. It is
therefore impossible to decompose an IS into independent
subsystems in such a way that stress fluctuations are consistent
at both local and macroscopic scales.

VII. CONCLUSION

Let us emphasize that our work is based on the construction
of a systematic framework of analysis, extending Ref. [8], that
enables us to eliminate trivial anisotropies arising from tensor
rotations. This development brings a number of innovations
compared with prior studies. Egami has used for decades a
representation of stress based on Stevens operators (which are
related to real-valued spherical harmonics) [25], which is just
how we decompose stress; here, we introduce RS coordinates,
which are key to understanding how isotropy and mechanical
balance constrain stress correlations. Furukawa et al. [26,27],
who pioneered the study of stress-stress correlations in Fourier
space (in the case of the parent stress), examined radial
correlations, but not the complete correlation matrix. We hope
that the present paper will motivate other groups to work
using the same vocabulary and toolbox, because considerable
insights can be gained from the possibility to look at the same
data via both its CS vs. RS forms, and by relating Fourier
fields—where tremendous simplifications occur—with their
real space forms, which lend themselves more readily to
interpretation.

Our key result (Sec. IV A) is that the two conditions
of mechanical balance and material isotropy constrain the
Fourier RS autocorrelation field into the form specified by
Eqs. (28) and (25), which entails (Sec. V) that, in the infinite
medium limit, the full real-space CS stress autocorrelation
C≈

∞(r) [Eq. (36)] is fully set by the pressure autocorrelation
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only. Strikingly, the expected decay of pressure correlations
beyond a finite length scale in the infinite medium limit
(the local character of pressure fluctuations) then mandates
all anisotropic correlation components to decay as 1/r2.
Furthermore, all correlation components are related to one
another by functional transforms that set simple ratios between
the relative weights of correlation peaks and tails.

The present paper thus confirms the observations of
Refs. [7] and [8] of long-ranged anisotropic correlation tails in
IS stress fields, yet departs from these works in showing that
no reference to elasticity is needed to explain their presence. It
establishes, instead, that these features hold quite generally for
the local stress field of any isotropic ensemble of mechanically
equilibrated configurations, which applies, in principle, to
jammed systems [28]. Our work thus also explains the observa-
tions by Henkes and Chakaborty [17] of long-range anisotropic
stress correlations in granular systems near jamming, without
introducing any granular-specific assumption.

We were surprised in Sec. IV B to find that our Fourier data
for three rather large system sizes abide by the predicted form
without any measurable finite-size deviation. This empirical
result enabled us to derive (Sec. VI) a general expression for
C≈

(r) in large but finite-sized periodic cells, which revealed the
presence of uniform backgrounds of amplitude ∝1/A in the
autocorrelations of pressure and deviatoric stresses. On this
basis, we have been able to identify precisely all microscopic
contributions to macroscopic stress fluctuations and to show
[Eq. (47)] that while anisotropic tails do not contribute for
reasons of symmetry, a relevant contribution from correlation
backgrounds is present, which respects the inverse area scaling,
but breaks spatial ergodicity, i.e., the equivalence between a
large IS and an ensemble of sufficiently large subsystems.
It remains that we do not understand today what fixes, for
example, the amplitude of these backgrounds and hence the
values of macroscopic IS stress fluctuations.

Our exclusive focus on IS stress was motivated by a
convergence of interests. First, ISs are important in themselves
since they are the glassy solids formed from the liquid
after a quench, and local stress strongly determines local
elasticity, thus affecting sound propagation [9]. Second, since

the relaxation process can be reduced to a series of hops
between their basins of attraction, it can be characterized in
principle by the consideration of changes occurring between
ISs; stress increments were used to access relaxation events
[7] but many questions remain. Third, the activation barriers
limiting relaxation events are expectedly affected by the local
IS stress or elasticity, as, e.g., events tend to occur in soft
regions of space [29]; ISs inevitably control various aspects
of the relaxation process and it is important to understand
precisely how. We are thus convinced that the formalism
introduced here and the understanding gained about the
structure of IS stress correlations will prove to be useful tools
in future investigations of these various topics.

Of course, in the broader context of identifying the
mechanisms governing relaxation in supercooled liquids, it
is crucial to eventually connect any picture we formulate
in ISs to how stress relaxes in the parent liquid. A step in
that direction would be to connect our work about stress
(and stress increments) in ISs to space-resolved studies of
the parent stress relaxation and viscosity [26,27,30–32]. This
remains very challenging, however, because, as the constraints
imposed upon the IS stress by mechanical balance are lifted
in the parent stress, the spatial structure of its correlation is
likely more complex. Also it is not clear how the correlation
background identified here—or alternatively the gap between
k → 0 and k = 0 correlations—would show up in the parent
liquid stress. We just note that the anomalies we found
between local and macroscopic fluctuations are evocative
of anomalies identified when probing how different spatial
scales contribute to viscosity [26,27,30–32]: it is plausible
that a connection exists between these features. Understanding
to what extent long-ranged stress correlations affect static
and dynamic properties of liquids and glasses is just at its
beginning, but already promises to be a fascinating enterprise.
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