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We present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are
described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the
Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic
form factor, S(�k,ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic,
Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire
range of plasma collisionality. The collisionless limit of S(�k,ω) and the strong-collision result based on the
fluctuation-dissipation theorem and classical transport at Te = Ti are recovered and discussed. Results of several
Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means
of our theory for S(�k,ω).
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I. INTRODUCTION

The theory of fluctuations produced by particle discreteness
in stable plasmas plays an important role in the statistical
description of plasmas [1,2]. These fluctuations are responsible
for particle diffusion and transport. Thomson scattering (TS)
of electromagnetic radiation from electron-density fluctuations
has proven to be a powerful diagnostic in determining plasma
parameters and basic plasma processes. Because of the
progress that has been achieved in TS experiments in recent
years [3,4], the theory of fluctuations remains an active field
of research. This article will be concerned with the theory
of fluctuations and is motivated by the TS measurements in
weakly coupled collisional nonequilibrium plasmas at differ-
ent electron and ion temperatures, Te �= Ti . Frequent particle
collisions and unequal temperatures characterize dense laser-
produced plasmas and high-energy density systems. With the
motivation of explaining ionospheric experiments the general
form of the Thomson scattered spectrum of a collisionless
plasma were determined independently in 1960 by Feyer
[5], Renau [6], Daugherty and Farley [7], and Salpeter [8].
These fluctuations caused by particle discreteness have been
described by the linearized Vlasov equation, and therefore
these theories do not include effects of particle collisions
but they work for nonequilibrium plasmas, for example, with
Te �= Ti . Vlasov theory for the dynamical correlation function
of density fluctuations will be recovered from our result in the
limit of vanishing collisions and for Maxwellian electron and
ion particle distribution functions.

The dynamical evolution of the correlation functions of
fluctuations is described by the linearized kinetic equations
for the one particle distribution function with initial con-
ditions corresponding to static correlations [9,10]. Equiva-
lently, following Onsager’s hypothesis [11], fluctuations of
dynamical quantities evolve in accordance with the same
model equations as those governing macroscopic processes.
Thus, the fluctuations on a hydrodynamical scale in thermal
equilibrium relax due to collisions according to the equations
of linearized hydrodynamics [12,13]. In plasmas the relevant

hydrodynamical theories are transport models of Spitzer-
Härm [14] and Braginskii [15], which are used to derive
collision-dominated fluctuation spectrum. This result will
be recovered from our theory in the opposite to Vlasov,
strongly collisional limit. The macroscopic model in our
theory is the system of linearized equations of nonlocal and
nonstationary hydrodynamics that works everywhere from
the collisionless Vlasov limit to the strongly collisional limit
of hydrodynamical fluctuations. These equations have been
derived in the process of finding rigorous solutions to the
linearized Vlasov-Landau kinetic equation in the entire regime
of plasma collisionality for all frequencies and wave numbers
[16–18]. These results are used here in derivation of the
correlation functions of density fluctuations. The nonlocal
hydrodynamics is formulated in the Fourier space and it is
well suited for the problem of finding spectral densities of
the correlation functions of fluctuations. In particular, we are
interested in finding the electron density correlation function,
which is used in the calculation of the TS cross-section.

The nonlocal hydrodynamics has been introduced in our
paper because it describes evolution of the fluctuations, and it
is used in finding solution to the linearized Vlasov-Landau
kinetic equation. One can derive linear plasma response
using nonlocal hydrodynamic equations and plasma dispersion
function in terms of the nonlocal and nonstationary transport
coefficients [17,18]. This method of the solution of the kinetic
equation follows the pioneering work by A.R. Bell [19]. He
introduced nonlocal thermal conductivity for the first time
by considering small amplitude perturbations associated with
linear ion acoustic waves. Subsequently, the full set of linear
electrostatic modes [17,18,20], including the entropy mode,
and the complete linear plasma response in the entire regime
of particle collisions have been found. Dispersion and damping
of electrostatic modes describe long-time plasma evolution and
define resonances of the dynamical form factor discussed in
our paper.

We proceed with the solution of the linearized kinetic
equations for the one-particle distribution functions. This
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has been done several times before for the two-component,
electron-ion plasmas [21,22] and for the electron transport
problem [16,17]. The first moment of the perturbed electron
distribution function will be identified with the fluctuation of
electron density and used to calculate the density correlation
function.

In this study, TS experiments provide the motivation for our
work. They have enabled advancements in the understanding
of dense plasmas: from the atomic physics of high Z plasmas
[23], through nonlocal thermal transport [24] to studies of
enhanced fluctuations and plasma turbulence [25,26]. TS is
routinely used as a primary diagnostic of plasma parameters
such as electron and ion temperatures, particle density and
flow velocities [27,28]. And, in recent years, applications of
short wavelength laser probes in the x-ray and VUV regimes
have made possible for the first time TS experiments in solid
density plasmas and shock compressed materials [4].

The wide range of plasma parameters that have been
investigated in TS measurements underscores the need for
the general expression for the dynamical form factor, S(�k,ω),
such as derived in our paper, to properly account for all k

values and frequencies. The utility of Thomson scattering is
greatly enhanced when it is used in conjunction with good
theoretical models of the dynamical form factor. This paper
contains the theory of the dynamical form factor that is valid
for all frequencies and k vectors that span the broad regime
of parameters from the strongly collisional to the collisionless
limits in weakly coupled nonequilibrium plasmas.

