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Refined energy-conserving dissipative particle dynamics model with temperature-dependent
properties and its application in solidification problem
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It has been observed previously that the physical behaviors of Schmidt number (Sc) and Prandtl number (Pr) of
an energy-conserving dissipative particle dynamics (eDPD) fluid can be reproduced by the temperature-dependent
weight function appearing in the dissipative force term. In this paper, we proposed a simple and systematic method
to develop the temperature-dependent weight function in order to better reproduce the physical fluid properties.
The method was then used to study a variety of phase-change problems involving solidification. The concept of
the “mushy” eDPD particle was introduced in order to better capture the temperature profile in the vicinity of
the solid-liquid interface, particularly for the case involving high thermal conductivity ratio. Meanwhile, a way
to implement the constant temperature boundary condition at the wall was presented. The numerical solutions
of one- and two-dimensional solidification problems were then compared with the analytical solutions and/or
experimental results and the agreements were promising.
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I. INTRODUCTION

To date, various particle-based methods have been devel-
oped to solve complex fluid and/or solid mechanics problems.
Some notable particle-based methods are smoothed particle
hydrodynamics (SPH) [1–3], moving particle semi-implicit
(MPS) [4–18], dissipative particle dynamics (DPD), etc. Dis-
sipative particle dynamics (DPD) is a particle-based method
originally proposed by Hoogerbrugge and Koelman [19]. In
general, the particle considered in DPD represents a cluster of
atoms or molecules (coarse grained), instead of an individual
atom or molecule considered in molecular dynamics (MD).
Therefore, DPD can be used to compute problems involving
spatial and time scales which are larger than those considered
in MD such as fiber suspension [20], microswimmer [21,22],
blood flow [23], polymer dynamics [24,25], DNA suspensions
[26,27], microfluidic systems [28], etc. A more thorough
review on the applications of DPD can be found in the open
literature [29–32]. In fact, the coarse-grained DPD equations
can be derived from the microscopic system (see details in
[33]). Espanol and Revenga [34], on the other hand, added
thermal fluctuations on the macroscopic smoothed particle
hydrodynamics (SPH) governing equations [i.e., the smoothed
dissipative particle dynamics (SDPD) method]. These fluctu-
ations are absent if a continuum problem is simulated.

In order to extend the numerical framework of DPD to
handle nonisothermal flow, the energy-conserving dissipative
particle dynamics (eDPD) method has been developed [35,36].
More recently, Chaudhri and Lukes [37] have extended the
formulations of the eDPD method to compute multicomponent
flow. To date, eDPD has been used in many fluid flow
applications involving heat transfer such as the heat conduction
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problem [38], heat convection problem [39], conjugate heat
transfer problem [40], conduction problem in nanocomposite
[41], thermophoretic microswimmer problem [21], etc.
By combining the enthalpy method with eDPD, problems
involving phase change (i.e., melting) have been addressed
by Willemsen et al. [42,43] and more recently by Johansson
et al. [44].

It is well known that the thermophysical property of
a real fluid changes with respect to temperature. In fact,
for common liquids such as water, its dynamic viscosity
decreases as temperature increases. In order to capture this
physical behavior using eDPD, Li et al. [45] recently devised
a temperature-dependent formulation for the exponent s

(denoted as “Li’s formulation” in this paper) appearing in
the weight function of dissipative force. Basically, they have
enlarged the cutoff radius (rc) from its conventional value
(=1.0) to rc = 1.58. Coupled with their proposed temperature-
dependent exponent, s(T ) = C1 + C2(T 2−1) where T is the
dimensionless temperature, they have somehow reproduced
the Schmidt number and the Prandtl number of liquid water
at various temperatures. In their work, the values of C1 and
C2 were prescribed as 0.41 and 1.9, respectively. The details
on how to choose the values of rc, C1, and C2, however,
were not given. More recently, Abu-Nada [46] discussed
the difficulty in extending Li’s formulation to other fluids.
In order to resolve this issue, Abu-Nada [46] incorporated
the temperature-dependent viscosity ratio in the wD weight
function of Fan et al. [27]. Although the extension of this
method to handle other fluids is straightforward, it remains
an open question whether this method is able to reproduce
the Schmidt number of a real fluid at different temperatures.
Yamada et al. [47] have recently highlighted the importance of
modeling the freezing behavior in microfluidic devices such as
phase-change valves and proton exchange membrane fuel cells
(PEMFCs) in order to control the ice formation. Following this,
Johansson et al. [44] adopted Li’s formulation in modeling the
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freezing problem occurring in a flow channel, prior to studying
the more complex flow in PEMFC. They used a larger rc in their
two-dimensional (2D) eDPD simulation (rc = 1.81); however,
the rationale behind this selection is unclear.

