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We present and apply a general-purpose, multistart algorithm for improving the performance of low-energy
samplers used for solving optimization problems. The algorithm iteratively fixes the value of a large portion
of the variables to values that have a high probability of being optimal. The resulting problems are smaller
and less connected, and samplers tend to give better low-energy samples for these problems. The algorithm
is trivially parallelizable since each start in the multistart algorithm is independent, and could be applied to
any heuristic solver that can be run multiple times to give a sample. We present results for several classes of
hard problems solved using simulated annealing, path-integral quantum Monte Carlo, parallel tempering with
isoenergetic cluster moves, and a quantum annealer, and show that the success metrics and the scaling are
improved substantially. When combined with this algorithm, the quantum annealer’s scaling was substantially
improved for native Chimera graph problems. In addition, with this algorithm the scaling of the time to solution
of the quantum annealer is comparable to the Hamze–de Freitas–Selby algorithm on the weak-strong cluster
problems introduced by Boixo et al. Parallel tempering with isoenergetic cluster moves was able to consistently
solve three-dimensional spin glass problems with 8000 variables when combined with our method, whereas
without our method it could not solve any.
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I. INTRODUCTION

When solving optimization problems, it is a common
strategy to run a heuristic solver multiple times and keep
the best solution found. If all of the found solutions are
aggregated into a sample, one could ask if there is any
additional information in this sample, aside from the solution
with the best value. In this paper, we present results that suggest
that it is indeed possible to use the sample more efficiently.
In particular, the idea is that if we observe which variables
have the same value in all solutions, and fix those variables
to those values, we have fixed them to their values in at least
one optimum with a high degree of confidence. Once this has
been done, the remaining problem tends to be much smaller
and simpler to solve.

Significant research has been done on solving Ising
problems, and the equivalent quadratic unconstrained binary
optimization (QUBO) problems,

argmins[s
T J s + hT s]

s.t. s ∈ {−1,1}N or
argminx[xT Qx]
s.t. x ∈ {0,1}N ,

using different solvers. Numerous well known NP-hard prob-
lems can be formulated in this way, such as the traveling
salesman problem, the quadratic assignment problem, the
maximum cut problem, the maximum clique problem, the
set packing problem, and the graph coloring problem (for a
selection of formulations, see [1]).

An idea that is prevalent in genetic algorithms is that of
iteratively looking at a pair of solutions to find the common
part, which is then fixed, and searching the remaining solution
space. Although it is more common to breed two solutions,
some research has suggested that it can be beneficial to breed
a larger pool of solutions [2–5]. In addition, some algorithms

maintain a reference set of elite solutions (typically obtained
by performing a local search), and rely on finding the variables
that are often set to the same value in the elite solutions, the
idea being that they are likely to be set to the same value in the
optimum [6–8]. Another related concept is that of short- and
long-term memory, in which local search algorithms such as
tabu 1-opt guide their future exploration based on information
gained from past exploration [9,10]. The closest existing work
to the method described in this paper is Chardaire et al. [11],
which fixes variables whose values remain constant as the
temperature is decreased during simulated annealing.

Quantum annealers have recently become commercially
available [12,13]. Manufactured by D-Wave Systems, Inc.,
they are designed to heuristically find low-energy states
of an Ising problem. It has been suggested that quantum
annealers have an advantage over classical optimizers due to
quantum tunneling, which allows an optimizer to search the
solution space of an optimization problem by passing through
energy barriers instead of traversing them. For certain problem
classes, this might provide a quantum speedup [14–20].
For this reason, there has been much recent interest in
benchmarking quantum annealers against classical solvers,
although conclusive evidence of quantum speedup has not
been shown to date [21–32]. The classical solvers that are most
usually benchmarked against quantum annealers are simulated
annealing and simulated quantum annealing, both of which
were included in our benchmarks.

Our research is based on an idea first proposed specifically
for use with quantum annealers [33], and studied only on a
narrow problem set. In this work, we utilize a modified and
improved version of the algorithm outlined in [33], and show
that it is effective for a range of solvers and hard problem
sets. The original algorithm has several limitations that are
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mitigated in the method presented in this work (see Sec. II B).
The main focus of our study is not the benchmarking of the
solvers against one another, but to gain an understanding for
which problems and samplers our method is effective.

II. METHOD

In this paper, we study a multistart version of the sample
persistence variable reduction algorithm (SPVAR) recently
proposed by Karimi and Rosenberg [33]. For completeness,
we briefly describe that algorithm in Sec. II A, after which,
in Sec. II B, we describe in more detail the multistart variant
that we used in this work. In Sec. II C, we discuss special
considerations related to our method.

A. SPVAR

The SPVAR algorithm is based on the idea that, if a variable
has the same value in all of the states obtained from a low-
energy sampler, then it is more likely that the variable has
that value in (at least) one optimum. This algorithm has two
parameters: fixing_threshold, which controls what percentage
of the solutions should share a value for a variable to be fixed;
and elite_threshold, which controls the fraction of the low-
energy part of the sample on which the algorithm should be
applied. The idea is illustrated in Fig. 1. For further details,
see Algorithm 1 and the original paper [33].

It is worth mentioning that finding and fixing these variables
in a given sample is a very cheap computational operation, but
as our results will show (Sec. III), it significantly improves the
performance of the underlying sampler. Using the SPVAR
algorithm in a single run has some drawbacks, the most
important being that, as this method is a heuristic method,
there is a probability that some of the variables will be fixed to
a value that does not occur in any optimal solution. This was
the motivation for using this method in a multistart fashion, as
we describe in more detail in the following section.