The paper is organized as follows: Sec. II summarizes the
main steps from the theory of nonlocal and nonstationary
hydrodynamics, including initial conditions and source terms,
transport relations, and plasma linear dielectric response. The
derivation of the dynamical form factor is presented in Sec. III,
first for the equilibrium plasma, where Te = Ti , and next for
plasmas away from equilibrium, with Te �= Ti . The accuracy
of this derivation is tested by recovering the correct limiting
expression of S(�k,ω) for collisionless plasmas. Applications
of our results to different TS experiments are discussed in
Sec. IV. These include the strong-collision regime, and low
frequency and high frequency limits. Section V discusses the
implications of this work and gives a summary of our results.

II. SOLUTION OF THE KINETIC EQUATION

The starting point of our theory of fluctuations is the
linearized Vlasov-Landau, or Vlasov-Fokker-Planck, kinetic
equation. The stationary background state of the plasma is
described by uniform and isotropic Maxwellian distribution
functions with different temperatures for electrons and ions.
We assume that during the time of correlation evolution the
background temperatures remain constant.

A. Linearized Fokker-Planck kinetic equations

The general form of the kinetic equation for the one-particle
distribution functions, Fa(�r,�v,t) (a = e,i), in unmagnetized
two-component plasmas reads

∂Fa

∂t
+ �v · �∇Fa + ea

�E(�r,t)
ma

· ∂Fa

∂ �v =
∑
r=a,b

Car (Fa,Fr ), (1)

where �E is the self-consistent electrostatic field calcu-
lated from Maxwell equations using particle distribution
functions. We consider small perturbations of the elec-
tron and ion distribution functions. The background plasma
state is described by the homogeneous Maxwellians, Fa

M =
na(ma/2πTa)3/2 exp(−mav

2/2Ta) (a = e, i), including den-
sities na (Zni = ne) and temperatures Ta . We will neglect
collisional energy equilibration of the background tempera-
tures and keep Te and Ti constant, Te �= Ti . This assumption
and several approximations below in the collisional operators
take advantage of the large mass ratio, mi/me � 1. The
electron and ion distribution functions are represented in
terms of background Maxwellians and small perturbations fa ,
Fa = Fa

M + fa(�r,�v,t). The Fourier transformed perturbations
of the distribution functions fa(v,μ,t) = ∑∞

0 f a
l (v,t)Pl(μ)

(we dropped the subscripts �k indicating Fourier transformed
quantities to lighten the notation) are expanded in a series
of Legendre polynomials Pl(μ), where μ is the cosine of
the angle between velocity �v and wave vector �k. With these
expansions, the kinetic Eq. (1) with Landau collisional terms
are decomposed into two infinite coupled sets of equations
for the harmonics f a

l (v,t) of the electron and ion distribution
functions:

∂f a
l

∂t
+ ikv

l

2l − 1
f a

l−1 + ikv
l + 1

2l + 3
f a

l+1

= Cl
aa + Cl

ab + (eaE/Ta)vF a
Mδl1. (2)

The collision operators, Cl
ab, are defined by the Rosenbluth

potentials. Because of the small mass ratio me/mi � 1
collisions between electrons and ions can be described in a
simplified form [15,17,29,30],

Cl
ei = − l(l + 1)

2
νeif

e
l + δl1νei

v

v2
T e

F e
Mui,

Cl
ie = δl1

(
v

vT i

F i
M

Rie

nimivT i

+ νT
ei

mene

mini

C
(1)
ie

)
,

C
(1)
ie = 1

v2

∂

∂v
v3f i

l + Te

miv2

(
∂

∂v
v2 ∂

∂v
− l2 − l

)
f i

l , (3)

where δgh is the Kronecker δ function, νab(v) =
4πnb(eaeb)2�ab/m2

av
3 is the velocity-dependent parti-

cle collision frequencies, �ab is the Coulomb loga-
rithm, ua = 4π

∫
dvv3f a

1 /3na is the mean particle veloc-
ity, vT a = √

Ta/ma is the particle thermal velocity, νT
ei =

νei(vT e)
√

2/π/3, and Rie = 4πme

∫
dvv3νei(v)f e

1 /3 is the
friction force. The term C

(1)
ie in the expression for Cl

ie in
Eq. (3) is small and can be neglected for the calculation
of an ion distribution function. At the same time, C

(1)
ie is

important to ensure ion momentum conservation. For like
particle collisions, Cl

aa , we use the general form of the
collisional operator [22,29,30].

B. Source terms and initial conditions

The handling of source terms in solutions to kinetic Eq. (2)
is an important part of the analysis of particle transport in
plasmas with arbitrary collisionality [16]. Although transport
occurs in response to local gradients in the fluid variables,
the generation of such inhomogeneities requires the input of
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particles or heat into the system. In the strong-collision limit,
source terms do not play an important role in the analysis, but
when considering arbitrary collision rates, and in particular
for the collisionless plasma, they must be treated explicitly as
driving terms in the kinetic equations. It was assumed in the
derivation of nonlocal transport equations [16] that the sources
vanish after some time, t = 0, and the nonlocal hydrodynamics
properly describe plasma response as the solution to the initial
value problem. More importantly, the particular choice of the
initial conditions is based on the linearized local Maxwellian
distribution functions,

fa(�k,v,t = 0)

=
[
δna(�k,0)

na

+ δTa(�k,0)

Ta

(
v2

2v2
T a

− 3

2

)]
Fa

M (v). (4)

This form of fa(t = 0) enables closure of the hydrodynamic
equations by introducing initial perturbations, or sources, in
terms of hydrodynamic variables: namely the particle densities
δna(0) and temperatures δTa(0). These initial perturbations
are subsequently expressed in terms of perturbations of
hydrodynamic variables and fields at later times in the nonlocal
transport theory of Refs [16,22,30]. Clearly, the distribution
function need not to be Maxwellian Eq. (4) in regime close
to t = 0 when collisional effects are very weak. On the
other hand, it is not clear whether a transport theory can
be constructed at all for the fully non-Maxwellian case and
whether it would have any advantages compared to a kinetic
description.