In the current paper, we porpose an alternative temperature-
dependent formulation of the exponent s. The selection of
a proper cutoff radius will be outlined based on the kinetic
theory, and the procedures in obtaining the s values at different
temperatures will be described. Due to the fact that the physical
property of liquid water below 0 °C (i.e., supercooled water)
is available, we have further extended this method to cover
a wider temperature range, i.e., 253.15 K < T R < 373.15 K,
where T R is the temperature with a physical unit (K). Our
formulation was then used to simulate a variety of flow
problems involving solidification. At this point, we will
introduce the concept of “mushy” particle to model the eDPD
particles in the transition zone. In order to properly represent
the Dirichlet temperature boundary condition imposed at the
wall, we have modified the original method of Willemsen et al.
[42] by simply fixing the ghost particles in the wall, and their
temperatures were interpolated from the neighboring fluid
particles. Therefore, it is unnecessary to update the positions of
ghost particles in our current implementation. We have further
validated the eDPD method in the 2D solidification problem,
where analytical and experimental solutions are available.

II. MATHEMATICAL MODEL

The governing equations of the energy-conserving dis-
sipative particle dynamics (eDPD) model have been often
reported in the literature. Here, these equations are rewritten
for completeness. The equation of motion of an eDPD particle
i can be expressed as

mi

d �vi

dt
= �Fi =

∑
i �=j

�FC
ij + �FD

ij + �FR
ij + �FE, (1)

d�ri

dt
= �vi, (2)

where �FC
ij is the conservative force vector, consisting of a

soft repulsive force due to the interaction potential between
particles. �FD

ij is the dissipative force vector which dissipates
the thermal kinetic energy of the system and reduces the
velocity difference between the particles. On the other hand,
the random force vector �FR

ij generates a stochastic force on
an eDPD particle. The dissipative and random forces are
acting as a heat sink and a heat source, respectively. Their
combination must satisfy the fluctuation-dissipation theorem
in order to satisfy the energy balance within the fluid system.
�FE
ij is any external force acting on the particles, such as

spring force, etc. In the current work, all particles have
the same mass m (=1.0), and the velocity vector �vi can be
evaluated by integrating Eqs. (1) and (2) with respect to
time by using the velocity-Verlet scheme proposed by Groot
and Warren [48]. Other numerical integrators can be found
in [49]. The summation operator appearing in Eq. (1) was
performed on all neighboring eDPD particles lying within the
cutoff radius rc. Mathematically, these force components are

expressed as

�FC
ij = aijwC(rij )�eij , (3)

�FD
ij = −γijwD(rij )(�eij · �vij )�eij , (4)

�FR
ij = σijwR(rij )ξij�t−1/2�eij . (5)

Here, rij is the distance between particles i and j . �eij

is the unit vector pointing from particle j to i. �vij is the
velocity difference defined as �vij = �vi − �vj .aij is the repulsive
force parameter expressed as aij = 75kBTij /ρ where kB is
the Boltzmann constant. Tij is the effective temperature
and ρ is the number density. Li et al. [45] have defined
Tij = (Ti + Tj )/2 in their work. However, we followed the
approach of Fedosov et al. [21] by using a constant value of
Tij , i.e., Tij = (TH + TC)/2, where TH and TC are hot and cold
temperatures in the system, respectively. It is worth mentioning
here that the constant parameter (i.e., 75) appearing in aij is
obtained upon mapping with the compressibility of water. In
order to simulate the interaction of different fluids, the Flory-
Huggins parameter can be used [48,50]. Recently, Arai et al.
[51] have increased the constant parameter appearing in the
repulsive force parameter in order to model the hydrophobic
nature of fluids in a vesicle system.

In order to satisfy the fluctuation-dissipation theorem,
conditions such as σ 2

ij = 4γij kBTiTj/(Ti + Tj ) and wD = w2
R

must be satisfied. Here, γij and σij are the intensities of dissi-
pative and random forces, respectively. The weight functions
such as wC = 1 − r/rc and wD = (1 − r/rc)s (where s = 2)
have been commonly adopted. ξij is the symmetric random
number with zero mean and unit variance, i.e., ξij = ξji . Qiao
and He [41] have previously reported that the result simulated
based on the uniform random number was similar to that of the
Gaussian random number. Due to the fact that the generation
of a uniform random number is computationally cheaper, the
uniform random number was implemented in the current work.

In order to determine the temperature (T ) of an eDPD
particle, we have solved the energy equation as well:

dei

dt
= qi =

∑
i �=j

qC
ij + qV

ij + qR
ij + Qext, (6)

where ei is the internal energy of particle i, i.e., ei = CvTi ,
and Cv is the specific heat. The terms such as collisional heat
flux qC

ij , viscous heat flux qV
ij , and random heat flux can be

written as

qC
ij =

∑
i �=j

kijwCT

(
T −1

i − T −1
j

)
, (7)

qV
ij = 1

2Cv

∑
i �=j

{
wD

[
γij (�eij · �vij )2 − σ 2

ij

/
mi

]
− σijwR(�eij · �vij )ξij�t−1/2

}
, (8)

qR
ij =

∑
i �=j

βijwRT �t−1/2ξ e
ij . (9)

Any external heat source can be included in Qext. The
term kij indicates the strength of the collisional heat flux,
which is related to the mesoscopic heat friction kij as
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kij = C2
vκij (Ti + Tj )2/4kB . As reported by Zhang et al.

