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Entropy, specific heat, susceptibility, and Rushbrooke inequality in percolation
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We investigate percolation, a probabilistic model for continuous phase transition, on square and weighted planar
stochastic lattices. In its thermal counterpart, entropy is minimally low where order parameter (OP) is maximally
high and vice versa. In addition, specific heat, OP, and susceptibility exhibit power law when approaching the
critical point and the corresponding critical exponents α,β,γ respectably obey the Rushbrooke inequality (RI)
α + 2β + γ � 2. Their analogs in percolation, however, remain elusive. We define entropy and specific heat
and redefine susceptibility for percolation and show that they behave exactly in the same way as their thermal
counterpart. We also show that RI holds for both the lattices albeit they belong to different universality classes.
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The emergence of a well-defined critical value accompanied
by a dramatic change in the order parameter (OP) and entropy
(S) without jump or discontinuity is an indication of second-
order or continuous phase transition (CPT) which has acquired
a central focus in condensed-matter and statistical physics [1].
In CPT, the numerical value of OP, which measures the extent
of order, is always zero above Tc where entropy is significantly
high and hence the high-T phase is the disordered phase.
On the other hand, near Tc the numerical value of S, which
measures the degree of disorder, drops significantly following
a sigmoidal shape where OP grows with ε ∼ T − Tc following
a power law OP ∼ εβ and eventually S → 0 while OP → 1
revealing that the low T is the ordered phase. The CPT is
further characterized by the power-law growth of the specific
heat C ∼ ε−α and susceptibility χ ∼ ε−γ near Tc and by their
divergences at Tc. Remarkably, one finds that a wide range
of systems belong to one of a comparatively small number
of universality classes where each class shares the same set
of critical exponents. Besides this, the values of the critical
exponents are bound by some scaling relations. One of the
most interesting scaling relations is the Rushbrooke inequality
(RI) α + 2β + γ � 2 which reduces to equality under the
static scaling hypothesis [2]. Many experiments and exactly
solvable models too support equality.

Percolation is one of the simplest paradigmatic models for
CPT. Besides this, its notion has also been used in extenso to
study the spread of forest fires, the flow of fluid through porous
media, the spread of biological and computer viruses, etc.,
where the extent of connectivity has a profound impact [3–5].
To define percolation one has to first choose a lattice or a graph.
Then in random bond (site) percolation each bond (site) is
occupied randomly with probability p independent of the state
of its neighbors [3,6]. Clearly at p = 0 in bond percolation,
each site is a cluster of its own size; whereas, at p = 1, there is
just one cluster, contiguous sites connected by occupied bonds,
of size coinciding with the size of the lattice. Interestingly, by
tuning p from p = 0, one finds that clusters are continuously
formed and grown on the average, and eventually arrive at a
threshold value pc at which there appears a spanning cluster for
the first time that spans across the entire system. Such transition
from isolated finite-sized clusters to a spanning cluster across
pc is found to be reminiscent of the CPT. This is why scientists,
in general, and physicists, in particular, find it so interesting.

In order to make the percolation theory a successful model
for CPT, it is necessary that we know how to relate its various
observable quantities to the corresponding quantities of the
thermal CPT. To this end, Kasteleyn and Fortuin (KF) mapped
the q-state Potts model onto the percolation problem and
established some useful connections [7]. Thanks to the KF
mapping, we now know that the relative size of the spanning
cluster is the order parameter P , mean cluster size is the
susceptibility, the relation between p − pc with linear size L of
the lattice is the equivalent counterpart of the relation between
ε and the correlation length ξ , etc. However, we still do not
know how to define entropy and specific heat, although they are
the key parameters to characterize CPT. In addition, we regard
the mean cluster size as the susceptibility but it exhibits the
expected divergence only if the spanning cluster is excluded,
and even then the corresponding exponent γ is too high to obey
RI. Realizing these drawbacks, some authors already have
proposed an alternative which, although it exhibits divergence
without the exclusion of the spanning cluster, the problem of
high γ still persists [8–11]. Finally, proving whether the Rush-
brooke inequality holds in percolation or not, remains elusive.