The role of initial perturbations in the theory of fluctuations,
which are studied here is equally important but conceptually
much simpler. We are concerned with the state of the
plasma, which is well approximated by the local Maxwellian
distribution function due to the long-time collisional evolution.
Different temperatures of electrons and ions are the only
signatures of non-equilibrium effects in the background state
of the plasma. Temperatures of the both species are treated as
constants because the energy equilibration in the background
state is assumed to take place on the time scale much
longer than the evolution of fluctuations. However, to describe
the evolution of a dynamic form factor we still need to
consider the entire range of particle collisionality because
the plasma response depends on the product kλab, i.e., the
ratio between wavelength of fluctuations 2π/k and the particle
collision mean free path λab. As it was the case for nonlocal
hydrodynamics [16,22,30], the sources of fluctuations are
introduced through the initial conditions Eq. (4) by performing
Laplace transformation of Eq. (2),

L̂f a
l − Cl

aa − Cl
ab = Sa

l ,

L̂f a
l ≡ −iωf a

l + ikv
l

2l − 1
f a

l−1 + ikv
l + 1

2l + 3
f a

l+1 , (5)

where Sa
0 = fa(t = 0) [Eq. (4)] and Sa

1 = (eaE/Ta)vF a
M . The

higher-order terms Sa
l (l � 2) vanish. We continue with the

simplified notation using f a
l for f a

l (k,v,ω).

C. Solutions for the basis functions

We will seek solutions to Eqs. (5) as the linear superpo-
sition of different basis functions ψbA

l (v) (A = N,T ,R) and

(b = e,i),

f e
l =

(
i
eE

kTe

δl0 +
(

δne(0)

ne

− ω
eE

kTe

)
ψeN

l

+ 3

2

δT (0)

Te

ψeT
l − ikuiψ

eR
l

)
f e

M, (6)

and

f i
l =

{
i
ZeniE+Rie

kniTi

δl0+
(

δni(0)

ni

+ ω
ZeniE + Rie

kniTi

)
ψiN

l

+ 3

2

δTi(0)

Ti

ψiT
l

}
f i

M, (7)

where ψbA
l (v) describe electron and ion response to the initial

fluctuations of particle densities, temperatures, electric field
E, ion average velocity ui and the friction force Rie.

Using relations Eqs. (6) and (7), we can obtain the system
of equations for the basis functions ψbA

l (v) from Eq. (5) with
different source terms on the right-hand side,

L̂ψbA
l + δbe

l(l + 1)

2
νeiψ

bA
l − 1

Fb
M

Cl
bb

[
Fb

MψbA
l

] = SbA
l ,

(8)

where δij are Kronecker δ functions, S
bN,bT
l = δl0S

bN,bT ,
SeR

l = 3δl1S
R , and SbN = 1, SbT = v2/3v2

T b − 1, SR =
ivνei/3kv2

T e.
To make further progress we will use a simplified form

of Cl
aa for l � 1 in Eq. (8) to close this infinite system of

equations. Because of this simplification, starting from the
order l = lmax, all the equations for the harmonics of the basis
functions take on the following simple form (l > lmax):

2L̂ψbA
l = −l(l + 1)ν∗

bψbA
l , (9)

where ν∗
a = νeiδae + νaa(I a

0 + 2J a
−1/3 − I a

2 /3), and the
two integrals I a

m = 4π/(nav
m)

∫ v

0 dvvm+2Fa
M and J a

m =
4π/(nav

m)
∫ ∞
v

dvvm+2Fa
M have been introduced before, cf.,

e.g., Ref. [29], p. 276, when evaluating Rosenbluth potentials.
The infinite system of Eq. (9) has been solved following
the summation procedure [17,31], where one evaluates the
renormalized effective collision frequencies νa

l from the
following recurrence formula:

νa
l = −iω + 1

2
l(l + 1)ν∗

a + (l + 1)2

4(l + 1)2 − 1

k2v2

νa
l+1

. (10)

Equation (10) can also be represented in terms of continuous
fractions. In practice, finding νa

lmax
with high accuracy requires

no more than 20–30 iterations. After that, it is sufficient
to solve a finite number of Eq. (8) to find basis functions
ψbA

l for l � lmax given that ψbA
lmax+1 = i[(lmax + 1)/(2lmax +

3)](kv/νb
lmax+1)ψbA

lmax
. We solve this system of equations, ex-

panding the basis functions ψbA
l in Sonine-Laguerre poly-

nomials: ψbA
2l = λbi

vT b

∑∞
n=0 cbA

2l,nL
1/2
n ( v2

2v2
T b

) and ψbA
2l+1 = λbiv

v2
T b∑∞

n=0 cbA
2l+1,nL

1/2
n ( v2

2v2
T b

), where λei = 3
√

π/2vT e/νei(vT e) =
vT e/ν

T
ei and λaa = 3

√
πvT a/νaa(vT a) = vT a/ν

T
aa are the e-i

and i-i (e-e) mean free paths. Substitution of this expansion
into Eq. (8) gives a system of linear algebraic equations for the
coefficients cbA

ln . This system was solved with the Mathematica
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software package. The calculations were performed for lmax =
8 resulting in an error related to the closure procedure that
does not exceed 1–2%.