[40], the mesoscopic heat friction kij is treated as heat
conductivity in the mesoscopic scale; therefore, the harmonic
mean procedure can be used to express the equivalent heat
friction between two particles: κij = 2κiκj /(κi + κj ). Inspired
from the mapping of macroscopic thermal conductivity with
eDPD parameters [52], Li et al. [45] have expressed the
mesoscopic heat friction in terms of the Prandtl number which
is experimentally available (see Eq. (15) in [45]). Meanwhile,
the strength of the random heat flux βij is related to kij as βij =√

2kBkij . The weight functions of collisional and random
heat fluxes, wCT = (1 − r/rc)2 and wRT = (1 − r/rc), were
adopted. ξe

ij is the antisymmetric uniform random number with
zero mean and unit variance, i.e., ξe

ij = −ξ e
ji .

It is important to note that the variables defined above were
written in their dimensionless forms. In the current work, the
reference temperature T R

∗ was 300 K. Here, the superscript
R signifies the quantity with physical units and the subscript
* indicates the reference quantity. We have set ρ = 4 and
Cv = 100 000 in all simulations. The scaling procedure that
was used to produce the dimensionless variables of water can
be found in [45]. In general, the eDPD model is more coarse
grained when Cv increases [41].

III. THERMOPHYSICAL PROPERTIES OF WATER

The exponent s appearing in wD is normally prescribed as
2.0 in DPD. This is permissible if the momentum diffusion is of
the same order as the particle diffusion (or self-diffusion) in a
real fluid, i.e., the Schmidt number (Sc) is ∼1.0 [48]. However,
for a real fluid such as water, Sc ∼ 350 at T R

∗ = 300 K,
indicating that the simulated Sc is lower than the actual Sc by
several orders of magnitude if the standard DPD parameters
are employed. This condition occurs due to several reasons.
Apart from the soft interaction between the DPD particles
[53], shearing dissipation may disappear even though two DPD
particles are close to each other [27]. In general, the fluid is
behaving like a gas if Sc is low, or like a liquid if Sc is large
[54]. Ripoll et al. [55] observed that the correct hydrodynamic
behavior of suspended particles can be recovered only at large
Sc (collective regime). Symeonidis et al. [56] compared the
DPD results with the experimental data and concluded that
the underprediction of Sc would degrade the accuracy of the
DPD simulation. Fan et al. [27] found that the conventional
DPD method was unable to simulate the flow of a real fluid in
a complex channel because its dynamic response is too slow
(low Sc).

From the linearized Fokker-Planck equation (see [57]), the
hydrodynamic variables such as kinematic viscosity υ and
self-diffusivity D can be written as follows:

υ = kBT

2

(
w0t

2
w

d + 2
+ 1

w0

)
, (10)

D = kBT

mw0
. (11)

Here, wo = γρ[wD]r/md and t2
w = m[r2wD]r/kBT [wD]r .

Depending on the flow dimensionality d, the bracketed term,
say [φ]r , is indeed an integral operator: [φ]r = ∫ rc

0 φ2πrdr

for d = 2 or [φ]r = ∫ rc

0 φ4πr2dr for d = 3. The upper bound
of the integrand is the cutoff radius, rc.

By employing wD = (1 − r/rc)s and integrating terms such
as [wD]r and [r2wD]r , the kinematic viscosity (υ) and self-
diffusivity (D) can now be determined as a function of s. Here,
we focus on a two-dimensional problem (d = 2):

υ = 3πγρr4
c

4(s + 1)(s + 2)(s + 3)(s + 4)
+ kBT (s + 1)(s + 2)

2πγρr2
c

,

(12)

D = kBT (s + 1)(s + 2)

πγρr2
c

. (13)

Thus the Schmidt number can be written as follows:

Sc = υ

D
= 1

2
+ 3π2γ 2ρ2r6

c

4kBT (s + 1)2(s + 2)2(s + 3)(s + 4)
. (14)

From Eq. (14), it is now straightforward to devise appro-
priate methods to increase the Schmidt number of the DPD
fluid. One may decrease the temperature T as done in [54].
Alternatively, Fan et al. [27] have used a smaller value of
s, i.e., s = 0.5. Methods such as increasing rc or ρ can be
adopted as well at the expense of more computational cost.
Finally, the idea of increasing the dissipative force intensity γ

can be pursued; however, the random force intensity σ must
be increased (hence reduced �t) to satisfy the fluctuation-
dissipation theorem.

For nonisothermal flow, the method of reducing s seems
to be the most practical approach, as the associated increase
of computational cost is not significant at all. For example,
Li et al. [45] have devised a special temperature-dependent
function of s, i.e., s(T ) = 0.41 + 1.9(T 2−1), to reproduce the
Schmidt number of water for temperature ranging from 273 <

T R < 373 K. Meanwhile, they have increased the cutoff radius
rc to 1.58. The rationales behind the development of their
function s(T ) and the choice of rc are, however, unclear.
This would unfortunately complicate the process of devising
the proper s(T ) function for other working fluids. More
recently, Abu-Nada [46] proposed a new weight function
for dissipative force by simply multiplying the temperature-
dependent viscosity ratio of a fluid with the weight function
suggested by Fan et al. [27], i.e., wD = μ(T )