Algorithm 1 SPVAR

Require: Ising problem (J,h), sampler, fixing_sample_size,
fixing_threshold, elite_threshold

Obtain sample of fixing_sample_size from sampler
Record energies from sample
Narrow down solutions to elite_threshold percentile
Find mean value of each variable in all solutions
Fix variables for which mean absolute value is larger than
fixing_threshold
Update J and h

return J, h, recorded energies, and a mapping from fixed
variables to values to which they were fixed

B. Multistart SPVAR

The multistart SPVAR algorithm consists of num_starts
independent starts of the SPVAR algorithm, using a sample
size of fixing_sample_size. Each of these starts is followed by
calling the sampler on the modified problem, with a sample
size of solving_sample_size. The output of the algorithm is
a collection of all of the energies encountered during this

process. The steps of the multistart SPVAR algorithm are
summarized in Algorithm 2. For considerations related to
parameter choice, see [33].

Multistart SPVAR has several advantages over single-start
SPVAR. First, running SPVAR has a finite but unknown
probability of fixing variables incorrectly. This is mitigated by
restarting the algorithm multiple times. Second, this version
allows one to choose the fraction of the sample size that will
be used for fixing variables (via SPVAR), out of the total
sample size. This could be done with a single start as well,
but doing so often results in a wastefully large sample being
used for fixing variables. In addition, this algorithm is trivially
parallelizable, allowing for a speedup if multiple samples can
be collected in parallel. Finally, for problems with a degenerate
ground state, SPVAR might fix variables to their values in an
optimum, but contrary to their values in other optima. This
would make it impossible to observe these other optima in the
modified problem. Multiple restarts make the resulting sample
less biased.

We remark that ISPVAR, the iterative version of SPVAR,
could also be used as the building block for this algorithm.
The iterative algorithm can be useful if the objective is to
fix more variables, and simplify the problem more drastically.
However, every additional step of SPVAR that is applied incurs
additional risk of fixing variables incorrectly. If a variable is
fixed incorrectly at an early step, it is not unfixed at a later step.
We suggest, instead, to set the thresholds more aggressively,
which also results in the fixing of more variables. The price
again is an increased risk of fixing variables incorrectly, but
this risk can be mitigated by increasing num_starts.

Algorithm 2 Multistart SPVAR

Require: Ising problem (J,h), sampler, fixing_sample_size,
solving_sample_size, fixing_threshold, elite_threshold,
num_starts

[Optional] Apply preprocessing to find modified J, h

foreach start of num_starts do
Apply SPVAR with sample of fixing_sample_size to find
modified J, h Record energies from sample
[Optional] Apply preprocessing to find modified J, h

[Optional] Fix variables via correlations to find modified J, h

Obtain sample of size solving_sample_size for modified J, h

Record energies from sample
end For
return Recorded energies, and a mapping from fixed variables
to values to which they were fixed

C. Special considerations

For Ising problems with zero bias (such as those in
Secs. III C and III D), there is a twofold degeneracy of all
states, which leads to many states appearing in a given sample
with their reversed state. For this reason, if the method is
applied exactly as described in Sec. II B, it will generally fix
no variables and fail to result in an improvement. As suggested
in [33], a possible solution is to break the degeneracy by
arbitrarily fixing a single variable. However, as was found
in that work, it is possible to use correlations in the sample

043312-2



EFFECTIVE OPTIMIZATION USING SAMPLE . . . PHYSICAL REVIEW E 96, 043312 (2017)

(a) (b)

(c) (d)

FIG. 1. A graphical illustration of the SPVAR algorithm. (a) The full sample, with 100 solutions (the rows) and 200 variables (the columns).
In each row, a dark dot (blue) indicates that that variable was +1 in that solution, and a light dot (beige) indicates that that variable was −1.
(b) The full sample, but with variables that had the same value in all solutions marked in black. (c) The elite sample, formed by keeping only
the 20% lowest-energy solutions. (d) The elite sample, but with variables that had the same value in all solutions in the elite sample marked in
black. In all figures, the solution index is sorted with respect to the energy, such that the solutions with the lowest energies are at the bottom.

to fix a cluster of correlated variables instead, which is the
method we employed in this study.

In cases in which the modified problem (after applying
SPVAR) was disconnected, we took advantage of this fact
to boost our results. In such cases, it is wasteful to assess
the sampler’s performance based on the energies for the whole
problem, for the reason that even if the sampler did not manage
to solve all of the disconnected problems at once, it may have
solved all of them at least once. For this reason, we separated
the solutions in a given sample into a partial sample for each
connected problem. We then evaluated the partial energies
for each connected component, for each solution; sorted the
partial sample based on the partial energies; merged all of the
partial (but sorted) solutions; and, finally, summed the partial
energies to find the new sample. In this way, if the sampler
solved each connected component in at least one solution, the
best solution in the new sample would be a ground state of the
whole problem.

The optional preprocessing step can encompass many
different methods for fixing variables. In this case, we used
the fix_variables function in D-Wave’s SAPI 2. We then added
an additional method which deals efficiently with trees. For
nodes (variables) with degree one, if the absolute value of the
coupling is smaller than the absolute value of the bias for that
variable, the value of the variable is determined by the sign
of the bias. On the other hand, if the absolute value of the
coupling is larger than the absolute value of the bias, the value

of the variable is determined by the sign of the product of
the coupling and the value of the neighboring variable. This
method can be applied recursively to fix, in the former case, or
infer, in the latter case, the values of variables in trees, leading
to a reduction in the number of variables equal to the number
of variables in the tree.

III. RESULTS AND DISCUSSION

This section is organized as follows. In Sec. III A, we
describe the benchmarking procedure we used in order to
collect the results that are presented in this section. In
the sections that follow, we present results for different
problem sets and solvers, and discuss them. In Sec. III B, we
present results for weak-strong cluster problems. In Sec. III C,
we present results for reduced-degeneracy Chimera graph
problems with zero and nonzero bias; in Sec. III D, we present
results for three-dimensional (3D) spin glass problems; and in
Sec. III E, we present results for fault diagnosis problems. In
Sec. III F, we present results for Max-2-SAT and Max-3-SAT
problems.