Now, to exclude initial perturbation from Eqs. (6)
and (7), we take the first moments of the ki-
netic equation to calculate δna = 4π

∫ ∞
0 f a

0 v2dv, δTa =
(4πma/3na)

∫ ∞
0 dvv2(v2 − 3v2

T a)f a
0 (a = e,i) and ui :

δne

ne

= i
eE

kTe

+
(

δne(0)

ne

− ω
eE

kTe

)
J eN

N

+ 3

2

δTe(0)

Te

J eT
N − ikuiJ

eR
N ,

δTe

Te

=
(

δne(0)

ne

− ω
eE

kTe

)
J eN

T + 3

2

δTe(0)

Te

J eT
T − ikuiJ

eR
T ,

(11)

ikui =
(

δni(0)

ni

+ ω
ZeniE + Rie

kniTi

)(
1 + iωJ iN

N

)

+ 3

2

δTi(0)

Ti

iωJ iN
T ,

δTi

Ti

=
(

δni(0)

ni

+ ω
ZeniE + Rie

kniTi

)
J iT

N + 3

2

δTi(0)

Ti

J iT
T ,

(12)

where

J bA
B = 4π

nb

∫ ∞

0
v2dvψbA

0 f b
MSbB, (B = N,T ),

J eA
R = 4π

ne

∫ ∞

0
v2dvψeA

1 f e
MSR. (13)

Finally, one can derive f a
0 using hydrodynamic moments:

f e
l = i

eE

kTe

f e
M +

(
δne

ne

− i
eE

kTe

)
J eT

T ψeN
l − J eN

T ψeT
l

DeNT
NT

f e
M

+ δTe

Te

J eN
N ψeT

l − J eT
N ψeN

l

DeNT
NT

f e
M (14)

− ikui

(
ψeR

l − DeRT
NT

DeNT
NT

ψeN
l − DeNR

NT

DeNT
NT

ψeT
l

)
f e

M,

f i
l = i

ZeniE + Rie

kniTi

f i
Mδl0 + ikui

J iT
T ψiN

l − J iN
T ψiT

l

J iT
T + iωDiNT

NT

f i
M

+ δTi

Ti

(
1 + iωJ iN

N

)
ψiT

l − iωJ iT
N ψiN

l

J iT
T + iωDiNT

NT

f i
M, (15)

where DbCD
AB = J bC

A J bD
B − J bD

A J bC
B . We have described above

a procedure that allows on reducing kinetic equations to the
system of hydrodynamic equations for the first few moments
of the distribution functions. This will be further discussed in
the next section.

D. Nonlocal and nonstationary hydrodynamics

The first three moments of the kinetic equation give
the equations of continuity, motion, and energy balance for
electrons (a = e) and ions (a = i). After taking their Fourier
transform, linearizing the fluid equations and keeping only

components of perturbed vector and tensor quantities along the
k vector, we find the following set of hydrodynamic equations
in the electrostatic approximation:

∂δna

∂t
+ naikua = 0,

∂ua

∂t
= ea

ma

Ea
∗ − 1

mana

ik
a
‖ + 1

mana

Rab, (16)

∂δTa

∂t
+ 2

3na

ikqa + 2

3
Taikua = 0,

where the friction force satisfies Rei = −Rie, and Rie =
Rie − meneν

T
eiui , E∗

a = E − ik(δnaTa + naδTa)/(eana) is the
effective electric field, and


a
‖ = 8πma

15

∫
dvv4f a

2 , qa = 2πTa

3

∫
dvv3

(
v2

v2
T a

− 5

)
f a

1

(17)

are the longitudinal components of the stress tensor, 
a
‖ , and

the particle thermal flux, qa . The following transport relations
for electron fluxes were obtained before in Refs. [16,32]:

qe = −αTe

σ
j − κeikδTe − neTeβui,

E∗
e = j

σ
− α

σ
ikδTe − βj

σ
eneui,

Rie = − (1 − βj )

σ
enj +

(
β + eα

σ

)
ikneδTe

+
(

e2neβj (1 − βj )

σ
− meβrν

T
ei

)
neui, (18)

where j = ∑
a eanaua and the transport coefficients: σ , the

electrical conductivity; κe, the electron thermal conductivity;
α, the thermocurrent coefficient; and different convection
transport coefficients, β, βj , βr , were introduced before in
Refs. [16,32]. They can be expressed in terms of functions
J bA

B , J eA
R [Eq. (13)] in the following form:

σ = e2ne

k2Te

(
J eT

T

DeNT
NT

+ iω

)
,

α = − ene

k2Te

(
J eN

T + J eT
T

DeNT
NT

+ iω

)
,

βj = 1 − DeRT
NT

DeNT
NT

, β = 1 + J eN
T − J eR

T + iωDeRN
NT

J eT
T + iωDeNT

NT

,

βr = 1 + k2v2
T e

νT
ei

(
J eR

R + J eR
T DeRN

NT − J eR
N DeRT

NT

DeNT
NT

)
,

κa = na

k2

(
1 + iωJ aN

N

J aT
T + iωDaNT

NT

+ 3

2
iω

)
, (19)

where the thermal transport coefficient, κa , is defined for both,
electrons, a = e, and ions, a = i. The transport relations for
ion fluxes read [21,22]

qi = −κiikδTi − βiniTiui, 
‖ = −4/3ikηiui − βiniδTi,

(20)
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where βi and the shear viscosity coefficient ηi are given by the
following expressions,

ηi = 3niTi

4

(
DiNT

NT

J iT
T + iωDiNT

NT

+ iω

k2v2
T i

)
,

βi = 1 + J iT
T

J iT
T + iωDiNT

NT

. (21)

The transport relations Eqs. (18) and (20) together with
nonlocal and nonstationary transport coefficients Eqs. (19)
and (21) derived in Refs. [16,21,22,32] provide closure for the
fluid Eqs. (16), which are now fully equivalent to the kinetic
description in terms of the linearized kinetic Eqs. (2) and (3).