μC
(1 − r/rc)1/2,

where μC is the reference dynamic viscosity. However, the
ability of this new model to reproduce the Schmidt number
of a real fluid remains unknown. By relying on the same
exponent s(T ) developed by Li et al. [45], Johansson et al.
[44] have computed the 2D mesoscopic solidification problem
using eDPD. They enlarged the cutoff radius rc to 1.81 while
keeping the standard DPD parameters unchanged, i.e., γ = 4.5
and ρ = 4. The simulated Schmidt numbers of Li et al. [45]
and Johansson et al. [44] at different temperatures are shown
in Fig. 1. As seen, the computed Schmidt numbers based on
the s(T ) function of Li et al. [45] vary considerably with those
measured experimentally, especially at the low-temperature
regime. On the other hand, the overprediction of the Schmidt
numbers simulated by Johansson et al. [44] is quite discernible
in the medium-temperature range: 291 < T R < 312 K (or
0.97 < T < 1.04).
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FIG. 1. Comparison of Schmidt numbers of water for 0.91 <

T < 1.24. For the present eDPD simulations, the error bars are
obtained by repeating the simulations five times. rc = 1.96, γ = 8.0,

ρ = 4.

Now the main question is how to choose the DPD
parameters in a more systematic manner in order to reproduce
the Schmidt number of water. Firstly, it is important to note
that the cutoff radius rc is a constant parameter (fixed during
the eDPD computation). Therefore, Eq. (14) can be rearranged
in a way leading to

rc =
[(

Sc − 1
2

)
4kBT (s + 1)2(s + 2)2(s + 3)(s + 4)

3π2γ 2ρ2

]1/6

.

(15)

The plots of rc against s for different temperatures are
shown in Fig. 2. Here, we replaced the term Sc by the
target value (i.e., experimental value of Schmidt number at
a specific temperature T ), and utilized the standard DPD

FIG. 2. The relationship between rc and s at different temper-
atures. Solid polygons: γ = 4.5 and ρ = 4(rc,crit ∼ 2.365). Empty
polygons: γ = 8.0 and ρ = 4(rc,crit ∼ 1.952). rc must be chosen in
such a way that rc > rc,crit.

parameters such as γ = 4.5 and ρ = 4 to generate the plots
(represented by solid polygons) at four temperatures, e.g.,
T = 0.84, 0.91, 1.04, and 1.24. Due to the fact that the
thermophysical properties of supercooled liquid water are
experimentally available (see [58–60]), we have considered
a working temperature range: 253.15 < T R < 373.15 K (or
0.84 < T < 1.24), which is larger than that considered by Li
et al. [45].

As observed graphically from Fig. 2, once the rc value is
prescribed, the exponent s at a corresponding temperature T

can be determined. It is found that exponent s is increasing
with respect to temperature, which is agreeable to the original
proposal of Li et al. [45]. Obviously, a low value of rc

is preferable in order to shorten the simulation time (the
cost of force calculation is proportional to r3

c ; see [27]). As
observed from Fig. 2, in order to ensure s > 0 (i.e., wD

is decaying within rc) for the entire temperature range, the
condition of rc > rc,crit must hold. By using the standard
DPD parameters (see plots consisting of solid polygons), it
seems that rc,crit ∼ 2.365. Alternatively, the term rc,crit can be
calculated from Eq. (15) by setting s = 0 and Sc = 10 356
(i.e., the experimental value of Schmidt number at the lowest
temperature within the range considered: T = 0.84).

Now, if one relies on the standard parameters, e.g., γ = 4.5
and ρ = 4, one may choose rc = 2.37 (i.e., a value which is
slightly larger than rc,crit ∼ 2.365) for the eDPD computation.
However, this implies that particle information in at least three
(the next integer of rc,crit) neighboring cells of the local cell
containing particle i must be processed during the interactive
force/heat computation. Meanwhile, we have found that by
increasing the dissipative force intensity γ to 8.0 and retaining
ρ = 4, rc,crit can be reduced to 1.952 according to Fig. 2 (plots
consisting of empty polygons) or Eq. (15). Correspondingly,
due to the increase of γ (hence increase of σ ), the time step
size was reduced from the recommended value �t = 0.01
(used in [44]) to �t = 0.007 to ensure numerical stability.
Therefore, the eDPD parameters, i.e., rc = 1.96, γ = 8.0, ρ =
4, and �t = 0.007, will be used in the test cases outlined in
the current work unless stated otherwise.

Based on the selected eDPD parameters, it is now pos-
sible to determine the temperature-dependent function of s

graphically for different values of temperature T (e.g., Fig. 2)
or based on Eq. (15). We have opted to solve Eq. (15)
numerically for s. Given the set of experimental values of
Schmidt number Sc at a particular temperature T (34 of them),
the exponents s were solved iteratively by using the eDPD
parameters suggested above. We found that the quadratic
function s(T ) = −6.3039T 2 + 19.594T −12.032 can be used
to fit the discrete s(T ) data with the coefficient of determination
R2 = 0.9997.