A. Benchmarking procedure

For each problem set and each parameter value (when
applicable), we generated or procured 50–100 instances,
which were solved using a variety of samplers, with and
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without multistart SPVAR. We used the following heuristic
solvers as samplers in this study: “SA,” an implementation
of simulated annealing [34]; “SQA,” an implementation
of discrete-time path-integral quantum Monte Carlo as a
simulation of the quantum annealing process, which we
refer to as SQA in this study [16,19,35]; “DW,” D-Wave’s
quantum annealer (we had access to the DW2X_SYS4 and
the DW_2000Q); and “PTICM,” parallel tempering Monte
Carlo [36–38] with isoenergetic cluster moves, also known as
borealis [39,40]. In each case, the version that used multistart
SPVAR is indicated by the suffix “SPVAR,” for example,
“SA_SPVAR.”

In addition, we solved, or procured best known solutions
for, all problem instances with an additional solver which
either guarantees finding the optimum, or finds it with a high
probability. Specifically, the reduced-degeneracy Chimera
graph problems were solved with the Hamze–de Freitas–Selby
(HFS) algorithm [41], and the Max-k-SAT problems were
solved with the CCLS [42] and ahmaxsat [43] algorithms. For
the 3D spin glass problems and the fault diagnosis problems,
we procured best known solutions using PTICM. For the 3D
spin glass problems with planted solutions, the ground state
was known [44].

Using the energies returned by multistart SPVAR, we
evaluated several success metrics: “Fraction of problems
solved”; “Gap,” the difference in value between the best energy
found and the best known solution’s energy; “Residual,” the
relative difference (in percent) in value between the best energy
value found and the best known solution’s energy; and “R99,”
the size of sample required to observe the ground state with
99% confidence. When calculating R99 values for results
obtained with SPVAR, care is needed to get the correct value.
We first calculated the mean success rate for each start and
the number of starts required to observe the ground state with
99% confidence. We then multiplied this value by the total
size of the sample used in each start, to finally obtain the R99
value.

B. Weak-strong cluster problems

The weak-strong cluster problems were introduced by
Boixo et al. [45] as a toy model for studying the role of
multiqubit tunneling in a quantum annealer. They are Chimera
graph problems in which the variables in each unit cell are
ferromagnetically coupled to one another, and all have an
equal bias which is +1 for the “strong” clusters and hw < 0
for the “weak” clusters. For hw = −0.5, the ground state is
doubly degenerate, corresponding to a state in which the weak
cluster is either aligned with, or opposite to, the strong cluster.
The case studied is −0.5 < hw < 0, which exhibits a false
minimum in which the weak cluster is the opposite of the strong
cluster. It has been shown, both theoretically and empirically,
that SA tends to end up in the false minimum, unless cluster
moves are allowed, whereas SQA and QA are able to tunnel
out of the false minimum.

The weak-strong problems were subsequently studied by
Denchev et al. [22]. It was shown that, on these problems, QA
outperforms SA both in time and in scaling, and outperforms
SQA in time (but not in scaling). Mandrà et al. [27] subse-
quently showed that these problems can, in fact, be solved more

FIG. 2. Results for weak-strong cluster problems. We present the
R99 values for different samplers, as a function of the problem size
(number of variables), for different percentiles. The error bars were
calculated using bootstrapping.

efficiently both in time and scaling by algorithms such as HFS
and others. Later, Mandrà et al. [32] also showed that these
problems can be solved exactly in polynomial time, due to
the planar structure of the logical problem. Our motivation for
studying these problems was to check whether the application
of our method would close the performance gap between the
quantum annealer and HFS.

We obtained the original problem instances from the above
studies [22,27]. Since those instances were constructed for a
different D-Wave chip, and each chip has a small number of
arbitrarily located inactive qubits, we modified the instances to
account for this. In addition, due to our having a limited amount
of quantum annealer time, we had to change the weak bias hw

from −0.44 (as in the original instances) to −0.42, which
results in problems that are slightly easier for the quantum
annealer. We expect that our results would hold qualitatively
also for the original instances, run on the same chip they were
benchmarked on in the past studies.

We present the R99 values for HFS and for the quantum
annealer used with and without our method in Fig. 2. In this
case, the R99 value reported is the time required to find the
ground state with 99% confidence, in units of 20 μs, which
was the annealing time we used for the quantum annealer. We
were unable to solve these problems with SA or SQA due to
our having insufficient resources. The quantum annealer we
used in this section was the DW2X_SYS4 [46].

Our results show a clear improvement in the R99 val-
ues when running the quantum annealer with our method,
compared to running it without our method. Notably, the
improvement is of two orders of magnitude for the largest
problems. Furthermore, the scaling of the R99 value with the
number of variables is clearly significantly improved, making
it qualitatively comparable to HFS’s scaling, and the R99
values themselves are also comparable with those of HFS.
We expect that qualitatively similar results would be drawn
for the problems benchmarked in [22,27].
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(a) h �= 0 (b) h = 0

(c) h �= 0 (d) h = 0

FIG. 3. Success metrics for Un,n−1,n−2 Chimera graph problems with reduced degeneracy. (a), (b) The fraction of problems solved, as a
function of n, for nonzero-bias problems and zero-bias problems, respectively. (c), (d) The median gap, which is the energy difference between
the best solution found and the best known solution, as a function of n, for nonzero-bias problems and zero-bias problems, respectively. In both
figures, each point represents data from 100 random instances with the respective n.

C. Chimera graph problems

1. Reduced-degeneracy Chimera graph problems

Random Chimera graph problems have been benchmarked
thoroughly in the past [23,24,26,28,30], after which it was
shown that they are not expected to show a quantum speedup
[24]. However, they remain a well studied test bed, and are
easy to construct. It was suggested that harder instances
could be constructed by choosing the couplers and biases
from a set with a large range compared to the spacing.
Our instances were constructed by choosing the couplers
and biases from a uniform probability distribution over
the set {−n,-(n-1),−(n − 2),n-2,n − 1,n}, which we denote
by Un,n−1,n−2. Such instances challenge a noisy quantum
annealer, due to the effects of intrinsic control error (ICE).
In addition, they challenge our method since the mean change
in energy due to an incorrectly flipped variable is much larger
than in an instance in which the couplers and biases are chosen
from the complete range −n to n.

