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Boltzmann machines are physics informed generative models with broad applications in machine learning. They
model the probability distribution of an input data set with latent variables and generate new samples accordingly.
Applying the Boltzmann machines back to physics, they are ideal recommender systems to accelerate the Monte
Carlo simulation of physical systems due to their flexibility and effectiveness. More intriguingly, we show that
the generative sampling of the Boltzmann machines can even give different cluster Monte Carlo algorithms. The
latent representation of the Boltzmann machines can be designed to mediate complex interactions and identify
clusters of the physical system. We demonstrate these findings with concrete examples of the classical Ising
model with and without four-spin plaquette interactions. In the future, automatic searches in the algorithm space
parametrized by Boltzmann machines may discover more innovative Monte Carlo updates.
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Introduction. There have been endless efforts made toward
inventing new Monte Carlo algorithms for the efficient simula-
tion of challenging physical problems ever since its invention
[1]. Innovative Monte Carlo algorithms such as Refs. [2–6]
represent landmark achievements in computational physics. In
certain cases, they even outperform the hardware accelerations
from Moore’s law, i.e., running these modern algorithms on
decades-old computers would be faster than running traditional
algorithms on the fastest supercomputers of today [7]. Orders
of magnitude acceleration not only concerns efficiency and
energy consumption but also allows us to discover qualitative
new physical phenomena [8].

Recently, there have been heated efforts to systematically
improve the Monte Carlo sampling efficiency for physical
problems using ideas and techniques from machine learning
[9–13]. The basic idea is to construct surrogate models based
on past samples, then use them to guide future sampling.
Although similar ideas were discussed repeatedly in statistics
literature [14–17], there are two notable features of recent
attempts in the physics contexts [9–13]: using simple surrogate
models with a clear physical meaning [10,12] and using
Boltzmann machines (BMs) [9]. The BM is a historic model
in machine learning [18,19] and has played a crucial role in
the recent resurgence of deep learning [20]. Using the BM
to model physical distributions [21] and accelerate Monte
Carlo sampling [9] opens new possibilities for algorithmic
innovations because they can suggest novel Monte Carlo
update strategies instead of merely acting as cheaper surrogate
models.

As illustrated in Fig. 1, the BM consists of stochastic
visible (s) and hidden (h) variables. An energy function
E(s,h) specifies the connectivity and interaction between
these units. Their joint probability distribution follows the
Boltzmann distribution p(s,h) = e−E(s,h). The hidden units of
the BM act as internal representations and mediate interactions
between the visible units. After tracing out the hidden units,
the marginal probability p(s) = ∑

h p(s,h) can approximate
arbitrarily complex probability distributions over the visible
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variables since BM is a universal probability approximator
[22–24]. By tuning the parameters in the energy function
one can therefore use p(s) to model certain target probability
distributions π (s) of a data set. The expressive powers of BMs
were investigated recently both from machine learning [25,26]
and physics perspectives [27–30]. See Refs. [21,31–33] for
other recent applications of the BM to quantum and statistical
physics problems.

A successfully trained BM can capture the salient features
of the input data. For example, the BM learns about some
building blocks from an image data set of handwritten digits
[34]. By simulating a trained BM as a statistical physics
system, one can generate new samples from the learned
distribution. Reference [9] uses samples generated from a BM
as Monte Carlo proposals. To keep the physical simulation
unbiased, the BM recommended update of the visible units
s → s′ is accepted according to the Metropolis-Hastings rule
[1,35] (see Appendix A),

A(s → s′) = min

[
1,

p(s)

p(s′)
π (s′)
π (s)

]
. (1)

Equation (1) shows that the BM guides the Monte Carlo
sampling by exploiting the learned probability distribution.
In particular, one can even achieve a rejection-free Monte
Carlo simulation scheme if the BM perfectly captures the
target probability distribution p(s) ∼ π (s). Using Eq. (1) is
advantageous as long as the simulation of the BM is cheaper
than the original model. For example, Ref. [9] employs a
restricted architecture of BM where the connections are limited
to being between the visible and hidden units [36]. Such a
restricted BM can be sampled efficiently by blocked Gibbs
sampling alternating between the hidden and visible units.