In order to verify our model, we have computed the
Schmidt number of water from eDPD simulations. Firstly,
the self-diffusivity of eDPD fluid was measured by using
the mean square displacement χ . The self-diffusivity D was
then calculated from χ via D = limt→∞ χ/4t . In order to
compute the kinematic viscosity (υ) of an eDPD fluid, the
periodic Poiseuille flow (PPF) method of Backer et al. [61]
was employed. Following the concept of the PPF method,
the periodic heat conduction (PHC) method was developed
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FIG. 3. Comparison of Schmidt and Prandtl numbers of water for
0.84 < T < 1.24. The error bars of the present eDPD simulations
are obtained by repeating the simulation five times. rc = 1.96,

γ = 8.0, ρ = 4.

by Li et al. [45] to determine the thermal diffusivity α of an
eDPD fluid. The Prandtl number of an eDPD fluid can then be
determined via Pr = ν/α.

A. Measured Schmidt and Prandtl numbers of eDPD fluid

Figure 1 shows the Sc values obtained by using the current
approach. The values obtained by Li et al. [45] and Johansson
et al. [44] were overlaid on the same figure as well for
comparison purposes. As seen, among the three approaches,
our predictions come closer to the measured values in general,
especially for those in the low-temperature regime (0.91 <

T < 1.00). We have repeated the numerical measurement of
Sc (at each temperature) five times and found that the standard
deviation of Sc was fluctuating between 3% and 7% of the
averaged Sc value. On the other hand, at T = 0.84 (see Fig. 3),
it is noticed that the difference between the predicted and the
experimental values of Sc is quite discernible. At T = 0.84,
our estimated s value is ∼0.0068. This somewhat small value
of s implies that the changes of dissipative and random forces
[functions of wD = (1−r/rc)s] are more abrupt at r = rc. This
prompted Fan et al. [27] to choose a higher value of s (i.e.,
s = 0.5) in their flow computation. Therefore, if one intends to
better reproduce the Schmidt number of supercooled water at
T = 0.84, one might increase the values of rc, γ , or ρ in order
to get rid of the small value of s at T = 0.84 (supercooled
water) at the expense of higher computational cost. This
strategy, however, was not implemented in the current work.

Figure 3 compares the simulated Pr with the experimental
data as well. In general, the agreement is quite promising
except at T = 0.84 which may be attributed to the reason
stated above (s ∼ 0).

IV. SOLIDIFICATION PROBLEM

A. One-dimensional solidification in a semi-infinite plate

Having determined the eDPD parameters from Sec. III, i.e.,
rc = 1.96, γ = 8.0, ρ = 4, and �t = 0.007, we investigated
the one-dimensional (1D) unsteady solidification problem in a
semi-infinite plate which was previously studied by Johansson
et al. [44] using eDPD. Following their geometric setup,
a 2D rectangular domain of size 12×100 was built. The

initial temperatures of the eDPD particles were prescribed as
To = 0.95. At t = 0, xthe temperature of the bottom wall was
reduced to Tb = 0.85 and the liquid particles were allowed to
freeze thereafter. Following the approach of Willemsen et al.
[43], the equations of motion were solved only on nonsolid
particles (i.e., eDPD particles were frozen once they became
solid). The time evolution of the solid-liquid interface was
then examined. In order to mimic the semi-infinite behavior of
the problem, the height of the channel was set to a relatively
large value in order to minimize the wall effect from the
top boundary (Tt = To = 0.95). Periodic boundary conditions
were prescribed at the left and right boundaries.

An analytical solution for this problem is available (see
[62]), whereby the temperature at the solid and liquid regions
can be expressed as follows:

TS(y) = Tb + Tf − Tb

erf(λ)
erf

(
y

2
√

αSt

)
, (16)

TL(y) = Tt − Tt − Tf

erfc(λ
√

αSL)
erfc

(
y

2
√

αLt

)
. (17)

Here, the subscripts S and L denote solid and liquid, respec-
tively. Tf is the freezing temperature (i.e., Tf = 0.9105). The
term (·)SL denotes the ratio (·)S/(·)L. In general, the constant
λ determines the speed of the solid-liquid interface �:

� = 2λ
√

αSt. (18)

As shown by Lunardini [62], the parameter λ can be solved
numerically (iterative method) from the following implicit
equation:

e−λ2

erf(λ)
− kLS

√
αSL(Tt − Tf )e−αSLλ2

(Tf − Tb)erfc(λ
√

αSL)
= Lλ

√
π

Cv(Tf − Tb)
, (19)

where k is the thermal conductivity (k = ρCvα). Note that
the energy scale in eDPD is kR

BT R
∗ (J). By considering the

fact that the latent heat of water is LR = 334 000 J/kg, the
dimensionless latent heat L can be computed by performing
the scaling operation as follows:

L = LR

kR
BT R∗ /mR∗

= ρR(lR∗ )3LR

ρkR
BT R∗

. (20)

By substituting the latent heat of water (LR =
334 000 J/kg), the density of water ρR = 1000 kg/m3, the
freezing temperature T R

f = 273.15 K, and the Boltzmann
constant kR

B = 1.3806×10−23 J/K, the dimensionless latent
heat can be computed from Eq. (20) as L = 2.68×104. This
value is similar to that obtained by Johansson et al. [44].