In addition, in the interest of creating hard instances, it
is helpful to reduce the ground state degeneracy [30]. To
this end, we eliminated local degeneracies; doing so does
not guarantee that the ground state will not be degenerate,
but reduces the probability of this occurring. An instance
was created via the following process. First, an initial set of
couplers and biases was selected. Then, for each variable, we
checked if there is a possible configuration of the neighboring
variables that would result in the effective field on the central
variable being zero. If such a configuration was found, one
of the couplers was changed to a different and randomly
chosen value. This process was repeated until no more local
degeneracies remained. We remark also that for small n, the
probability of local degeneracies occurring is significant, but
it falls rapidly as n is increased.

We present results for the success metrics of Un,n−1,n−2

Chimera graph problems with reduced degeneracy with
nonzero and zero bias in Fig. 3 for the quantum annealer,
with and without applying multistart SPVAR. We present
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(a) (b)

FIG. 4. Success metrics for U50,49,48 Chimera graph problems with nonzero bias and reduced degeneracy, versus the number of sweeps.
(a) The fraction of problems solved. (b) The median gap, which is the energy difference between the best solution found and the best known
solution. The figures show median values for 100 random instances, solved with differing numbers of sweeps. Horizontal lines indicate the
median values for D-Wave’s quantum annealer, without and with multistart SPVAR (DW and DW_SPVAR, respectively).

results comparing success metrics for SA, SQA, and the
quantum annealer (the DW2X_SYS4) for U50,49,48 problems
with nonzero bias and reduced degeneracy in Fig. 4. For the
zero-bias problems, we set the elite_threshold adaptively as
suggested in [33].

The results presented in Fig. 3 show that these problems
are very hard for the quantum annealer, with a negligible
success rate for n > 5 for both the nonzero-bias and zero-bias
problems. We attribute this difficulty to ICE, given that the
accuracy required to distinguish different couplers scales with
1/n for these problems. In addition, the reduction of the ground
state degeneracy by eliminating local degeneracies is likely a
contributing factor. Zero-bias problems are known to be harder,
in general, and indeed for n = 5, the results obtained from the
quantum annealer are better for the nonzero-bias problems.

Despite the very low success rate of the quantum annealer
used alone, when coupled with our method, the quantum
annealer solved over 60% of each of the problem sets for
the nonzero-bias problems, and close to 20% for the zero-bias
problems. As noted in [33], our intuition is that the quantum
annealer is better at finding low-energy states than it is at
finding optima. We hypothesize that when considering only
the state with the lowest energy value in the sample, additional
information about the low-energy landscape contained within
the rest of the sample is discarded. Utilizing this information
allows our method to substantially improve the success
metrics.

Figure 4 shows that the success metrics of SA and SQA
improve as the number of sweeps is increased, albeit with
diminishing returns. The results also show that both SA and
SQA are able to match the quantum annealer’s performance
using a relatively modest 2000 sweeps. However, if our method
is applied to all samplers, SA and SQA require a significantly
larger number of sweeps to match the performance of the
quantum annealer when using our method. Therefore, in
this case, the quantum annealer seems to benefit more from
the application of our method. It is worth mentioning that,

combined with SPVAR, QA was able to solve 60% of the
problems roughly three orders of magnitude faster than either
of SA or SQA combined with SPVAR. The median R99 for SA
was 43,709, and for QA it was 66,745, and the time required
to obtain a single solution was 20 ms for SA (for this problem
size, 1100 variables) and 20 μs for QA (the annealing time).

2. Scaling analysis

In this section, we investigate the scaling of success metrics
when using SPVAR. We generated four native Chimera graph
problem sets from U10 ∈ {−10, . . . ,10} (0 was excluded for
the couplers but included for the biases), each consisting of
100 problems with increasing sizes, from a Chimera graph of
size 8 to 16 (the latter referring to a 16 × 16 grid of blocks).
The quantum annealer we used for this study was the D-Wave
2000Q, which has 2048 qubits, with a qubit yield of almost
99% [47]. In Fig. 5, we show the dependence of success metrics
on the problem size.

Figure 5(a) shows that the fraction of problems solved
decreases exponentially for the quantum annealer used alone,
but scales better when used in conjunction with SPVAR. Note
that for size 16, none of the problems were solved using the
quantum annealer alone, but 46% of problems were solved
when using the quantum annealer in conjunction with SPVAR.

We also observed significant improvement in the R99,
which is a measure of the time to solution [48], shown in
Fig. 5(b). The reported R99 value is the mean of the median
R99 in 1000 bootstrapped samples (using only the R99s that
could be measured). In cases in which less than 50% of the
problems were solved, this value is a lower bound of the actual
median R99. In particular, for size 12, the quantum annealer
solved only 6 problems, so the R99 value is most likely a very
loose lower bound. The scaling when using SPVAR is clearly
improved.

Figure 5(c) shows a clear advantage in scaling when our
method is utilized. In Fig. 5(d), the number of variables fixed
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(a) (b)

(c) (d)

FIG. 5. Success metrics for multistart SPVAR on Chimera graph-
structured problems in U10 vs size. (a) The fraction of problems
solved at each size. (b) The median R99 values, calculated using
bootstrapping, with and without using SPVAR. (c) The median energy
residual. (d) The median fraction of fixed variables at each size.

appears to plateau, such that even at large sizes the method
fixes more than 80% of the variables.

D. 3D spin glass problems

Ising problem instances generated on a 3D cubic lattice
have been shown to be relatively hard instances, for example,
by benchmarking with parallel tempering and population
annealing [49,50]. We obtained and benchmarked a selection
of instances with L = 4,6,8,10 from the authors of those
studies, where the number of variables is L3. For each L, we
chose the 20 hardest instances from a larger instance pool and

selected an additional 80 instances uniformly randomly from
that same pool. We present results for the success metrics as a
function of L for different samplers in Fig. 6, and results for
the dependence of the success metrics on num starts in Fig. 7.
As these problems could not be embedded on the quantum
annealer chip to which we had access, we present the results
of only SA and SQA for these problems.

