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Collisional damping rates for electron plasma waves reassessed
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Collisional damping of electron plasma waves, the primary damping for high phase velocity waves, is
proportional to the electron-ion collision rate, νei,th. Here, it is shown that the damping rate normalized to νei,th

depends on the charge state, Z, on the magnitude of νei,th and the wave number k in contrast with the commonly
used damping rate in plasma wave research. Only for weak collision rates in low-Z plasmas for which the
electron self-collision rate is comparable to the electron-ion collision rate is the damping rate given by the
commonly accepted value. The result presented here corrects the result presented in textbooks at least as early
as 1973. The complete linear theory requires the inclusion of both electron-ion pitch-angle and electron-electron
scattering, which itself contains contributions to both pitch-angle scattering and thermalization.
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I. INTRODUCTION

Collisions may provide the only significant damping of
electron plasma waves (EPWs) in low-temperature laboratory
plasmas, for EPWs driven by stimulated Raman scatter (SRS),
either forward scatter or backscatter near the quarter-critical
surface, and for the higher phase velocity EPW in the two-
plasmon decay (TPD) instability, that is, whenever the phase
velocity of the EPW is greater than four to five times the
electron thermal velocity. Forward Raman scatter is also a
concern for the efficient performance of the backward Raman
amplifier [1,2]. SRS and TPD are of particular concern
for direct-drive inertial confinement fusion because of both
the loss of drive resulting from the energy lost to SRS,
and the preheat of the fuel by energetic electrons [3–5].
Recent National Ignition Facility designs have added a high-Z
material layer to the capsule ablator to increase the collisional
damping of EPWs in an attempt to suppress TPD [6]. The
implications of our results for collisional damping on the TPD
threshold and on nonlinear TPD saturation mechanisms will
be discussed in Sec. IV.

The effect of weak collisions on the linear Landau damping
of EPWs has been the subject of a number of publications
since the 1960s [7–13]. Comparatively little attention has been
given to collisional damping, perhaps because of the assumed
result that the damping rate is one-half the velocity-weighted
collision rate averaged over a Maxwell-Boltzmann distribution
of electrons [14]. That is, νfl

coll � ν
Brag
ei /2, where ν

Brag
ei is the

electron-ion scattering rate as defined by Braginskii [15].
Previously, using the Vlasov code LOKI, which discretizes

the equations in 2D+2V space (i.e. two space and two
momentum dimensions), we found that for plasmas without
self-collisions, the collisional damping of EPWs was less than
the commonly assumed νfl

coll [16]. However, that result had
limited applicability for two reasons. First, only the electron-
ion scattering operator restricted to two Cartesian velocity
dimensions (vx,vy) was considered. As will be shown here,
there are significant differences in the damping rate in high-Z
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limit between the Cartesian collision operator restricted to
2V and the full 3V operator used in this work. Second, the
important electron-electron scattering operator, essential to
the standard “textbook” theory, was neglected. In contrast to
previous Vlasov treatments [16], we include both electron-ion
and electron-electron operators.

In agreement with previous work, we find that weak
collisions do not reduce Landau damping. Here, within the
context of the Landau collision operator, we extend the
applicability of that result to collision rates as large as one-half
the plasma frequency. Concerning the collisional damping
rate, we find that νcoll/ν

fl
coll is a function of ionization state

Z, varying from ∼1 at Z = 1 to ∼0.7 as Z → ∞ for strongly
collisional plasmas. This Z dependence should be expected
because electron-ion collisions only isotropize the distribution,
whereas electron-electron collisions drive the distribution
toward a Maxwell-Boltzmann distribution.