Moreover, Ref. [9] finds that the generative sampling of the
restricted BM appears to exploit the collective density corre-
lations learned from the Monte Carlo data. This suggests that
besides being a cheap surrogate and a general recommender
engine for Monte Carlo simulations, BM may help us find
out conceptually new efficient Monte Carlo updates with its
feature discovery ability.

In this Rapid Communication, we demonstrate the BM’s
power by exact constructions of cluster updates and present
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FIG. 1. A schematic plot of the Boltzmann machine and its
typical use in machine learning. The Boltzmann machine consists of
stochastic variables (red and blue dots) and hidden units (white and
gray squares) connected into a network. Different colors denote active
or inactive states of various units. The joint probability distribution
of these variables follows a Boltzmann distribution. By adjusting the
structure and parameters of the BM, it models the target probability
distribution of input data as the marginal probability distribution of
visible variables. The sampling of the Boltzmann machine generates
new samples according to the learned distribution. Here, we show
that a BM with an appropriately designed architecture can suggest
efficient cluster Monte Carlo algorithms in its generative sampling.

a general framework to fully exploit its potential. The crucial
insight is that the hidden units of the BM can mediate complex
interactions between the visible units and identify clusters of
the visible units. The generative sampling of the BM then
automatically proposes efficient cluster updates. To encourage
these desired features, it is crucial to design the BM in a
suitable architecture and allow its parameters to adapt to the
physical distribution via learning.

Example: Ising model. To make the discussions concrete,
we start with the classical Ising model and show that the
generative sampling of the BM encompasses a wide range of
celebrated cluster algorithms [3,37,38]. The Boltzmann weight
of the Ising model reads

π (s) = exp

(
βJ

∑
�

∏
i∈�

si

)
, (2)

where β = 1/T is the inverse temperature and J is the
coupling constant. We consider ferromagnetic coupling J > 0
in the following for clarity. The considerations are nevertheless
general and valid for the antiferromagnetic case as well.
Equation (2) consists of a summation over links � of a lattice
and a product over Ising spins si ∈ {−1,1} residing on the
vertices connected by the link.

To devise a BM inspired cluster update of the Ising model,
we consider the architecture illustrated in Fig. 2(a). We view
the Ising spins as visible variables and introduce binary hidden
variables h� ∈ {0,1} on the links of the lattice. Coupling of
these units gives rise to the following energy function,

E(s,h) = −
∑

�

(
W

∏
i∈�

si + b

)
h�. (3)

Equation (3) is a high-order BM [39] because the interaction
consists of three-spin interactions (one hidden unit and
two visible units). Similar architectures were discussed in
the machine learning literature under the name three-way
Boltzmann machines [40–42]. In light of the translational
invariance of the Ising model (2) we use the same connection
weight W and bias b for all the links. Therefore the BM energy
function (3) only contains two free parameters.

flip 
clustersp(h|s)

(a) (b)
h = 0, 1

si = ±1

visible

hidden

FIG. 2. (a) The Boltzmann machine (3) reproduces cluster Monte
Carlo algorithms of the Ising model (2). Solid dots residing on the
vertices are the visible units representing the Ising spins. Red and
blue colors denote Ising spin up and down. The squares residing
on the links are the binary hidden units, where the white and gray
colors indicate the inactive (h� = 0) or active (h� = 1) status of the
hidden unit. The effective interaction between the visible units can
either be W (thick links) or 0 (thin links). (b) The sampling of the
BM. Given the visible units, we sample the hidden units according to
Eq. (4). The inactive hidden units (white squares) divide the visible
units into disconnected components which can be flipped collectively
at random.

To perform a generative sampling of the BM (3) we proceed
in two steps by exploiting its particular architecture shown in
Fig. 2. First, given a set of visible Ising spins, we can readily
perform a direct sampling of the hidden units. This is because
the conditional probability factorizes into products over each
link, p(h|s) = p(s,h)/p(s) = ∏

� p(h�|s), where

p(h� = 1|s) = σ

(
W

∏
i∈�

si + b

)
, (4)

and σ (z) = 1/(1 + e−z) is the sigmoid activation function. As
shown in Fig. 2(a), the inactive hidden units (white squares)
divide the lattice into disconnected components since h� = 0
in Eq. (3) decouples the visible Ising spins residing on the
link �. Next, one can identify connected components using the
union-find algorithm [43,44] and flip all the visible Ising spins
within each component collectively at random. This cluster
move with respect to the statistical weight of the BM (3) due
to the Z2 symmetry of the visible Ising spins in the energy
function.