In Fig. 6, we see that the application of our method provides
a substantial improvement in the success metrics, especially
for the larger and harder problem instances. For example,
for L = 10, no problems are solved by SA and SQA, but
with the addition of our method, they are both able to solve
almost 40% of the problems, with a greatly reduced residual.
Increasing num starts, as in Fig. 7, improves the results of
all methods, albeit with diminishing returns. For the largest
problems (L = 10), increasing num starts barely improves the
results for the samplers when our method is not applied, but
gives a substantial improvement when our method is applied.
The performance is comparable with population annealing and
parallel tempering [49].

1. Parallel tempering with isoenergetic cluster moves

For all solvers, except for the parallel tempering with
isoenergetic cluster moves algorithm (PTICM), the sample was
formed by multistarting the given algorithm and aggregating
the results. This is a natural choice for algorithms that return
a single state (or a finite number of states) per start. PTICM
returns a single state per replica. However, forming the sample
in this way suffers from the disadvantage that each replica
might have been in many lower-energy states during the
optimization process, which would be ignored. In addition,
since the temperatures of the replicas typically span a large
range, many of the replicas return relatively high-energy states,
such that the sample formed would not be a good low-energy
sample. For this reason, we chose instead to keep track of the
10 lowest-energy states found for each of the replicas in the
lower half of the temperature range.

(a) (b)

FIG. 6. Success metrics for 3D spin glass problems vs size. (a) The fraction of problems solved, as a function of L, where the size is L3.
(b) The median residual, which is the relative energy difference (in percent) between the best solution found and the best known solution, as a
function of L. In both figures, each point represents data from 100 random instances with the respective L.
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(a) L = 8 (b) L = 10

(c) L = 8 (d) L = 10

FIG. 7. Success metrics for 3D spin glass problems vs num starts. (a), (b) The fraction of problems solved, for L = 8 and 10 (respectively).
(c), (d) The median residual, which is the relative energy difference (in percent) between the best solution found and the best known solution,
for L = 8 and 10 (respectively). In all figures, each point represents data from 100 random instances.

The results for PTICM are presented separately from the
other solvers. One reason for this is that the sample was
formed in an inherently different way; for the other solvers,
the sample consisted of independently sampled states. In
addition, there is no obvious way to equate the computational
effort used by PTICM to that of SA or SQA since a single
sweep is a combination of a Metropolis update, a parallel
tempering move, and an isoenergetic cluster move. Finally,
the performance of PTICM was superior on the instances
benchmarked with the other solvers, leaving little room for
improvement by SPVAR. For example, the 3D spin glass
problems of sizes L � 8 were all solved by PTICM without
SPVAR, and even for L = 10, most were solved.

The results for the same pool of L = 10 problems from
Sec. III D are presented in Fig. 8. For L � 8, all instances
were solved by PTICM as well as by PTICM with SPVAR,
so we do not present results for those problems. In order to
probe the performance of PTICM on larger problems and
to study the scaling, we procured 3D spin glass instances
with L = 10,12,16,20 with planted solutions [44]. This was

necessary, as for the larger problems, a huge computational
effort is required to ensure that the ground state is found with
high confidence using heuristics. We present results for the
success metrics as a function of num sweeps in Fig. 9(a), and
results for the dependence of the success metrics on L in
Fig. 9(b).

In Fig. 8, we see that our method provides a modest
improvement for the non-planted 3D spin glass problems of
size L = 10. In Fig. 9(a), we see that for L � 12, for almost
all values of num sweeps, the fraction of problems solved
is substantially larger. In Fig. 9(b), for the planted 3D spin
glass problems, we see that our method provides a substantial
improvement in both the success metrics and the scaling.
For example, for L = 16 and 20, no problems are solved
by PTICM, but with the addition of our method, it is able
to solve almost all of the problems with num sweeps = 104.
Interestingly, the L = 16 and 20 planted problems are harder
for PTICM than the L = 10 nonplanted problems, but for
PTICM with SPVAR this is reversed: it solved all of the
L = 16 planted problems, and almost all of the L = 20 planted
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(a) (b)

FIG. 8. Success metrics for PTICM for 3D spin glass problems with L = 10 vs num sweeps. (a) The fraction of problems solved. (b) The
median residual, which is the relative energy difference (in percent) between the best solution found and the best known solution. In both
figures, each point represents data from 100 random instances.

problems. We suspect that SPVAR is able to exploit the
structure of the planted-solution problems.

E. Fault diagnosis problems

Fault diagnosis problems are one of the leading candidates
for benchmarking quantum annealers [51–53]. We obtained
a single problem set of 100 instances from 4-bit × 4-bit
multiplier circuits as generated in Ref. [53], where it was
shown that these instances are at least one order of magnitude
harder than conventionally used random spin glass instances.
Aside from their intrinsic hardness in terms of time to
solution, these fault diagnosis instances are also harder from

an asymptotic scaling perspective, making them an interesting
test bed on which to apply SPVAR.