Motivated by the issues outlined above, in this Rapid
Communication, we investigate bond percolation on square
and weighted planar stochastic (WPS) lattices. First, we
propose a labeled cluster picking probability (CPP) that a site
picked at random belongs to cluster i to measure Shannon
entropy H . We show that the resulting entropy has the same
expected features as that of its thermal counterpart. In one
phase, where P = 0, we find that H is significantly high and
in the other phase where H ≈ 0 we find that P is significantly
high, as expected. Note that H and P both cannot be extremely
low or high at the same time since H measures the degree of
disorder and P measures the extent of order. Second, we define
specific heat and find positive critical exponent α for both
the lattices, which is in sharp contrast to the existing value
α = −2/3 for square lattice. We also redefine susceptibility
and show that it diverges at the critical point without having
to exclude the spanning cluster. In addition, we also obtain its
critical exponent γ and find that it is significantly smaller than
the existing known value. The values of α and γ reaffirm our
earlier findings that percolation on square and WPS lattices
belong to two distinct universality classes, although they are
embedded in the same spatial dimension [12]. Finally, we find
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that the elusive RI holds in random percolation regardless of
whether it is on square or on WPS lattices.

We find it worthwhile first to discuss the construction
process of the WPS lattice which we proposed in 2010 [13].
It starts with a square of unit area which we call an initiator.
Then, in the first step, we divide the initiator randomly into
four smaller blocks. In the second step and thereafter, only
one of the blocks at each step is picked from all the available
blocks preferentially according to their respective areas and
divide that randomly into four smaller blocks. The details of
the algorithm and image of the lattice can be found in [13,14].
Percolation on such a lattice has already shown unique results
[12]. For instance, it is well known that random percolation
on all lattices, regardless of the type of percolation and the
structural difference of the lattice, share the same set of
critical exponents vis-a-vis belonging to the same universality
class provided they share the same dimension. However, we
have recently shown that percolation on the WPS lattice
does not belong to the universality class of all the known
two-dimensional lattices [12].

To study percolation, we use the Newman-Ziff (NZ)
algorithm which, apart from being the most efficient one,
has also many other advantages [15]. For instance, it helps
in calculating various observable quantities over the entire
range of p in every realization instead of measuring them
for a fixed probability p in each realization. According to
the NZ algorithm, all the labeled bonds i = 1,2,3, . . . ,M are
first randomized and then arranged in the order in which they
will be occupied. Using the periodic boundary condition we
get M = 2L2 for the square lattice and M ∼ 8t for the WPS
lattice where t is the time step. One advantage of using the NZ
algorithm is that we can create percolation states consisting
of n + 1 occupied bonds simply by occupying one more bond
to its immediate past state consisting of n occupied bonds.
Initially, there are L2 and 3t + 1 clusters of size one in the
square and WPS lattices, respectively. Occupying the first
bond means forming a cluster of size two. Each time thereafter,
either the size of an existing cluster grows due to occupation
of the intercluster bond or remains the same due to occupation
of the intracluster bond. We calculate an observable, say Xn,
as a function of n and use it in the convolution relation

X(p) =
M∑

n=1

(
M

n

)
pn(1 − p)M−nXn (1)

to obtain X as a function of p that helps in obtaining a smooth
curve for X(p).

Phase transitions always entail a change in entropy in the
system regardless of whether the transition is first or second
order in character. Thus, a model for CPT is not complete
without a proper definition of entropy. We find that the Shannon
entropy is the most appropriate one for percolation as it is too
probabilistic in nature. In general, it is defined as

H = −K

m∑
i

μi log μi, (2)

where we set the constant K = 1 since it merely amounts to a
choice of a unit of measure of entropy [16]. In information
theory, it is a common practice to choose K = 1/ log 2.
Although there is no explicit restriction per se on the choice of
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FIG. 1. Change in Shannon entropy H with 1 − p for (a) square
and (b) WPS lattices. The sharp rise in H occurs near qc = 0.5 and
qc = 0.6543 for (a) and (b), respectively.

μi for Shannon entropy, when we use it to describe entropy for
phase transition there ought to be some implicit restrictions.
We all know from thermodynamics and statistical mechanics
that G vs T should be a concave curve with negative slope to
ensure that entropy S � 0. On the other hand, the slope of the S

vs T plot must have a sigmoid shape with positive slope since
C � 0 and according to the second law of thermodynamics
�S � 0 [2]. The entropy for percolation too must have the
same generic features.