Combining the two steps in Fig. 2(b) forms an update
of the visible units of the BM. Recommending the update
to the Ising model Monte Carlo simulation, it is accepted with
the probability (1) (see Appendix A). In the trivial case of
W = 0, the marginal probability p(s) = ∏

� (1 + eW
∏

i∈� si+b)
of the BM (3) is independent of the visible spins and Eq. (1)
reduces to the ordinary Metropolis algorithm where b controls
how many spins we attempt to flip together. While matching
p(s) and the Ising model Boltzmann weight (2) we obtain a
rejection-free Monte Carlo scheme. The resulting condition

1 + eb+W

1 + eb−W
= e2βJ (5)

can always be satisfied with appropriately chosen W and b. It
is instructive to examine the BM recommended updates in two
limiting cases.
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In the limit of b → −∞, the solution of Eq. (5) reads
W + b = ln(e2βJ − 1). Thus, the conditional sampling of the
hidden units (4) will set h� = 1 with probability σ (W + b) =
1 − e−2βJ if the link connects to two parallel spins

∏
i∈� si = 1,

while it will always set the hidden unit to inactive h� = 0 if the
link connects to antiparallel spins. Combined with the random
cluster flip of visible units, this BM recommended update
shown in Fig. 2(b) exactly reproduces the Swendsen-Wang
cluster algorithm [3] of the Ising model.

While in the opposite limit b → ∞, the solution of Eq. (5)
approaches to W = βJ . In this limit, all the hidden units are
frozen to h� = 1 because the activation function in Eq. (4)
saturates regardless of whether or not the visible Ising spins are
aligned. The BM (3) then trivially reproduces the Ising model
statistics by copying its coupling constant βJ to the connection
weight W . In this limit the BM recommended update shown
in Fig. 2(b) is a trivial global flip of the visible Ising spins.

In between the above two limiting cases, the BM still
recommends valid rejection-free Monte Carlo updates for
the Ising model. These updates correspond to Niedermayer’s
cluster algorithm [37] where the sites are randomly connected
into clusters according to Eq. (4) and the clusters may
contain misaligned visible spins. The bias parameter b in
Eq. (4) controls the activation threshold of the hidden units
and thus affects the average cluster size. In essence, the
sampling of BM (3) is a form of the dual Monte Carlo
algorithm [45,46], which encompasses the Kandel-Domany
cluster Monte Carlo framework [38]. The framework is based
on the Fortuin-Kasteleyn transformation [47,48], where the
Monte Carlo sampling alternates between the physical degrees
of freedom and auxiliary graphical variables. BM represents
these auxiliary variables with the hidden units.

Example: Ising model with plaquette interactions. The
potential of BM goes beyond reproducing existing algorithmic
frameworks [3,37,38]. By further exploiting its power from
latent representations one can make nontrivial algorithmic
discoveries. We illustrate this using the plaquette Ising model
[10] as an example. The Boltzmann weight reads

π (s) = exp

⎛
⎝βJ

∑
�

∏
i∈�

si + βK
∑
℘

∏
i∈℘

si

⎞
⎠, (6)

where the second term contains four-spin interactions on
each square plaquette denoted by ℘. We consider K > 0 for
concreteness. Since no simple and efficient cluster algorithm is
known, Ref. [10] fits the Boltzmann weight (6) to an ordinary
Ising model with two-spin interactions and proposes Monte
Carlo updates by simulating the latter model with cluster
algorithms [4,49]. However, the acceptance rates decrease
for large systems due to a mismatch between the surrogate
model and the original physical model. The approach ends up
showing similar scaling behavior as the single spin-flip update
algorithm.