In order to solve these problems with D-Wave’s quantum
annealer, special treatment was required since their adjacency
matrix differs from the hardware graph of the quantum
annealer (a Chimera graph). A common method is to find
an embedding, which is a mapping from each logical variable
to one or more qubits, referred to as a chain. The identification
of multiple qubits with a single logical variable results in a
higher effective connectivity, but requires additional couplers
in order to try to force all of the qubits in a chain to take the
same state. This is commonly done by connecting the qubits
with a strong ferromagnetic coupling. However, in a sample

(a) (b)

FIG. 9. Fraction of problems solved for 3D spin glass problems with planted solutions vs num sweeps and L. (a) Shows the difference in
the fraction of problems solved for L = 10–20 between PT+ICM with SPVAR and PT+ICM without SPVAR. Note that for L = 10, PT−ICM
solved all problems both with and without SPVAR. (b) Shows the fraction of problems solved, and the median residual, which is the relative
energy difference (in percent) between the best solution found and the best known solution, as a function of L. In both panels, each point
represents data from 100 random instances with the respective L, solved with num sweeps = 104.
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TABLE I. Success metrics for the (4,4) fault diagnosis problems
for three samplers: simulated annealing (SA), simulated quantum
annealing (SQA), and D-Wave’s quantum annealer (DW). For each
sampler, we present the success metrics for solving using the
sampler alone compared with solving using SPVAR, with the same
computational effort. For DW, we also show the results with post-
processing (PP). The success metrics are as follows: “Solved,” the
percentage of problems solved; and “Residual,” the mean difference
(in percent) in energy between the sample’s best result and the best
known solution.

Sampler Without SPVAR With SPVAR
Solved Residual Solved Residual

SA (2000 sweeps) 21 0.167 80 0.032
SA (20000 sweeps) 67 0.056 96 0.005
SQA (2000 sweeps) 0 2.055 4 0.447
SQA (20000 sweeps) 2 0.348 45 0.115
DW 0 4.660 0 1.278
DW + PP 19 0.189 88 0.017

obtained from the quantum annealer, it is still possible that
not all qubits in a chain would have the same state. In that
case, a “decoding” technique must be utilized to decide the
value of the logical variable corresponding to those qubits.
There are various decoding techniques, such as majority vote,
and local and global energy minimization [54]. In this study,
we employed local energy minimization for decoding. More
specifically, we assigned an effective field to each broken
chain, selected the chain with the strongest effective field,
set its state to be opposite to that of the direction of the field
(to minimize the energy), updated the effective fields, and
repeated the process until no broken chains remained. This is a
quick method of local error correction. We remark that finding
an embedding for a graph is formally known as graph-minor
embedding, an NP-hard problem [55,56] commonly solved
by heuristic methods, although for some classes of problems
deterministic embeddings can be found [57].

We present the success metrics for the fault diagnosis
problems in Table I, and the dependence of the R99 on the
percentile for SA with and without our method in Fig. 10.

For the fault diagnosis problems, the application of our
method results in a large improvement to the success metrics
for SA and SQA, as can be seen in Table I. The application
of the method significantly improves the quality of solutions
found by the quantum annealer, as seen in the residual, but it
was still unable to solve any of those problems. We attribute
this to the low quality of the samples obtained from the
quantum annealer, a result of these problems being extremely
hard for it to solve. With the addition of post-processing,
the quantum annealer achieves results that are in line with
the raw results obtained by SA and SQA, and shows a large
improvement when our method is applied. We were not able
to apply the same post-processing to SA and SQA since the
post-processing is internal to the quantum annealer’s SAPI.

F. Max-k-SAT problems

It is known that the size of the backbone, defined as the
number of variables that are true in all of the optima, is an order

FIG. 10. R99 as a function of percentile for the (4,4) fault
diagnosis problems, for simulated annealing, with and without
SPVAR. The error bars were calculated using bootstrapping.

parameter for Max-k-SAT problems [58,59]. k-SAT and Max-
k-SAT problems undergo a phase transition (second order),
with the order parameter defined as the size of the backbone, at
some critical point. At this critical point, Max-k-SAT problems
undergo an “easy-hard” phase transition. It is natural to ask
how our method would perform near this phase transition for
Max-k-SAT problems. The critical point has been proven to
be at φc = 1 for k = 2 [60–62], and has been shown to be at
φc � 4.267 for k = 3, where φ is the ratio of the clauses to
literals [63–65].

We generated random sets of Max-k-SAT problems with
a given number of literals and a varying number of variables.
For the Max-3-SAT instances, the resulting objective function
is of order three, necessitating the addition of auxiliary
variables and corresponding terms in order to reduce it to a
quadratic objective function since the samplers we used were
all implemented to solve quadratic unconstrained problems.
A comparison of the number of fixed variables for different
methods is presented in Fig. 11, for Max-2-SAT and Max-
3-SAT problems. In addition, for the Max-3-SAT problems,
the fraction of problems solved and the gap are presented
in Fig. 12.

Based on our observations, our method performs well near
the phase transition, and continues to perform well as the
number of clauses over literals is increased, which corresponds
to an increase in hardness. This can be seen both in the
number of fixed variables remaining high to the right of the
phase transition in Fig. 11, as well as in the fact that the
method continues to provide a boost to success metrics, as seen
in Fig. 12.

To the left of the phase transition, it is easy to satisfy
all of the clauses, and the problems are expected to have a
large number of ground states, making them easy to solve
for local search methods, such as tabu 1-opt search. In this
regime, for k = 2, the method without the optional calls to
fix variables fixes very few variables. This could be explained
by the intuition that, due to the large number of ground
states, low-energy samplers tend to give a large number of
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(a) Max-2-SAT (b) Max-3-SAT

FIG. 11. Number of fixed variables for Max-k-SAT problems. (a) The median number of fixed variables for Max-2-SAT problems with
100 literals as a function of the number of clauses. SA_SPVAR refers to simulated annealing run in conjunction with SPVAR, SQA_SPVAR
refers to simulated quantum annealing run in conjunction with SPVAR, and fix_variables refers to persistence-based fixing of variables, via
the fix variables function in D-Wave’s SAPI 2. The suffix “np” refers to switching off the optional calls to fix variables in multistart SPVAR.
(b) The median number of fixed variables for Max-3-SAT problems with 50 literals as a function of the number of clauses. In both figures, the
means were taken over 50 random instances with the respective number of clauses.

distinct states with low overlap between them. However,
this is the regime in which fix variables performs well. To
the right of the phase transition, fix variables rapidly breaks
down, whereas our method continues to fix a large number of
variables. It appears that using our method in conjunction with
fix variables allows one to benefit from the strengths of each.