The key question in percolation is not whether we can
measure Shannon entropy or not. Rather, faced with a number
of different normalized probabilities, the question is, can we
use them? Earlier, some authors used ws , the probability that
a site picked at random belongs to a cluster exactly of size
s, to measure entropy using Eq. (2) and they both found a
bell-shaped curve with peaks at around their respective critical
points [17,18]. This implies that the system is in the most
ordered state at p = 0 since entropy is minimally low there
and at the same time it is in the most disordered state since
the order parameter P is also zero there—hence we see a
contradiction. The problem with using ws is that the sum in
Eq. (2) is not over cluster size s, rather it is over cluster label
i so that it measures the amount of information conveyed by
each cluster, not by a class or group of clusters of size s. Thus,
we have to choose a probability that contains information about
individual clusters. To find the appropriate probability for μi

of Eq. (2), we assume that for a given p there are m distinct,
disjoint, and indivisible labeled clusters i = 1,2, . . . ,m of
size s1,s2, . . . ,sm, respectively. We then propose the labeled
picking probability (CPP) μi , that a site picked at random
belongs to cluster i. The most generic choice for CPP would
be μi ∝ si so that the probability μi(p) = si/

∑m
j=1 sj where∑m

j=1 sj = N is the normalization factor.
Substituting μi(p) = si/N in Eq. (2), we first find the

microcanonical ensemble average of entropy Hn as a function
of n from 10 000 independent realizations. Then we use it in
Eq. (1) to get the canonical ensemble average of H (p) as a
function of p. In Figs. 1(a) and 1(b) we plot H (p) versus
q = 1 − p and find that the curve has the desired sigmoidal
shape. We see that the entropy is maximum H = log(N ) at
q = 1 where μi = 1/N ∀i as there are N clusters of equal
size (one). This is exactly like the state of an isolated ideal
gas where all microstates are equally likely and hence q = 1
corresponds to the most disordered state and it is consistent
with the fact that P = 0 there. As we lower the q value from
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FIG. 2. Specific heat C(p) vs p for (a) square and (b) WPS lattices. (c) Slope of the plots of log(Ch) versus log(L) gives α/ν = 0.68(1) and
α/ν = 0.5007(3) for square and WPS lattices, respectively. (d) Plots of C(p)L−α/ν vs (p − pc)L1/ν of the same data as in (a) and (b) shows
excellent data collapse (top curve for the WPS lattice and the bottom one for the square lattice).

q = 1 we see H decreases slowly; however, as q approaches
qc we observe a sudden drop in entropy. This is because in
the vicinity of pc, the coagulation of two moderately large
clusters happens so frequently that we already see a sign of
the emergence of a spanning cluster that causes a sharp rise of
CPP which eventually becomes the spanning cluster. Already
at qc the incipient spanning cluster becomes so prevailing that
it embodies almost all the sites. Lowering q further to below
qc, we see that the extent of uncertainty diminishes sharply.
Exactly at q = 0, we have μ1 = 1 and hence entropy H = 0.
This situation is like perfect crystal as the extent of uncertainty,
which is synonymous to degree of disorder, completely ceases
to exist. The term percolation thus refers to the transition across
qc from ordered phase at low q to disordered phase at high q

exactly like ferromagnetic transition.
To find the specific heat C(p) for percolation we just need

to use its thermodynamic definition C = T dS
dT

and replace S

by H and T by 1 − p to obtain

C(p) = (1 − p)
dH

d(1 − p)
. (3)

In Figs. 2(a) and 2(b) we plot it for both the lattices as a
function of p for different system sizes. Now following the
finite-size scaling (FSS) hypothesis we can write

C(p,L) ∼ Lα/νφC[(p − pc)L1/ν], (4)

where φC is the scaling function for specific heat. Note that we
already know 1/ν = 0.75 for square latice and 1/ν = 0.613

for WPS lattice [12]. To find an estimate for the exponent α/ν,
we measure the height of the peak Ch at pc as a function of
L. Plotting log(Ch) versus log(L) we get straight lines [see
Fig. 2(c)], with slopes α/ν = 0.68(1) for the square lattice
and α/ν = 0.5007(3) for the WPS lattice. Note that CL−α/ν

and (p − pc)L1/ν are dimensionless quantities and hence if
we now plot CL−α/ν as a function of (p − pc)L1/ν , then the
distinct plots of C vs p should collapse onto a single universal
curve φc. Indeed, Fig. 2(d) shows that all the distinct plots of
Figs. 2(a) and 2(b) collapse superbly into their own universal
curve. Using the relation L ∼ (p − pc)−ν in C(p) ∼ Lα/ν we
find that the specific heat diverges:

C(p) ∼ (p − pc)−α, (5)

with α = 0.906(13) for the square lattice and α = 0.816(4)
for the WPS lattice. Our value of α for the square lattice is
in sharp contrast to the existing value α = −2/3 [19]. Note
that the negative value of α means the specific heat does not
diverge at the critical point; rather it behaves more like an order
parameter.