Here, we construct a BM which suggests an efficient,
unbiased, and rejection-free cluster Monte Carlo algorithm for
Eq. (6). First, we decompose the four-spin plaquette interaction

βJβJ + W/2 βJ − W/2

FIG. 3. The Boltzmann machine (8) suggests a new cluster update
for the plaquette Ising model (6). Red/blue dots on the vertices denote
the visible Ising spins, and white/gray squares in the plaquette center
denote the hidden units. The double arrows point to the two parallel
links �℘,�̄℘ composing the plaquette ℘. The hidden units are sampled
directly according to Eq. (9) where the breakup of the plaquette
into parallel links is chosen at random. Once the hidden units are
given, Eq. (8) reduces to an inhomogeneous Ising model where the
visible spins interact with modified coupling strengths, indicated by
the thicknesses of the links.

using the Hubbard-Stratonovich (HS) transformation [50,51]

exp

⎛
⎝βK

∏
i∈℘

si

⎞
⎠ = e−βK

2

∑
h℘∈{0,1}

exp

[
W

(
h℘ − 1

2

)
F℘(s)

]
,

(7)

where W = acosh(e2βK ) is the coupling strength between
the binary HS field h℘ and the sum of two-spin products
F℘(s) = ∏

i∈�℘
si + ∏

i∈�̄℘
si defined for the plaquette. The

two parallel links �℘ and �̄℘ constitute the plaquette ℘

(see Fig. 3). Equation (7) is equivalent to the discrete HS
transformation widely adopted for the Hubbard models [52].
Regarding the HS field h℘ as a hidden unit, the following BM,

E(s,h) = −
∑

�

[
βJ + W

∑
℘

(
h℘ − 1

2

)

×(
δ��℘

+ δ��̄℘

)] ∏
i∈�

si, (8)

exactly reproduces Eq. (6) after marginalization. Since Eq. (7)
holds for arbitrary partition of the plaquette into two links �℘ ∪
�̄℘ = ℘ and �℘ ∩ �̄℘ = ∅, we choose a vertical or horizontal
breakup at random for each plaquette.

Simulation of the BM (8) suggests an efficient cluster
update for the original plaquette Ising model (6). First of all,
sampling the hidden variables given the visible Ising spins
is straightforward since the conditional probability factorizes
over plaquettes p(h|s) = ∏

℘ p(h℘ |s), where

p(h℘ = 1|s) = σ (WF℘(s)). (9)

Therefore, the hidden unit of each plaquette activates indepen-
dently given the local features F℘(s). Next, once the hidden
variables are given, the BM (8) corresponds to an Ising model
with two-spin interactions only, shown in Fig. 3. One can
sample it efficiently using the cluster updates [3] by taking
into account the randomly modified coupling strengths. As
discussed above, this amounts to introducing another set of
hidden units which plays the role of auxiliary graphical vari-
ables. Finally, according to Eq. (1), the updates of the visible
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FIG. 4. Results for the Ising model with four-spin plaquette
interactions (6) on square lattices with linear length L. (a) Binder ratio
obtained using the cluster update suggested by BM (8) at K/J = 0.2.
The dashed line indicates the universal value for the two-dimensional
Ising universality class. (b) The cluster update improves the energy
autocorrelation time by orders of magnitude at the critical point
compared to the local update.

Ising spins are always accepted because the BM (8) exactly
reproduces the statistics of the plaquette Ising model (6).

To demonstrate the efficiency of the BM inspired cluster
update, we simulate the plaquette Ising model (6) in the vicinity
of the critical point and compare its performance to the simple
local update algorithm. Figure 4(a) shows the Binder ratio

〈(∑i si)
4〉 / 〈(∑i si)

2〉2
for various system sizes at K/J = 0.2,

which indicates a critical temperature T/J = 2.4955(5). The
black dashed line indicates the universal critical value of the
Binder ratio 1.1679 corresponding to the two-dimensional
Ising universality class [53]. Figure 4(b) shows the energy
autocorrelation times [7] of the local updates and the cluster
updates at the critical point, both measured in units of Monte
Carlo sweeps of the visible spins [54]. The local updates
exhibit the same scaling for the Ising model (K = 0) and the
plaquette Ising model (K = 0.2), while the cluster updates are
orders of magnitude more efficient than the local updates. The
dynamic exponent of the cluster algorithm is also significantly
reduced compared to the local update.