The number of variables that are fixed by our algorithm is
related to the size of the backbone, which we refer to as an
approximate backbone. For this reason, it is not surprising that
we observed a distinct change in behavior of the number of
fixed variables near the phase transition.

For k = 3, f ix variables is not able to fix any variables.
We hypothesize that the reduction of the third-order poly-
nomial to a quadratic one results in a structure that is not
well suited to the type of persistence fixing that fix variables
employs. However, it is still able to provide a small increase in
the number of variables fixed when used in conjunction with
our method. For k = 2, SA and SQA perform similarly, but
for k = 3, SQA fixes substantially more variables than SA.
There are at least two factors that might contribute to this.
First, on the left of the phase transition, the curve for SQA
is much steeper for k = 3 than for k = 2. This might seem

(a) (b)

FIG. 12. Success metrics for Max-3-SAT problems with 50 literals. (a) The fraction of problems solved, as a function of the number of
clauses. (b) The median gap, which is the energy difference between the best solution found and the best known solution, as a function of the
number of clauses. For clarity, error bars are not shown. In both figures, each point represents data from 50 random instances with the respective
number of clauses.
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unintuitive, due to the observation that in this regime samples
are expected to contain states with low overlap. However,
recent work on SQA [66] and the experimental results on
the D-Wave quantum annealer [67] suggest that their samples
are biased towards few of the ground states, which might help
to explain this. Second, it has been argued that higher-order
polynomials provide a rougher landscape, which could lead
to an advantage for SQA over SA, at least if the barriers are
thin [22].

IV. CONCLUSIONS AND FUTURE WORK

We set out two objectives for this work: to study the
performance of SPVAR on hard problems with different
samplers, and to study what classes of problems or samplers
might not benefit from the application of our method. The
results show that for almost all problems studied, even
extremely hard problems, the application of our method results
in a significant improvement in the success metrics, for all
samplers studied.

In general, SPVAR can result in a reduction in the number of
variables. In some cases, the reduction of variables might also
result in a computationally simpler problem (e.g., a simplified
topology). Therefore, when comparing the numerical effort as
a function of the size of the input of a particular heuristic to the
same heuristic with SPVAR, an advantage in the scaling can
occur via an improved exponential (due to the simplification
of a problem) or a reduced prefactor (due to the reduction
of the number of variables). Figure 5 depicts a case where
the scaling of the algorithm is improved via the addition of
SPVAR. A characterization of the conditions and mechanism
under which SPVAR can result in an improvement in scaling
would be an interesting future study, however, larger problems
would be needed to carefully probe the asymptotic regime.

We have also identified several types of problems that
appear to challenge SPVAR. First, zero-bias problems tend
to have large correlation lengths, such that clusters of spins
cannot be fixed locally. The reduced-degeneracy Chimera
graph problems with zero bias fall under this category. As
shown in Sec. III C, setting the elite_threshold adaptively
can help with this. It is also possible to iteratively apply
SPVAR sequentially, which leads to the problems gradually
accumulating increasing numbers of variables with nonzero
bias, which makes it easier to fix variables, as shown
in [33].

Second, problems in which the “cost” in value due to an
incorrectly fixed variable is large compared with the range of
couplers. Increasing num starts can help with this, by reducing
the risk of fixing variables incorrectly. Finally, if a sampler

gives a low-quality result, it is possible that the application
of our method will not improve the results, although it is
not expected to make them worse. By setting elite_threshold
adaptively, it appears to be possible to improve the results,
although the risk of fixing variables incorrectly in this case
could be high.

In the future, it might be worthwhile to study the per-
formance of a multistart iterative application of SPVAR, as
well as the possible application of a similar algorithm to
other discrete optimization problems, such as mixed-integer
programming.
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APPENDIX: PARAMETERS USED

In Table II, we list the parameter values used for the bench-
marking, for each problem set. In addition, fixing_threshold
was always set to 1.0, as was correlation_threshold, and the
chain repairing method used for quantum annealer runs was

TABLE II. Parameter values of multistart SPVAR and the various problem sets used in the benchmarking.

Problems elite_thresholds num starts total_sample_size num sweeps

Weak-strong 0.2, 0.2 20 100–500 20 ×103

Red. deg, Chimera 0.2, 0.2 20 1000 20 ×103

3D spin glass 0.2, 0.3 20 500 20 ×103

3D spin glass (PTICM) 0.2, — 10 500 10 ×103

Fault diagnosis 0.1, 0.4 40 500 2, 20 ×103

Max-k-SAT 0.2, 0.2 40 500 20 ×103
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local energy minimization. The thresholds column shows first
the elite_threshold and then the correlation_elite_threshold.

For the nonzero-bias problems, we used half of the
total_sample_size for the SPVAR fixing step, and half of the

sample size to solve the problems. For the zero-bias problems,
we used 40% of the total sample size for the correlation-based
prefixing step, and divided the rest equally between the fixing
step and solving step.
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[17] G. E. Santoro, R. Martoňák, E. Tosatti, and R. Car, Theory of
quantum annealing of an Ising spin glass, Science 295, 2427
(2002).

[18] D. A. Battaglia, G. E. Santoro, and E. Tosatti, Optimization by
quantum annealing: Lessons from hard satisfiability problems,
Phys. Rev. E 71, 066707 (2005).

[19] B. Heim, T. F. Rønnow, S. V. Isakov, and M. Troyer, Quantum
versus classical annealing of Ising spin glasses, Science 348,
215 (2015).

[20] S. Muthukrishnan, T. Albash, and D. A. Lidar, Tunneling and
Speedup in Quantum Optimization for Permutation-Symmetric
Problems, Phys. Rev. X 6, 031010 (2016).

[21] S. Boixo, T. F. Rønnow, S. V. Isakov, Z. Wang, D. Wecker, D. A.
Lidar, J. M. Martinis, and M. Troyer, Evidence for quantum
annealing with more than one hundred qubits, Nat. Phys. 10,
218 (2014).