For weak collisions, the exponential decay rate of the
perturbation is in accord with the linear Landau damping
rate νL for an EPW. For larger collision rates, we find an
increase in the damping rate above νL, as expected from
the additional effects of collisional damping. However, we
find that even with the full collision operator employing both
electron-ion (pitch-angle) and electron-electron (pitch-angle
and thermalization) collision operators, the damping directly
attributable to collisions for Z � 6 is 70–90 % of νfl

coll, the rate
derived from a linearized set of fluid equations with electron-
ion momentum exchange [Eqs. (38)– (43) in Ref. [16]]. The
greater reduction occurs with larger collision rates. Only if
Z � 4 is the collisional damping well-approximated by νfl

coll.
The transition of νcoll to the asymptotic rate as a function of
Z is well approximated by an exponential decrease such that
the Z → ∞ rate is approached within 20% for Z as small as
6 (for a fixed value of νei,th). The remainder of this paper is
organized as follows. Section II presents a concise description
of the mathematical formulation of the governing equations
discretized in the Vlasov simulation code. Section III then
shows the results of Vlasov simulations of the damping of
EPWs for varying charge states Z, collision rates, and wave
numbers. Finally, in Sec. IV we provide a summary of the
results and discussion of applications.
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II. VLASOV SIMULATION AND METHOD

In this work, we use a 1D+3V Vlasov code in cylindrical
velocity coordinates, and we assume azimuthal symmetry to
effectively reduce the system to one spatial (x) and two velocity
coordinates (vx,v⊥). A few results from the 2D+2V LOKI

code extended to include self-collisions will also be presented
to facilitate discussion of multidimensional simulations in
Sec. IV. Including both electron-ion and electron-electron
collision operators, we compute the damping rate of an initial
small-amplitude EPW (initialized with a small-amplitude den-
sity perturbation). The effects of collisions on EPW damping
are discussed for a range of Z and thermal electron-ion
collision frequency, νei,th/ωpe, where ωpe =

√
4πNee2/me is

the electron plasma frequency and

νei,th = 2π
Ze4Ne ln(�ei)

m2
ev

3
th e

. (1)

Here −e is the elementary electric charge of the electron, me is
its mass, and vth e = √

Te/me is the electron thermal velocity.
Furthermore, Te is the electron temperature and Ne is the spa-
tially averaged background electron density. The thermal elec-
tron self-collision rate is νee,th = 8πe4Ne ln(�ee)/(m2

ev
3
th e),

and ln(�ei) and ln(�ee) are the Coulomb logarithms for
electron-ion and electron-electron collisions, respectively.
Note that we have adopted CGS units throughout, and that
ν

Brag
ei = [4/(3

√
2π )]νei,th � 0.532νei,th.

The evolution of the electron distribution function
f (x,vx,v⊥,t) is described by the Fokker-Planck equation, i.e.,
the Vlasov equation including collisional effects:

∂f

∂t
+ �v · ∇f − e

me

�E · ∂

∂ �v f = −Cee[f,f ] − Ceif. (2)

The electric field components �E = −∇φ are obtained from
the electrostatic potential φ(x,t), which is itself determined
by Poisson’s equation, ∇2φ = 4πe(

∫
fe d �v − NiZ), where we

have assumed a single immobile ion species with homoge-
neous density Ni and charge Ze, ensuring charge neutrality
over the physical domain.

In Eq. (2), electron-ion pitch angle scattering is described
by the Lorentz operator,

Cei (f ) = −νei,th v3
th e

∂

∂ �v · U · ∂f

∂ �v . (3)

The tensor U is defined as

U(�v) = 1

v

(
I − �v : �v

v2

)
, (4)

where �v is the velocity vector, v is its amplitude, and I is the
identity tensor.

In this work, the nonlinear self-collision Landau operator
Cee[f,f ], bilinear in its two arguments, is linearized with re-
spect to the spatially uniform Maxwellian distribution fM(v) =
Ne exp[−v2/(2v2

th e)]/[(2π )3/2v3
th e]. Note that Cee[fM,fM] = 0

for any Maxwellian distribution. The linearized operator,
denoted Ĉee(f ), is given by

Ĉee(f ) = Cee[fM,f ] + Cee[f,fM],

where Cee[fM,f ] represents collisions of the deviation δf =
f − fM on the Maxwellian background fM, while the second

term Cee[f,fM], the so-called backreaction, represents the
collisions of the Maxwellian background fM on the fraction
δf . The first term can be cast in self-adjoint differential form
operating on f as