General framework. To sum up, we outline a general
framework of exploring cluster updates using the following
BM,

E(s,h) = E(s) −
∑

α

[WαFα(s) + bα]hα, (10)

where Fα(s) is a feature of the visible units and hα ∈ {0,1}
is the corresponding hidden variable. Wα and bα are the
connection weight and bias, and α is the index for various
features. For example, Eqs. (3) and (8) used the features
defined on the links (α = �) and on plaquettes (α = ℘),
respectively. In general, one is free to design features consist-
ing of long-range interactions or even multispin interactions
[55]. There are several crucial points in the general structure
of Eq. (10). First, one can easily sample the hidden units

conditioned on these features since there is no interaction
between the hidden variables, i.e., Eq. (10) is a semirestricted
BM. The activation probability of each hidden unit is p(hα =
1|s) = σ (WαFα(s) + bα) [cf. Eqs. (4) and (9)]. Second, once
the hidden units are given, Eq. (10) reduces to an effective
model for the visible spins, which should be easier to sample
compared to the original problem. For example, one can
randomly flip each disconnected component separated by
the inactive hidden units if E(s) = 0 and Fα(s) = Fα(−s).
Alternatively, one can build another BM to simplify the
sampling of Eq. (10) given the hidden units. One can even
apply this idea iteratively and build a hierarchy of BMs.

Next, it is important to choose appropriate features Fα(s)
in Eq. (10) such that the BM correctly reproduces the target
physical distribution. A good feature design is likely to
exploit the knowledge of the original physical problem.
Alternatively, one can start with a general BM architecture
with many common features, such as links or plaquettes,
and adjust their corresponding weight and bias parameters
to maximize the efficiency of the proposed Monte Carlo
updates. In this way, one translates the structure learning
of BM into a more tractable parameter learning problem.
In general, it is not possible for one to find out the optimal
parameters of the BM (10) analytically as we did in this
Rapid Communication. However, one can readily adopt
fully fledged machine learning algorithms to carry out the
BM parameter learning from data. For example, one can
perform either unsupervised learning [21,56] or supervised
learning of the physical distribution π (s) based on the Monte
Carlo data [9]. Ultimately, we anticipate a reinforcement
learning [57] approach which directly searches for an optimal
update policy in the algorithmic space parametrized by the
BM (10).

In closing, we note many cluster quantum Monte Carlo
algorithms [58–60] share the framework of Refs. [38,45,46].
The generalization of the hidden units to higher integers or
even continuous variables is likely to increase the capacity of
the BM. One can include higher-order self-interactions of the
hidden variables in Eq. (10) in this case. To this end, these
BMs provide concrete parametrizations of valid Monte Carlo
update policies which can be optimized through learning. This
approach opens a promise of discovering practically useful
Monte Carlo algorithms for a broad range of problems, such
as frustrated magnets or correlated fermions where known
efficient cluster updates are rare (see Appendix B). Learning
BM parameters from data are particularly useful for fermionic
problems [9,61–63] because of their Monte Carlo weights
involving nonlocal fermion determinants which cannot be
handled analytically.
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APPENDIX A: DETAILED BALANCE CONDITION
OF EQ. (1)

The acceptance probability of the recommender update
from the restricted Boltzmann machine is derived in Ref. [9].
We repeat the derivation for the BM considered in the main
text for the convenience of the readers.

First of all, the Metropolis-Hastings [1,35] acceptance rate
of the physical model satisfies

A(s → s′) = min

[
1,

T (s′ → s)

T (s → s′)
π (s′)
π (s)

]
. (A1)

The transition probability is determined by the simulation of
the BM, where we sample alternatingly between the hidden and
visible units, i.e., T (s → s′) = ∑

h Fh(s → s′)p(h|s). Here,
Fh denotes the update of the visible units given the hidden
variables h. The condition on Fh is that it respects the joint
probability distribution of the BM for the given hidden units h,

Fh(s → s′)p(s,h) = Fh(s′ → s)p(s′,h). (A2)

In Ref. [9] we have used Fh(s → s′) = p(s′|h), which is a
factorized probability distribution in the restricted BM, while
for the general BMs consider in this Rapid Communication,
we adopted more sophisticated updates such as a cluster flip
of the visible units. These cluster updates also satisfy Eq. (A2)
because they keep the energy E(s,h) unchanged.