[22] V. S. Denchev, S. Boixo, S. V. Isakov, N. Ding, R. Babbush,
V. Smelyanskiy, J. Martinis, and H. Neven, What is the
Computational Value of Finite-Range Tunneling? Phys. Rev.
X 6, 031015 (2016).

[23] C. C. McGeoch and C. Wang, in Proceedings of the ACM
International Conference on Computing Frontiers (ACM,
New York, 2013), p. 23.

[24] H. G. Katzgraber, F. Hamze, and R. S. Andrist, Glassy
Chimeras Could be Blind to Quantum Speedup: Design-
ing Better Benchmarks for Quantum Annealing Machines,
Phys. Rev. X 4, 021008 (2014).

[25] A. D. King, T. Lanting, and R. Harris, Performance of a quantum
annealer on range-limited constraint satisfaction problems,
arXiv:1502.02098.

[26] J. King, S. Yarkoni, M. M. Nevisi, J. P. Hilton, and C. C.
McGeoch, Benchmarking a quantum annealing processor with
the time-to-target metric, arXiv:1508.05087.

[27] S. Mandrà, Z. Zhu, W. Wang, A. Perdomo-Ortiz, and H. G.
Katzgraber, Strengths and weaknesses of weak-strong cluster
problems: A detailed overview of state-of-the-art classical
heuristics versus quantum approaches, Phys. Rev. A 94, 022337
(2016).

[28] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D.
Wecker, J. M. Martinis, D. A. Lidar, and M. Troyer, Defining
and detecting quantum speedup, Science 345, 420 (2014).

[29] I. Hen, J. Job, T. Albash, T. F. Rønnow, M. Troyer, and D. A.
Lidar, Probing for quantum speedup in spin-glass problems with
planted solutions, Phys. Rev. A 92, 042325 (2015).

[30] H. G. Katzgraber, F. Hamze, Z. Zhu, A. J. Ochoa, and H. Munoz-
Bauza, Seeking Quantum Speedup Through Spin Glasses:
The Good, the Bad, and the Ugly, Phys. Rev. X 5, 031026
(2015).

[31] J. King, S. Yarkoni, J. Raymond, I. Ozfidan, A. D. King, M. M.
Nevisi, J. P. Hilton, and C. C. McGeoch, Quantum annealing
amid local ruggedness and global frustration, arXiv:1701.04579.

[32] S. Mandrá, H. G. Katzgraber, and C. Thomas, The pitfalls
of planar spin-glass benchmarks: Raising the bar for quan-
tum annealers (again), Quantum Sci. Technol. 2, 038501
(2017).

[33] H. Karimi and G. Rosenberg, Boosting quantum annealer
performance via sample persistence, Quantum Inf. Process. 16,
166 (2017).

043312-13

https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.3389/fphy.2014.00005
https://doi.org/10.1007/s10732-011-9164-4
https://doi.org/10.1007/s10732-011-9164-4
https://doi.org/10.1007/s10732-011-9164-4
https://doi.org/10.1007/s10732-011-9164-4
https://doi.org/10.1016/j.artint.2004.04.001
https://doi.org/10.1016/j.artint.2004.04.001
https://doi.org/10.1016/j.artint.2004.04.001
https://doi.org/10.1016/j.artint.2004.04.001
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1016/0377-2217(94)00058-K
https://doi.org/10.1016/0377-2217(94)00058-K
https://doi.org/10.1016/0377-2217(94)00058-K
https://doi.org/10.1016/0377-2217(94)00058-K
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1038/nature10012
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1109/TASC.2014.2318294
https://doi.org/10.1103/PhysRevB.39.11828
https://doi.org/10.1103/PhysRevB.39.11828
https://doi.org/10.1103/PhysRevB.39.11828
https://doi.org/10.1103/PhysRevB.39.11828
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1016/0009-2614(94)00117-0
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1126/science.1068774
https://doi.org/10.1103/PhysRevE.71.066707
https://doi.org/10.1103/PhysRevE.71.066707
https://doi.org/10.1103/PhysRevE.71.066707
https://doi.org/10.1103/PhysRevE.71.066707
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1126/science.aaa4170
https://doi.org/10.1103/PhysRevX.6.031010
https://doi.org/10.1103/PhysRevX.6.031010
https://doi.org/10.1103/PhysRevX.6.031010
https://doi.org/10.1103/PhysRevX.6.031010
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1038/nphys2900
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.6.031015
https://doi.org/10.1103/PhysRevX.4.021008
https://doi.org/10.1103/PhysRevX.4.021008
https://doi.org/10.1103/PhysRevX.4.021008
https://doi.org/10.1103/PhysRevX.4.021008
http://arxiv.org/abs/arXiv:1502.02098
http://arxiv.org/abs/arXiv:1508.05087
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1126/science.1252319
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.1103/PhysRevA.92.042325
https://doi.org/10.1103/PhysRevX.5.031026
https://doi.org/10.1103/PhysRevX.5.031026
https://doi.org/10.1103/PhysRevX.5.031026
https://doi.org/10.1103/PhysRevX.5.031026
http://arxiv.org/abs/arXiv:1701.04579
https://doi.org/10.1088/2058-9565/aa7877
https://doi.org/10.1088/2058-9565/aa7877
https://doi.org/10.1088/2058-9565/aa7877
https://doi.org/10.1088/2058-9565/aa7877
https://doi.org/10.1007/s11128-017-1615-x
https://doi.org/10.1007/s11128-017-1615-x
https://doi.org/10.1007/s11128-017-1615-x
https://doi.org/10.1007/s11128-017-1615-x


KARIMI, ROSENBERG, AND KATZGRABER PHYSICAL REVIEW E 96, 043312 (2017)

[34] S. V. Isakov, I. N. Zintchenko, T. F. Rønnow, and M.
Troyer, Optimised simulated annealing for Ising spin glasses,
Comput. Phys. Commun. 192, 265 (2015).
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