E. Dielectric response

The transport coefficients in Eqs. (18) and (20) and linear
response functions below are expressed in terms of time-
Fourier transformed quantities. To lighten notation we will
simply use the same symbols for functions of frequency as for
time dependent quantities. After taking the temporal Fourier
transforms of hydrodynamic Eqs. (16), we have eliminated
electron temperature perturbation, δTe, and electron density
perturbation, δne, from expressions for friction force and
electric current:

j = �e

(
− ie2ne

k2Te

ωE + eneui�1

)
,

Rie = −eneE + ik2Te

eω
(j�1 − eneui�2), (22)

where

�e =
[

1 − iω

(
e2ne

k2Teσ
+ 2ne(σ + eα)2

σ 2(2k2κ − 3iωne)

)]−1

≡ 1 + iωJ eN
N , (23)

�1 =
[

1 − iω

(
e2neβj

k2Teσ
+ 2ne(σ + eα)(1 − β)

σ (2k2κ − 3iωne)

)]
,

�2 =
[

1 − iω

(
e2neβ

2
j

k2Teσ
+ 2ne(1 − β)2

2k2κ − 3iωne

+ νT
eiβr

k2v2
T e

)]
.

(24)

Similarly, we have eliminated ion temperature perturbation,
δTi , and ion density perturbation δni , from Eq. (16) to obtain,

Rie + ZeniE = ik2niTiui

ω�i

, (25)

where the contribution of the ion transport coefficient is defined
by

�i =
[

1 − ω2

k2v2
T i

− iω

(
4

3

ηi

niTi

+ 2ni(1 − βi)2

2k2κi − 3niiω

)]−1

≡ 1 + iωJ iN
N , (26)

Combining Eqs. (25) and (22), we can express the average
ion and electron flow velocities in terms of the electrostatic

field:

ikue = −k2λ2
Deχe

eEω

kTe

, ikui = k2λ2
Deχi

eEω

kTe

. (27)

We have introduced in Eq. (27) electron, χe(k,ω), and ion,
χi(k,ω), susceptibility functions,

χe = �e

k2λ2
De

+ �i

k2λ2
Di

�1�e(�1�e − 1)

1 − g�i

(
�2

1�e − �2
) ≡ 1 + iωJ eN

N

k2λ2
De

+ 1 + iωJ iN
N

k2λ2
Di

(
1 + iωJ eR

N

)
iωJ eR

N

1 − igω
(
1 + iωJ iN

N

)
J̃ R

R

,

χi = �i

k2λ2
Di

�1�e

1 − g�i

(
�2

1�e − �2
)

≡ 1 + iωJ iN
N

k2λ2
Di

(
1 + iωJ eR

N

)
1 − igω

(
1 + iωJ iN

N

)
J̃ R

R

, (28)

where g = ZTe/Ti , J̃ R
R = J eR

R + νT
ei/k2v2

T e, and λDa =
(4πe2

ana/Ta)1/2 (a = e,i) are the Debye lengths. By utilizing
the Maxwell equation −iωE + 4πj = 0, one can define the
plasma dielectric function ε(k,ω) = 1 + i4πj/(ωE) = 1 +
χe + χi in the following form:

ε = 1 + �e

k2λ2
De

+ �i

k2λ2
Di

�2
1�

2
e

1 − g�i

(
�2

1�e − �2
) , (29)

ε = 1 + 1 + iωJ eN
N

k2λ2
De

+ 1 + iωJ iN
N

k2λ2
Di

(
1 + iωJ eR

N

)2

1 − igω
(
1 + iωJ iN

N

)
J̃ R

R

.

(30)

Equations (29) and (30) have been recently studied in detail
in Ref. [18], wherein solutions for the electrostatic modes,
Langmuir and ion-acoustic waves, and also for the entropy
mode have been obtained for the entire range of plasma col-
lisionality. These results are important for the understanding
of the dynamic form factor and the Thomson scattering cross
section.

Before calculating the dynamic form factor we will examine
the limiting behavior of ε(k,ω), in particular, the form of
the dielectric function in the absence of collisions. From the
solution of the kinetic equations for the basis functions we
have J eR

N = 0, J̃ R
R = 0 and J iN

N = iJ+(ω/kvT i)/ω, J eN
N =

iJ+(ω/kvT e)/ω, where the plasma dispersion function reads

W (z) = 1√
2π

∫
dv

v

v − z
exp(−v2/2) = 1 − ωJ+(z),

z = ω/kvT a. (31)

Taking the collisionless limit of Eq. (29) and using
the above relations one recovers the well-known ex-
pression for the plasma dispersion function, ε = 1 +∑

a=e,i W (ω/kvT a)/k2λ2
Da . In the strong collisional limit of

kλai → 0, Eq. (29) assumes a form that is consistent with
the results of classical collision-dominated hydrodynamics
[15,29].