The simulation was executed until t = 280. In order to
compare with the analytical solution, we fixed the values of
αS and αL in the solid and liquid regions, respectively. Here,
the thermal diffusivity in the liquid region αL was prescribed
as 1.1. The mesoscopic heat friction can then be calculated
accordingly (see Eq. (15) in [44]). Besides that, we intend to
examine the speed of the solid-liquid interface for different
thermal diffusivity ratios as well, i.e., αSL = 1.0,2.0,3.0, and
4.08. Similar to most of the eDPD models, the parameters such
as ρ and Cv were assumed to be temperature independent in the
current work. Therefore, the case of αSL = 4.08 is analogous
to the case where kR

T =Tb(ice)/kR
T =Tt (water) = 4.08.
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FIG. 4. Time evolutions of solid-liquid interface � for cases (a)
without mushy particle and (b) with mushy particles at different
thermal diffusivity ratios (αSL), i.e., 1.0, 2.0, 3.0, and 4.08. As αSL

increases, the speed d�/dt increases.

In order to study the solidification problem, we made a
slight modification on the state equation initially proposed by
Willemsen et al. [42] in their enthalpy method (via eDPD) for
the melting problem. Here, the temperature of particle i was
updated as follows:

Ti =
⎧⎨
⎩

(ei + L)/Cv ei < CvTf − L

Tf CvTf − L � ei � CvTf

ei/Cv ei > CvTf

. (21)

Generally, the state equation was used to describe the
particle temperature in three distinct regions, i.e., solid region:
ei < CvTf − L; transition region: CvTf − L � ei � CvTf ;
and liquid region: ei > CvTf . According to the method
outlined very recently by Johansson et al. [44], the states of
the particles within the transition region remained, i.e., liquid
or solid particles were retained in their original states when
transition occurred.

We have attempted the approach suggested by Johansson
et al. [44] and the results are shown in Fig. 4(a). In general,
the speed of the solid-liquid interface increases with respect
to the thermal diffusivity ratio αSL. Here, the displacement
of the solid-liquid interface � was determined by identifying
the locations of bins with temperature Tbin = Tf . The mean
positions of these bins were then treated as the displacement
of �. Each cell was divided into five bins in the y direction, as
shown in Fig. 5. As observed from Fig. 4(a), when αSL = 1.0
and 2.0, the eDPD results are quite close to the analytical
solutions. Johansson et al. [44] argued that freezing took a
longer time to start in their eDPD simulations due to the
fact that a substantial amount of latent heat L(L = 2.68×104)
must be subtracted before freezing takes place. However, such
behavior was not observed in our current computation, and

FIG. 5. The displacement measurement of solid-liquid interface
�(t). S, L, and f denote the solid phase, liquid phase, and transition
phase (mushy zone), respectively. Each cell (bounded by thick solid
line) is divided into five bins in the y direction. The temperature in
the transition zone is Tf .

freezing started almost instantaneously as suggested by the
theoretical solutions. Meanwhile, it is noticed from Fig. 4(a)
that as αSL > 2.0, the predicted speed of the solid-liquid
interface differs from the theoretical solution, and the variation
becomes more apparent as αSL increases.

In fact, it has been well appreciated that the enthalpy
method involves no explicit formulation of the solid-liquid
interface. The front location is simply recovered based on the
enthalpy (state equation). From the state equation, a particle is
in full solid state when ei < CvTf − L and in full liquid state
when ei > CvTf . However, in the transition zone, a particle is
partially solid (“mushy”). Figure 6 shows the thickness of the
mushy layer (total size of bins with T = Tf ) as time progresses
for the case αSL = 1.0. As observed, the thickness increases
to ∼3 at the end of the simulation, in which its size is of
the same order as the size of the cutoff radius rc. Owing to
this, we argued that the result could be improved if there is a
more proper definition that can be used to describe the states
of the particles within the transition zone. Based on the state
equation, it is intuitive for us to define the solid fraction of

FIG. 6. The growth of mushy layer thickness as time elapses.
αSL = 1.0.
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FIG. 7. Instantaneous positions of the eDPD particles at
(a) t = 70, (b) t = 140, and (c) t = 280 colored by solid fraction
ϕi . Red: solid phase (ϕi = 1.0). Blue: liquid phase (ϕi = 0.0). eDPD
solutions with and without mushy particles are displayed on the left
and right columns, respectively. αSL = 4.08.

particle i, namely, ϕi in the transition zone as follows:

ϕi = CvTf − ei

L
, (22)

where ϕi is 0.0 and 1.0 for liquid and solid zones, re-
spectively. In other words, in the transition or mushy zone,
0.0 < ϕi < 1.0.