Using Eq. (A2), the ratio of the transition probability
satisfies

T (s → s′)
T (s′ → s)

=
∑

h Fh(s → s′)p(s,h)∑
h Fh(s′ → s)p(s′,h)

p(s′)
p(s)

= p(s′)
p(s)

. (A3)

Substituting Eq. (A3) into the Metropolis-Hastings accep-
tance probability (A1), we obtain Eq. (1) in the main text.

APPENDIX B: BOLTZMANN MACHINES FOR
FRUSTRATED SPIN MODELS

We discuss applications of the general framework (10)
outlined in the main text to more challenging problems
of frustrated spins. As a concrete example, we consider
the fully frustrated Ising model (FFIM) [65] and note that
other frustrated systems such as the antiferromagnetic Ising
model on the triangular lattice can be treated similarly.
FFIM is defined on a square lattice where all plaquettes
are frustrated. When dividing the lattice into corner-sharing
plaquettes, each plaquette consists of three ferromagnetic and
one antiferromagnetic coupling as illustrated in Fig. 5. The
Boltzmann weight reads

π (s) = exp

(
βJ

∑
℘

F℘(s)

)
, (B1)

where F℘(s) = s1s2 + s1s3 + s2s4 − s3s4 is a feature defined
for each corner-sharing plaquette, as shown in Fig. 5. As-
suming J > 0, the interaction between s3 and s4 is thus
antiferromagnetic while the other three interactions are ferro-
magnetic. The FFIM model is challenging for the conventional

(a) (b)

s4

s1 s3

s2 s4

s1 s3

s2

FIG. 5. A plaquette of the fully frustrated Ising model. The solid
and dashed lines indicate ferromagnetic and antiferromagnetic cou-
pling, respectively. The red and blue dots denote up and down Ising
spins. (a) A plaquette configuration with three satisfied bonds and one
unsatisfied bond, and F℘(s) = 2. (b) A plaquette configuration with
three unsatisfied bonds and one satisfied bond, and F℘(s) = −2. The
gray/white squares in the plaquette center denote the hidden units in
the active/inactive status.

Swendsen-Wang cluster algorithm at low temperature [3]
because the cluster extends to the whole lattice.

Specifying the general BM in Eq. (10) to a BM with hidden
units coupled to the plaquette features, we have

E(s,h) = −
∑
℘

[WF℘(s) + b]h℘. (B2)

One can sample the BM (B2) efficiently following the general
recipe outlined in the main text. First, one samples the
hidden units for each plaquette according to the conditional
probability p(h℘ = 1|s) = σ (WF℘(s) + b). Next, for a given
set of hidden units, one is free to update the visible Ising spins
under the condition (A2). A valid approach is to keep the
energy of the BM (B2) unchanged. Since an inactive hidden
unit h℘ = 0 vanishes the contribution of the corresponding
plaquette in the BM energy function, one only needs to
pay attention to those plaquettes with active hidden units
h℘ = 1. For each of these active plaquettes one can freeze
two satisfied bonds if F℘(s) = 2, while one freezes two
unsatisfied bonds if F℘(s) = −2. This keeps the energies of
these active plaquettes unchanged. Finally, randomly flipping
each disconnected component formed by these frozen bonds
conserves the energy of the BM (B2).

The above sampling strategy of the BM suggests a
nonlocal update of the FFIM with acceptance rate (1),
where p(s) = ∏

℘ (1 + eWF℘ (s)+b). Similar to the examples
discussed in the main text, the BM exactly captures the
FFIM model probability distribution (B1) when the condition
(1 + eb+2W )/(1 + eb−2W ) = e4βJ holds. One therefore obtains
a family of rejection-free cluster Monte Carlo updates. In the
limit of b → −∞, the BM update reproduces the algorithm of
Refs. [66,67], which is known to be efficient for FFIM at low
temperature.

Without using prior knowledge to specify the BM structure
of Eq. (B2), one can start with a general BM with hidden units
coupled to various typical features such as links and plaquettes.
One can set different adjustable weights and biases for each
connection. Optimizing these parameters with respect to a
cost function representing the efficiency of the recommended
Monte Carlo updates will search in the parametrized algorithm
space. In such a way, one translates the BM structure design
into a parameter learning task.
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