III. DENSITY FLUCTUATIONS

This section is concerned with the linear plasma response
to the initial density fluctuations, which represent external
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perturbation applied to the plasma. We will derive expressions
for the electron density of fluctuations δne and the density-
density correlation function Gab( �ρ,τ ) = 〈δna(�r,t)δnb(�r ′,t ′)〉,
where �ρ = �r − �r ′ and τ = t − t ′. Of particular interest will
be dynamic form factor S(k,ω) related to the Fourier-Fourier
transform of the electron density correlation function:

S(k,ω) =
〈
δn2

e

〉
k,ω

ne

= 1

ne

∫
d3ρ

∫
dτeiωτ−i�k· �ρGee( �ρ,τ ).

(32)

A. Fluctuations in equilibrium plasma

Consider first electron density fluctuations in a complete
equilibrium state of a plasma, where T = Te = Ti. In this
case, the density fluctuations can be calculated as a full system
response to the initial perturbations. On the other hand, in the
case of a nonequilibrium plasma with different temperatures of
electrons and ions, which is discussed in the next subsection,
will require separate treatment of each species in addition to
calculations of the self-consistent field from the full system
response. The initial perturbations of the plasma electron
density are introduced by taking the Laplace transformation of
the transport Eqs. (16). In particular,

∫ ∞

0
dteiωt ∂δne

∂t
= −iωδñe(k,ω) − δne(0), (33)

where δñe indicates the Lapalce transformed electron density
perturbation, δñe(k,ω) = ∫ +∞

0 dteiωt δne(k,t) and δne(0) ≡
δne(k,0) is the initial perturbation. It is helpful to distinguish
between Laplace transformed perturbations and the Fourier
transformed quantities that were used before. Using the
Laplace transformed Eqs. (16) one can eliminate temperature
perturbations from the expressions for the friction force and
the electric current:

j̃ = �e

[
− ie2ne

k2T
ωẼ + eneũi�1 + ie

k
δne(0)

]
,

R̃ie = −eneẼ + ik2T

eω

[
j̃�1 − eneũi�2 − ie

k
δne(0)

]
.

(34)

Combining Eqs. (25) and (34), we can express the average ion
flow velocity in terms of the electrostatic field and the initial
density perturbations,

ikũi = k2λ2
De

{
χi

eẼω

kT
− δne(0)

ne

χC

}
, (35)

where we have introduced a term, χC , that is proportional to
the electron-ion collision frequency. Here, e-i collisions are
responsible for coupling of electrons to ion evolution through
friction force and ion velocity terms in Eqs. (16),

χC = �i

k2λ2
Di

�1�e − 1

1 − g�i

(
�2

1�e − �2
)

≡ 1 + iωJ iN
N

k2λ2
Di

iωJ eR
N

1 − igω
(
1 + iωJ iN

N

)
J̃ R

R

. (36)

Next, we can eliminate the electrostatic field Ẽ by means of
the Maxwell equation −iωẼ + 4πj̃ = 0,

Ẽ = kT

eωε(k,ω)

δne(0)

ne

χe(ω,k), (37)

where we used the following relations:

ε = 1 + �e

k2λ2
D

+ χi�1�e,

χe = �e

k2λ2
D

+ χC�1�e, (38)

which follow from Eqs. (28), (29), and (36). Finally, we
substitute the expressions for j̃ [Eq. (34)], ũi [Eq. (35)], and Ẽ

[Eq. (37)] into the first equation of the system Eq. (16) for δñe

and write the Fourier-Laplace transformed electron density
fluctuation in terms of initial values δne(k,0),

δñe(ω,k) = i

ω

{
1 − k2λ2

De

χe(1 + χi)

ε
+ k2λ2

DeχC

}
δne(0).

(39)

The relation Eq. (39) for δñe(ω,k) has been derived from
the solutions to the kinetic equation in terms of Laplace
transformed quantities, which evolve in response to the initial
perturbation, δna(k,0). Using these quantities we have to
define the pair correlation function in the Fourier space
〈δnaδnb〉k,ω as follows:

〈δnaδnb〉k,ω = Re[〈δña(k,ω)δnb(−k,0)〉
+ 〈δñb(k,ω)δna(−k,0)〉]. (40)

For the initial density correlation function, we will as-
sume a simple equilibrium plasma result consistent with
the weakly coupled limit, Gab(k,0) = 〈δna(k,0)δnb(−k,0)〉 =
nbδab. This leads to the following expression for the Fourier-
Fourier transformed electron density correlation function for
the density fluctuations about the complete equilibrium state
(Te = Ti),

〈δn2
e〉ω,k = 2k2λ2

Dene

ω
Im

[
χe(1 + χi)

ε
− χC

]
. (41)

We can recover from Eq. (41) the well-known limit of the
collisionless plasma where the susceptibility functions χe,
χi [Eq. (28)] are evaluated using Eq. (31) as discussed at
the end of Sec. II and the coupling due to electron-ion
collisions is neglected, χC = 0. Validity of Eq. (41) in the
strong-collision limit will be discussed in Sec. IV where we
will compare Eq. (41) with the results of the fluctuation-
dissipation theorem [33] and the full set of classical hydro-
dynamic equations describing fluctuations. One can apply
the fluctuation-dissipation theorem because we have dealt so
far with complete plasma equilibrium conditions (Te = Ti).
Such calculations and experimental results were discussed in
Refs. [34] where dissipation was described in the strongly
collisional limit using Braginskii’s transport equations [15].