Now the underlying challenge is how to determine the
thermal diffusivity of a mushy particle. According to Alexiades
and Solomon [63], the effective thermal diffusivity of a mushy
particle relies heavily on the structure of the solid-liquid
interface. Some formulations have been proposed in the
numerical framework of finite-difference schemes. However,
in the context of a particle method such as eDPD, it is unclear
on how to define such a structure. Accordingly, we have
linearly interpolated the thermal diffusivity of a mushy particle
from αS and αL based on the computed solid fraction:

αi = ϕiαS + (1 − ϕi)αL. (23)

A similar idea has been pursued in other particle meth-
ods such as the finite volume particle (FVP) method [64].
Figure 4(b) compares the positions of the solid-liquid interface
for different thermal diffusivity ratios. As seen, the agreements
between the eDPD results and the theoretical solutions are
promising. The instantaneous positions of the eDPD particles
are shown in Fig. 7 for different time levels. As observed,
the predicted speed of the solid-liquid interface is lower if no
mushy particle is considered in the flow computation.

We have further compared our computed temperatures at
t = 140 with the theoretical solutions. Despite some statistical
fluctuations, the predictions show good agreement with the
theoretical solutions in general as shown in Fig. 8. We noticed
that the near-wall temperature profile reported by Johansson
et al. [44] was not reproduced correctly as their predicted tem-
perature experienced a sharp increase near the wall (cf. Fig. 3 in
[44]). Willemsen et al. [42] previously addressed this problem
by reflecting the near-wall fluid particles about the wall axis.
The new reflected particle was then assigned a temperature

FIG. 8. Temperature distributions along the y direction for αSL =
1.0, 2.0, 3.0, and 4.08. eDPD method with mushy particle is used.
Results at t = 140 are shown.
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FIG. 9. Wall boundary condition. Red: wall particles. Green:
Imaginary particles (reflection from wall particles about the wall
boundary). Empty circle: interior fluid particle. Temperatures of
imaginary particles are interpolated from interior fluid particles.

value in which the mean temperature of the original and the
new particles equals the prescribed wall temperature. This
strategy works well; however, the mirror particles must be
generated at every time step due to the random motion of
interior fluid particles. In the current work, we generated an
extra layer of wall particles located within the wall region and
their positions were fixed during the computation. In order to
obtain their temperatures, we reflected the wall particles about
the wall axis to form a new internal “imaginary” particle.
Note that the positions of these imaginary particles were
nonvarying because the positions of the wall particles were
fixed. The temperature value of the wall particle was then
assigned accordingly similar to that proposed by Willemsen
et al. [42] by assuring that the mean temperature of the wall
particle and the imaginary particle equals the prescribed wall
temperature. Here, the temperature of the imaginary particle
was interpolated from the interior eDPD particles by using
the moving least square (MLS) method [65]. The schematic
diagram of our implementation of the boundary condition is
shown in Fig. 9. As reported in Fig. 8, the predicted near-wall
temperature is reproduced correctly for different αSL, which is
consistent with the boundary condition (Tb = 0.85) imposed.

Finally, in order to eliminate the statistical noises, we have
performed averaging on the unsteady temperature profiles for
the case αSL = 4.08 based on 15 simulations generated from
different random seeds. The results are shown in Fig. 10. As
seen, there is a noticeable perturbation of temperature profile
near the interface location due to the abrupt change of thermal
diffusivity in the transition zone as practiced in the original
method of Johansson et al. [44]. Meanwhile, it is appealing
to note that the numerical results obtained by using a mushy
particle come closer to the analytical solution.

B. 2D solidification problem

Next, we simulated the 2D solidification problem in a
square cavity.

Rathjen and Jiji [66] have solved the 2D solidification
problem on a semi-infinite domain analytically. This problem
is governed by the Stefan number and the dimensionless initial
temperature T ∗

o expressed as follows:

St = Cv(Tf − TW )

L
, (24)

and

T ∗
o = To − Tf

Tf − TW

, (25)

FIG. 10. Temperature distributions along the y direction for
αSL = 4.08 at different time levels. eDPD methods with and without
mushy particles are used. The temperatures are averaged by 15 sample
data.

respectively. Here, the thermal diffusivity of α = 1.1 was
applied for both solid and liquid particles, and we have set
St = 0.222 and T ∗

o = 2.0. By employing the latent heat
computed earlier for water, i.e., L = 26 800, and the corre-
sponding freezing temperature, Tf = 0.9105, the wall and
initial temperatures can be calculated accordingly as TW =
0.8509 and To = 1.0296, respectively.

While t > 0, the wall temperature was dropped to TW

(below the freezing temperature) to initiate the solidification
process. Figure 11 shows the solidification process in the
square domain. As seen, the solid-liquid interface shifts inward
to the center of the square domain. The predicted dimen-
sionless positions, i.e., x∗ = x/