Cee[fM,f ] = − ∂

∂ �v ·
[
fM(v) Dee · ∂

∂ �v
(

f (�v)

fM(v)

)]
. (5)

The diffusion tensor Dee is derived analytically for the assumed
Maxwellian background as

Dee = γee

∫
d �v ′fM(�v ′)U(�v − �v ′)

= Ne γee

vth e

[
K(v)

(
1 − �v : �v

v2

)
+ 2H (v)

�v : �v
v2

]
,

with γee = νee,thv
3
th e/(4Ne) and the normalized velocity am-

plitude, v = v/vth e. The functions H (v) and K(v) are related
to the Rosenbluth potentials [17] and given in Ref. [18]. The
contributions to Dee proportional to H (v) and K(v) correspond,
respectively, to thermalization and pitch angle scattering.

The backreaction term, Cee[f,fM], is essential to ensure
conservation of mass, momentum, and kinetic energy, but the
exact (Landau) form is an integral equation that is numerically
cumbersome. Therefore, as in Refs. [19,20], we have used the
following approximate simplified operator:

Cee[f,fM] � −
Cee[fM,�vfM] · ∫

d �v ′ Cee[fM,�v ′fM] f (�v ′)
fM(v ′)

1
V

∫
d �v ′ Cee[fM,�v ′fM] · �v ′

−
Cee[fM,v2fM]

∫
d �v ′ Cee[fM,v ′2fM] f (�v ′)

fM(v ′)∫
d �v ′ Cee[fM,v ′2fM]v ′2 ,

(6)

where V is the dimensionality of velocity space (discussed
in Sec. IV). Note that in Eq. (6), the operator Cee[·,fM] is
fully expressed in terms of the operator Cee[fM,·] given by
Eq. (5). Invoking the symmetry of the operator Cee[fM,·],
one can prove that the linearized operator Ĉee(f ) with the ap-
proximate backreaction term (6) possesses the same symmetry
and conservation properties as the original integral operator.
These properties ensure that linearized shifted Maxwellian
distributions remain exact stationary states of the operator
Ĉee(f ) [18]. By then applying a consistent and accurate
discretization approach, one ensures that these properties are
preserved in the numerical approximation.

III. RESULTS

Consider now the effect of collisions on linear damping of
spatially one-dimensional EPWs propagating in the x direction
with wave number kλDe = 0.3. We present simulation results
obtained with an initial electron distribution set to

f (x,vx,v⊥,t = 0) =
[

1 + δn

Ne

cos(kx)

]
fM (v). (7)

This corresponds to a Maxwellian distribution fM (v) with a
sinusoidal density perturbation along the x direction, which
evolves into a standing EPW. The relative density perturbation
is set to δn/Ne = 1 × 10−4 to ensure that the simulations
remain in the linear regime.
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FIG. 1. (a) The frequency difference, �ω = ωR − ωR,kin, and
(b) the total EPW damping rate, ν, is shown as a function of νei,th/ωpe

for Z = 1,6,16 and kλDe = 0.3. The solid double horizontal line
separates (a) and (b). For higher Z values, the electron-ion scattering
is the dominant source of collisional damping. The linear Landau
damping rate νL for kλDe = 0.3 in a collisionless plasma is shown
in (b) by the horizontal solid red line. The result with pitch-angle
collisions (νei �= 0) but no self-collisions (νee = 0, i.e., Z = ∞) is
also shown. For Z = 1 the damping from a LOKI simulation restricted
to 2V Cartesian velocity coordinates is also shown.