B. Fluctuations in two-temperature plasma

The same procedure of Sec. III A when it is formally applied
to nonequilibrium plasmas with two different background
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temperatures, Te �= Ti , leads to incorrect results for the
density correlation function. This can easily be seen in the
collisionless limit of Eq. (41) where there is an extra factor
of Ti/Te multiplying ionic contributions (cf., e.g., Ref. [3]
and Eq. (5.6.4) therein) for Te �= Ti . Difficulties in calculating
fluctuations in nonequilibrium plasmas are evident when the
fluctuation-dissipation theorem [33] is used and they have been
discussed early on (cf., e.g., Ref. [35]). More recently, kinetic
theory based on the Klimontovich formalism with stochastic
force sources has been applied in the derivation of the dynamic
form factor in collisional nonequilibrium plasmas [36]. The
generalized fluctuation-dissipation theorem of Ref. [36] led to
a dynamic form factor of a similar form as in our theory for
the nonequilibrium stationary plasmas [Eq. (51)]. However, the
rigorous solution to the full set of linearized Vlasov-Fokker-
Planck kinetic equations, without simplifying assumptions,
remains the unique feature of our theory. To describe the
evolution of fluctuations in the two subsystems that correspond
to the two species plasma we have utilized the set of nonlocal
and nonstationary transport equations that are fully equivalent
to the linearized kinetic equations. These two components of
the nonequilibrium plasma are coupled by the self-consistent
electric field. To start the calculations we first ignore this
field and calculate the spontaneous fluctuations and linear
response functions associated with each species. This will be
achieved by introducing generalized test particle fluctuations,
δnt

e, δnt
i , which are not affected by the self-consistent field

and polarization of the plasma. The dynamics of these test
particle fluctuations is governed by convective and pressure
terms and by particle collisions. They also depend on the
temperature of each species. In the second stage, we will
calculate the fluctuations and linear response functions for the
whole electron-ion plasma with self-consistent electric fields
in response to test particle fluctuations, δnt

e, δnt
i .

1. Initial value problem for the calculation of
test particle fluctuations

As before in Sec. III A, we will apply the Laplace
transformation to Eqs. (16) and introduce the initial conditions
for the density perturbations, δna(0), except that now the self-
consistent field, E = 0, and density perturbations correspond
to test particles. We will eliminate electron temperature
perturbation from the expressions of the friction force and
the electric current in the electron formalism,

j̃ = �e

(
eneũi�1 + ie

k
δne(0)

)
,

R̃ie = ik2Te

eω

(
j̃�1 − eneũi�2 − ie

k
δne(0)

)
, (42)

and ion temperature perturbations in the formulas relevant to
the ion response,

R̃ie + kTi

ω
δni(0) = ik2niTiũi

ω�i

. (43)

Combining Eqs. (43) and (42) we can express the average
ion flow velocity in terms of the initial density perturbations,

ikũi = k2λ2
De

{
−δne(0)

ne

χC + Ti

Te

δni(0)

ne

(χi − χC)

}
. (44)

Finally, we substitute our expressions for ũi [Eq. (44)] and j̃

[Eq. (42)] into the first equation of system [Eqs. (16)] for δñt
a

and write the Fourier-Laplace transformed density fluctuation
in terms of initial values δna(k,0),

δñt
e(k,ω) = i

ω

{(
1 − k2λ2

De(χe − χC)
)
δne(0)

+ Ti

Te

k2λ2
DeχCδni(0)

}
, (45)

δñt
i(k,ω) = i

ω

{(
1 − Ti

ZTe

k2λ2
De(χi − χC)

)
δni(0)

+ k2λ2
De

Z
χCδne(0)

}
. (46)

We proceed by calculating the density fluctuations produced
by test particle perturbations when the coupling between the
two species by the self-consistent field is restored.

2. Response to test particle fluctuations

Density perturbations due to test particles are related to
the external source current j t = eω(Zδnt

i − δnt
e)/k, which is

included into the Maxwell equation 4π (j + j t ) − iωE = 0.
Note that all perturbations are now Fourier-Fourier trans-
formed. Then, one can proceed and calculate electrostatic
self-consistent field due to test density perturbation as follows:

E = i
4πe

kε

(
δnt

e − Zδnt
i

)
. (47)

The electrostatic field Eq. (47) is related to density fluctuations,
which are calculated by using continuity equations and our
relations Eq. (27),

δne(k,ω) = δnt
e + χe

ikE

4πe
= 1 + χi

ε
δnt

e + χe

ε
Zδnt

i ,

δni(k,ω) = δnt
i − χi

ikniE

4πene

= 1 + χe

ε
δnt

i + χi

Zε
δnt

e.