Recall that the order parameter P of percolation is defined
as the the ratio of the size of the largest cluster smax to the lattice
size N . We then keep a record of the successive jump size in
P , i.e., �P within the successive interval �p = 1

M
where M

is the total number of bonds. The idea of successive jump size
in P was first studied by Manna in the context of explosive
percolation [20]. We, however, here consider the ratio �P

�p
and

define it as the susceptibility χ (p). In Figs. 3(a) and 3(b) we
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FIG. 3. Plots of χ vs p for (a) square and (b) WPS lattices where data represents the convolution of ensemble average of 10 000 independent
realizations. (c) The slopes of the plots of log(χh) vs log(L) give γ /ν = 0.635(2) and γ /ν = 0.460(1) for square and WPS lattices, respectively.
In (d) we plot χL−γ /ν vs (p − pc)L1/ν and find the same data as in (a) and (b) collapse into their respective universal curves. The top curve is
the scaling function for WPS lattice and the bottom one is that of the square lattice.

plot χ (p) as a function of p for both types of lattice and find
that χ (p) grows as we increase p and as we approach pc the
growth is quite steep. However, beyond pc it decreases sharply
without excluding the size of the spanning cluster. This is in
sharp contrast to the existing definition of susceptibility as we
know that the mean cluster size decreases beyond pc only if the
spanning cluster size is excluded. To find the exponent γ , we
apply the FSS hypothesis. Following the same procedure done
for C(p), we find γ /ν = 0.635(2) for the square lattice and
γ /ν = 0.460(1) for the WPS lattice [see Fig. 3(c)]. Plotting
χL−γ /ν versus (p − pc)L1/ν we find that all the distinct plots
of Figs. 3(a) and 3(b) collapse into their own distinct universal
curve as shown in Fig. 3(d). It implies that

χ (p) ∼ (p − pc)−γ , (6)

where γ = 0.846(2) and γ = 0.750(6) for square and WPS
lattices, respectively. It suggests two important developments.
First, we find that the susceptibility diverges at the critical
point without having to exclude the spanning cluster. Second,
the value of the critical exponent γ is far less than what we
find from the mean cluster size.

Note that we already know the critical exponent β for both
the lattices [12]. We now substitute the values of α, β, and
γ in the Rushbrooke relation and the results are shown in
Table I. It clearly suggests that Rushbrooke inequality holds in
percolation. However, the point to emphasize is that it obeys
rather more as an equality, within the limits of error, than as

an inequality. Many experiments and exactly solvable models
of thermal CPT too suggest that the Rushbrooke inequality
actually holds as an equality [21]. Through this work we show
that the entropy and the order parameter complement each
other exactly like in the thermal counterpart. For instance, we
find that the order parameter P , which quantifies the degree of
order, is equal to zero for q � qc but entropy, which measures
the degree of order, is significantly high revealing the high q

is the disordered phase exactly like the high-T phase in the
ferromagnetic transition. On the other hand, at q < qc we find
that the entropy H is negligibly small where P increases with
decreasing q to its maximum value at q = 0 revealing that low
q is the ordered phase which is once again like the low-T phase
in the ferromagnetic transition. It all implies that percolation
is indeed an order-disorder transition.

To summarize, in this Rapid Communication we proposed
the equivalent counterpart of entropy and specific heat and
redefined the susceptibility for percolation model. To measure
entropy for percolation we proposed cluster picking proba-
bility (CPP) and show that the Shannon entropy for CPP has

TABLE I. The critical exponents and Rushbrooke inequality for
random percolation on square and WPS lattices.

Lattice α β γ α + 2β + γ

Square 0.906 0.1388 0.846 2.029
WPS 0.816 0.222 0.750 2.01
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the same generic feature as the thermal entropy. Until now,
we could only quantify the extent order of the ordered phase
by measuring P and we could say nothing about the other
phase since P = 0 there. Now, having known entropy, we can
also quantify the other phase and regard it as the disordered
phase as entropy is high and always keep increasing with
1 − p. We have also shown that specific heat diverges with
positive slope and susceptibility exhibits both power law near

pc and divergence at pc without having to exclude the spanning
cluster from their calculations. Using the FSS hypothesis and
the idea of data collapse, we numerically obtained the critical
exponents α and γ for both the lattices. Their distinct values
for the two lattices once again confirm that they belong to
two different universality classes. Finally, we showed that the
Rushbrooke inequality holds in percolation on both the lattices
albeit they belong to two distinct universality classes.
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