In the linear regime, the decay of the EPW is, as expected,
well fit with an exponential decay. Real frequencies ωR and
damping rates ν of the EPW for kλDe = 0.3 and for a range
of values of νei,th/ωpe, 0 to 5 × 10−1, are summarized in
Fig. 1. Assuming ln(�ee) � ln(�ei), the relation of νee,th to
νei,th is taken to be νee,th � 4 νei,th/Z. Results have been
obtained successively for Z = 1, 6, and 16. Also shown is
the linear Landau damping rate, νL,kin/ωpe = 1.26 × 10−2,
for kλDe = 0.3 in a collisionless plasma. Figure 1(a) shows
that �ω = ωR − ωR,kin decreases as νei,th increases, where
ωR,kin = 1.16ωpe is the linear frequency in a collisionless
plasma (νei,th = 0). Thus the phase velocity decreases with
increasing νei,th, and the linear Landau damping estimated
with the frequency ωR modified by finite collisionality thus
increases with νei,th. However, we find that this effect is not
significant.

In the case of ion acoustic waves, Epperlein et al. [21]
found a reduction in electron Landau damping from pitch-
angle scattering of electrons from ions for kλei = kvth/νei,th <

1 and a reduction in the collisional damping for kλei > 1. The
total electron damping remained greater than the Landau rate
until kλei � 1. This limit requires νei,th/ωpe > kλDe, and thus
it is not accessible to EPWs with significant Landau damping
rates.

Figure 1(b) shows that the EPW damping rate ν increases
significantly once νei,th/ωpe � 0.01. For constant νei,th, ν is
larger for smaller Z, that is, if νee,th � νei,th. On the other
hand, once Z � 6 and νee,th � νei,th, this total damping rate is
mainly dependent on νei,th and kλDe.

Because collisions have a small effect on the linear
Landau damping, the collisional component of the damping

FIG. 2. The total (ν/ωpe) and the collisional component of the
damping rate of EPWs for (a) Z = 1 and (b) Z = 16 for kλDe = 0.3.
The linear Landau damping rate νL,kin for kλDe = 0.3 is displayed as
a horizontal line. The collisional component of the Vlasov simulation
damping rate νcoll = ν − νL,kin for kλDe = 0.3 is shown along with
the hydrodynamic damping rate, νfl

coll (red dashed). Also displayed
in (b) is the total damping rate for kλDe = 0.2, which is essentially
the same as the collisional component for kλDe = 0.3, as the Landau
damping for kλDe = 0.2 is exceedingly small. The numerical solution
to Eqs. (8)–(11) for kλDe = 0.2 (νpf) is shown in (b). It agrees very
well with the corresponding Vlasov simulation result in (b) and with
the Vlasov simulation result for Z = ∞, that is, νee = 0.

rate shown in Fig. 2 can be calculated as ν − νL,kin. The
collisional damping rate, νfl

coll = ν
Brag
ei /2, obtained from the

hydrodynamic description is also shown for comparison. For
Z = 16, as shown in Fig. 2(b), νfl

coll is up to 50% larger than
the simulation result, particularly for larger values of νei,th.
For lower ionization degrees, in particular Z = 1 shown in
Fig. 2(a), νfl

coll agrees well with the kinetic simulations. This
observation is explained by the fact that self-collisions are
relatively important in this latter case, and the distribution
is maintained close to a shifted Maxwellian, which is the
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underlying assumption for the friction force relation in the
Braginskii fluid equations [15].

In the limit in which self-collisions are unimportant (Z →
∞), an alternative approach to obtaining the kinetic frequency
and damping of EPWs is afforded by the partial fraction
technique [9,12,13,21]. The plasma dispersion equation for
EPWs including only electron-ion pitch-angle collisions in
3V, respectively 2V, velocity space is found by a Legendre
polynomial, respectively Fourier series, expansion of the
linearized Vlasov-Fokker-Planck equation with the result [16]

ε(k,ω) = 1 + χe(k,ω) = 0, (8)

χe(k,ω) = 2(V − 1)π
∫ ∞

0
dv vV −1 v2fM (v)

k2v2 − V iων̃1
, (9)

where V = 2 and 3 for two- or three-dimensional velocity
space, respectively. The complex frequency ν̃1 is obtained in
2V and 3V by evaluating, respectively, the recurrence relations
(10) and (11):