√
4αSt and y∗ = y/

√
4αSt of

the mushy particles for region (0 < x < 15, 0 < y < 15) at
different time levels, are compared to the analytical solution
shown in Fig. 12. It is interesting to note that the numerical
data collapse on the analytical solution for t < 21, confirming
the similarity nature of the solidification problem considered
here. The dimensionless positions of the mushy particles for
t > 21 are shown in Fig. 13. Now, as expected, the simulated
data no longer follow the semi-infinite theoretical solution
due to the Dirichlet boundary conditions imposed at the top
and right walls. As seen from Fig. 11(a), the shape of the
solid-liquid interface mimics a square with small rounded
edges at the corners initially. As time progresses, these rounded
edges develop and the interface comes closer to a circle as
witnessed in Fig. 11(d). In fact, the interface is thickening
as seen in Figs. 13(a) and 13(b) as it is moving towards the
center. As time progresses, mushy particles start to form even
in the vicinity of the center of the square domain as seen
in Fig. 13(c), forming a somewhat “circularlike” transition
zone. Finally, this circularlike transition region shrinks as seen
from Figs. 13(c)–13(f), signifying the end of the solidification
process. Due to the symmetry of the domain shape, the
dimensionless positions of the mushy particles are symmetric
about the line y∗ = x∗ illustrated in Figs. 13(a)–13(f). The
change of the number of mushy particles is reported in Fig. 14.
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FIG. 11. The solidification process in a 2D square domain. The
positions of solid-liquid interface at time (a) t = 7, (b) t = 56, (c)
t = 105, and (d) t = 210 are shown. Solid and liquid particles are
marked in red and blue colors, respectively.

Here, we have performed an averaging process based on 30
samples obtained from different random seeds. It is interesting
to note that the number increases in an exponential manner and
peaks at t ∼ 120. Thereafter, the number of mushy particles
decays steadily until a full solid is formed at t ∼ 325.

FIG. 12. Comparison of the instantaneous dimensionless posi-
tions of mushy particles (x∗,y∗) with the analytical solution at
different time levels.

FIG. 13. Comparison of instantaneous dimensionless positions of
mushy particles (x∗,y∗) with the analytical solution for (a) t = 28, (b)
t = 56, (c) t = 105, (d) t = 126, (e) t = 210, and (f) t = 280. The
linear dashed line indicates y∗ = x∗. The red solid circle represents
the dimensionless position of the square center. For these particular
instants, the eDPD solutions do not agree with the analytical solutions
due to the semi-infinite assumption made in the latter.

Finally, we wish to verify our model with the experimental
results of 2D solidification performed earlier by Jiji et al. [67].
Similar to the experimental conditions, we have treated the top
and right walls as adiabatic. The temperatures of the left and
bottom walls were dropped below the freezing temperature in

FIG. 14. Total number of mushy particles during the 2D solidifi-
cation process.
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FIG. 15. Comparison of xo
∗ values obtained from experiments (Jiji et al. [67]) and eDPD for three conditions. Experiment A: St = 1/33.9

and T ∗
o = 1.35(0.104 < x∗

o < 0.125); experiment B: St = 1/22.4 and T ∗
o = 0.553(0.134 < x∗

o < 0.146); experiment C: St = 1/19.6 and
T ∗

o = 0.25(0.149 < x∗
o < 0.154).

order to initiate the solidification process. Figure 15 shows the
experimental values of x∗

o at three experimental conditions (A,
B, and C). Here, x∗

o is the interface location at y∗ = x∗. As
seen, the x∗

o values predicted from eDPD agree considerably
well with those measured. Experimentally, we found that the
averaged x∗

o increased (more rapid solidification) as 1/St and
T ∗

o decreased (i.e., experiment A→C). A similar trend is
observed in the present eDPD results.

V. CONCLUSIONS

In the current work, a more systematic method has been
proposed to predict the temperature-dependent function of the
exponent s appearing in the weight function of the dissipative
force term. By estimating the critical cutoff radius (rc,crit) from
the kinetic theory, one can then select a cutoff radius (rc)
that satisfies rc > rc,crit to somewhat reproduce the Schmidt
number of a physical fluid. Although the thermophysical prop-
erties of water including Schmidt and Prandtl numbers have
been well captured within the temperature range considered
in the current work, 253.15 < T R < 373.15 K, it is important
to note that not all physical properties can be simultaneously
reproduced (e.g., dielectric property). Therefore, the use of
eDPD fluid to exactly reproduce a physical fluid of interest
remains as an open problem.

The method has been verified against the benchmark
solutions of some classical solidification problems, whereby
the analytical and the experimental data are available. In order
to properly simulate the speed of the solid-liquid interface,
mushy particles have been proposed to model the eDPD
particles within the transition zone. The effective thermal

diffusivities of mushy particles have been linearly interpolated
based on the computed solid fraction. We have found that
this method is able to smoothen the unphysical temperature
fluctuation near the solid-liquid interface, particularly when
the thermal conductivity of a solid varies considerably from
that of a liquid.

Also, we have attempted an alternative way of implement-
ing the constant temperature boundary conditions, without
updating the positions of ghost particles at every time step
as suggested in the literature. Accordingly, we have generated
the mirror particles (of the ghost particles in the wall layer)
inside the flow domain only once. The temperatures of these
mirror particles are then interpolated from the neighboring
eDPD particles. We foresee that this method is more robust if a
curved wall is encountered. It has been found that the near-wall
temperatures have been represented well by using the current
approach. Also, we have further verified the eDPD method in
a 2D solidification problem. The eDPD solidification results
have been compared with both theoretical and experimental
data and good agreements have been found.

This method will be extended to simulate the freezing
processes in microfluidic devices such as phase-change valves
and PEMFC. The results will be reported in the near future.
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