ν̃l−1 = −iω + (l − 1)2νei + k2v2

4ν̃l

, l � 2, (10)

ν̃l−1 = −iω + l(l − 1)νei + l2

4l2 − 1

k2v2

ν̃l

, l � 2, (11)

having defined νei(v) = νei,th(vth e/v)3. Solving the dispersion
relation (8)–(11) numerically for V = 3 results in excellent
agreement with the Vlasov simulations with νee = 0 shown
here. For V = 2, prior LOKI simulations that only included
pitch-angle collisions also showed good agreement with the
numerical solution of Eqs. (8), (9), and (10) [16].

The reduction of the damping with respect to the fluid
result, νfl

coll, is most evident by examining the integrand in
Eq. (9), which, together with Eq. (8), is the plasma dispersion
function when νee = 0, that is, when Z → ∞. In Appendix B1
of Ref. [16], the solution of the dispersion relation, Eqs. (8)
and (9), is discussed for the case in which Landau damping
is negligible. There it is shown that reduction is caused by
the strong velocity dependence of the collision frequency,
νei(v) ∝ νei,thv

−3. As νei,th increases, the imaginary part of
the electron susceptibility is increasingly weighted by higher
velocities and thus a lower effective collision frequency. In the
limit in which Z → 1, that is, νee,th � νei,th, the perturbation
is constrained to be a shifted Maxwellian such that the
hydrodynamic treatment is valid and the effective collision
frequency is νei,th.

We have extended our simulations to other values of kλDe,
in particular to kλDe < 0.2, smaller values more pertinent to
TPD and forward SRS for which Landau damping is nearly
insignificant. The EPW damping from the 1D+3V Vlasov
simulations for kλDe = 0.2, shown in Fig. 2(b), is a little larger
than the collisional component of the damping for kλDe = 0.3,
reflecting a weak dependence of νcoll on kλDe as well. Also
in Fig. 2(b), the partial fraction solution for ν (“pf” in the
figure) is in excellent accord with the simulation results for
kλDe = 0.2.

For Z � 1, νcoll decreases with k2. With the onset of
Landau damping (i.e., kλDe ∼ 0.25 for νei,th/ωpe = 0.01 and
kλDe ∼ 0.2 for νei,th/ωpe = 0.001), the calculation of νcoll

FIG. 3. The collisional component of the damping normalized to
the fluid rate νfl

coll as a function of kλDe. For Z = 16, the collisional
damping rate decreases with k2λ2

De for νei,th/ωpe = 0.01 and 0.001.
For Z = 1, the collisional damping rate is apparently independent of
kλDe for νei,th/ωpe = 0.01 and 0.001. The Z = 16 damping rate is
well approximated by the Z = ∞ (νee = 0) results shown by the blue
and red lines for νei,th/ωpe = 0.001 and 0.01, respectively.

is inaccurate (involving the subtraction of two nearly equal
numbers). However, the decrease with k2 likely continues such
that for kλDe = 0.5, the collisional component of the damping
would be ∼0.5νfl

coll in the case in which νei,th/ωpe = 0.001. For
Z = 1, no variation of νcoll with k2 was found for kλDe < 0.25.
These results are summarized in Fig. 3. Note that the Z = 16
collisional damping rate is well approximated by the Z = ∞
rate for which electron-electron self-collisions play no role.
Shown by the blue and red lines for νei,th/ωpe = 0.001 and
0.01 are the fits to the Z = ∞ collisional damping rates given
by νcoll/ν

fl
coll = 0.98 − 1.8(kλDe)2 and 0.96 − 2.1(kλDe)2, re-

spectively.
The approach to the high-Z limit of collisional damping is

quite rapid, as shown in Fig. 4 for three values of the collision
rate, νei,th/ωpe = 0.1, 0.01, 0.001, and two values of kλDe =
0.2 and 0.3. As Z → 1, the collisional damping rate νcoll →
ν

Brag
ei /2. However, if Z > 6, νcoll is only 70% of νfl

coll for strong
collision rates but increases to 90% for weak collision rates.
For weaker collision rates (νei,th/ωpe < 0.01), the collisional
damping rate relative to νfl

coll ceases to change significantly for
a given Z and kλDe.

IV. DISCUSSION

We used a nonlinear 1D+3V Vlasov-Fokker-Planck code
to obtain the Landau and collisional damping of EPWs, and we
showed that the collisional component of the damping relative
to the collision rate νei,th is dependent on the relative strength
of electron-ion pitch-angle scattering to thermalization from
electron-electron collisions, i.e., the charge state Z, the wave
number kλDe, and the ratio of the collision rate to the plasma
frequency, νei,th/ωpe.

For ICF, one practical impact of the reduced collisional
damping of EPWs is on the threshold laser intensity, IL,
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FIG. 4. The collisional component of the damping normalized to
the fluid rate νfl

coll as a function of Z. For Z > 10 and kλDe = 0.3, the
collisional damping rate is νcoll∼0.7νfl

coll and νcoll∼0.8νfl
coll for νei,th =

0.1 and 0.01, respectively. For Z > 10 and kλDe = 0.2, the collisional
damping rate is νcoll∼0.8νfl

coll for νei,th = 0.1 and νcoll ∼ 0.9νfl
coll for

νei,th � 0.01.

for the onset of TPD in direct-drive designs for MegaJoule
scale laser facilities, such as NIF [22]. The estimated plasma
scale lengths are so large that the TPD threshold is set
by the collisional damping, γ TPD

0 ∝ √
IL > νcoll/2, if Z is

large enough, e.g., Z � 14 [4]. For the parameters given
in Ref. [4], kλDe < 0.3, the collisional rates are very small
(νei,th/ωpe � 10−3), and we estimate νcoll ∼ 0.9 νfl

coll or a
20% reduction in the threshold laser intensity for TPD. The
Langmuir decay instability is considered a saturation process
for TPD as it has a low threshold if the daughter Langmuir
wave is weakly Landau-damped [23,24]. The threshold EPW
wave amplitude, (δn/n)LDI ∝ √

νIAWνEPW, is determined by
Landau damping of the ion acoustic wave, νIAW, and collisional
damping of the EPW, νEPW. The wave-number dependence of

the collisional damping of EPWs presented here may have
an influence on the spectrum of waves nonlinearly driven.
Much stronger collisional effects with νei,th/ωpe ∼ 0.1 occur
in low-temperature plasmas where Te ∼ 2 eV and Ne ∼
1017cm−3 [25].

Our results here address linear (small-amplitude) waves;
the nonlinear evolution of an EPW including collisional
detrapping will be addressed in future work. In such nonlinear
simulations, the rate of detrapping depends on the scattering
process, i.e., pitch-angle, drag, or parallel diffusion. Note that
in the case of IAWs, the collisional detrapping rates of ions
and electrons scale differently from the detrapping rate of
electrons in an EPW [26]. For both EPWs and IAWs, large-
amplitude waves nonlinearly heat the plasma by collisional and
collisionless processes anisotropically. Thus, it is essential to
implement a collision operator, as we have, that is not limited
to a Lorentzian pitch angle [16] nor to a one-dimensional
approximation [27] to a Landau collision operator.

Plasma waves driven in laser speckles or by intrinsically
2D parametric instabilities such as TPD or SRS sidescatter
require at least two Cartesian spatial dimensions and, to include
collisions, a choice of reduced 2V Cartesian (vx,vy) or full
3V (vx,vy,vz). An Eulerian representation in six-dimensional
[or even five-dimensional (2D+3V)] phase space remains
computationally prohibitive. Using LOKI [28,29], a 2D+2V
Vlasov-Fokker-Planck code in Cartesian geometry, similar
results have been obtained to those obtained here in 3V; only
the numerical coefficients are different (see Fig. 1).
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