(48)

Using these expressions for the density fluctuations, we can
calculate the electron density correlations in terms of test
particles densities (cf Ref. [36]):

〈δneδne〉k,ω = |1 + χi |2
|ε|2 〈δnt

eδn
t
e〉k,ω

+Z2 |χe|2
|ε|2 〈δnt

iδn
t
i〉k,ω

+Z
(1 + χi)χ∗

e

|ε|2 〈δnt
eδn

t
i〉k,ω

+Z
(1 + χ∗

i )χe

|ε|2 〈δnt
iδn

t
e〉k,ω. (49)

In the remaining theory we will use δñt
a Eqs. (45) and (46)

to obtain the test particle correlation functions, and after
substituting them into Eq. (49) we will find the dynamical
form factor for nonequilibrium plasmas.
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3. The dynamic form factor

Relations Eqs. (45) and (46) for δnt
a(k,ω) (a = e,i) have

been derived from the solutions to the kinetic equation in terms
of Laplace transformed quantities Eq. (33). They can be used
to construct the Fourier transformed correlation function in
accordance with Eq. (40). By using Eqs. (45) and (40), we
calculate the test density correlation functions:

〈δnt
eδn

t
e〉k,ω = 2nek

2λ2
De

ω
Im(χe − χc),

〈δnt
iδn

t
i〉k,ω = 2nek

2λ2
De

Z2ω

Ti

Te

Im(χi − χc),

〈δnt
eδn

t
i〉k,ω = −2nek

2λ2
De

Zω

(
1 + Ti

Te

)
Im(χc). (50)

Substituting correlation function of test particle fluctuations
Eq. (50) into Eqs. (49) for the electron-electron correlation
functions we obtain the following expression for the dynamic
form factor S(k,ω) = 〈δn2

e〉k,ω/ne:

S(k,ω) = 2k2λ2
De

ω|ε|2
{
|1 + χi |2Im[χe − χC]

+ Ti

Te

|χe|2Im[χi − χC]

−
(

1 + Ti

Te

)
Re[(1 + χi)χ

∗
e ]Im[χC]

}
. (51)

Equation (51) is the main result of our theory. In equilibrium
plasma, where Te = Ti Eq. (51) has the form identical to
Eq. (41). S(k,ω) Eq. (51) is valid in the entire regime of particle
collisionality, 0 � kλαβ � ∞, in weakly coupled plasmas and
it accounts for the collective plasma response in terms of Lang-
muir, ion-acoustic, and entropy wave resonances. Our result is
a generalization of the theory from Ref. [37]. As compared to
previous studies, S(k,ω) Eq. (51) includes the high-frequency
response, entropy waves, and charge separation effects and has
been derived from a complete solution of the kinetic equation
[18] without simplifying assumptions about the plasma param-
eters. For example, restrictions to Z � 1 are not necessary. In
fact, it is for the first time that S(k,ω) Eq. (51) has been derived
in a form that allows applications to weakly coupled plasmas
at all k vectors and frequencies. We can obtain the results
with arbitrary accuracy, including for nonequilibrium plasmas
where Te �= Ti . We will describe applications of our theory
in unmagnetized plasmas with emphasis on laser produced
plasmas where Thomson scattering has become one of the
most important diagnostic technique.

In the collisionless limit of kλαβ � 1, the dynamic form
factor S(k,ω) Eq. (51) takes the form of the well known ex-
pression [3], which was derived for the first time in Refs. [5–8],
and it is equivalent to the classical limit of the random phase
approximation (RPA) expression [4]. The collisionless limit
of Eq. (51) can be achieved using definitions from Eq. (31)
and JR

A = 0, Ji = iJ+(ω/kvT i)/ω, JN
N = iJ+(ω/kvT e)/ω.

After introducing χV
α = W (ω/kvT a)/k2λ2

Da , we can show that
S(k,ω) Eq. (51) leads to

SV (�k,ω) =
√

2π

k

[(
1

vT e

)
exp

(− ω2

2k2v2
T e

)∣∣1 + χV
i (�k,ω)

∣∣2 + (
1

vT i

)
exp

(− ω2

2k2v2
T i

)|χV
e (�k,ω)|2]∣∣1 + χV

e (�k,ω) + χV
i (�k,ω)

∣∣2 , (52)

where the superscript V indicates collisionless dynamical
evolution of correlations that is described by the Vlasov
equation. The rest of this paper will examine effects of particle
collisions on the high frequency Langmuir wave spectra,
low-frequency ion acoustic and entropy fluctuations using
S(�k,ω) Eq. (51). We will compare Eq. (51) with results of the
theory of hydrodynamic fluctuations based on the Braginskii’s
model [15] and for the high-frequency plasma fluctuations we
will also discuss Born-Mermin (BM) theory [38,39] of plasma
response. Comparison with the BM approximation will help
to define limits of applicability of our theory in dense plasmas
approaching strongly coupled regime.

IV. RESULTS AND APPLICATIONS

The main application for the theory of the dynamic form
factor is in the calculation of the Thomson scattering cross
section [3]. In TS experiments, the �k vector is defined by the
geometry of the scattering process, �k = �k1 − �k0 (satisfying
ω = ω1 − ω0), where k0,1 = 2π/λ0,1 and ω0,1 are the wave
number and frequency of the pump (0) and scattered (1)
light waves. In experiments, the angle θ between �k0 and �k1 is
typically fixed, but the magnitude of k1 is changed as different

frequencies (wavelengths λ1) are examined in the scattered
light spectrum. It is customary to plot S(�k,ω) as a function of
λ1, and this will be done in the following.

A. Limit of strong collisions

As promised in Sec. III A we will first compare our theory
with earlier results [34], which were obtained using the
fluctuation-dissipation theorem (Te = Ti = T ) and Braginskii
transport equations [15] describing dissipation in the plasma in
terms of collisional transport coefficients. These papers [34]
included experimental results from TS experiments with a
CO2 laser probe that were well reproduced by the theoretical
form factor. Some discrepancies are always expected as the
Braginskii hydrodynamics and transport relations are valid in
the kλab � 1 limit, where k is inverse of the gradient scale
length and λab are collisional mean-free-paths. The dynamic
form factor was defined via the fluctuation-dissipation theorem
[2,33] in the following form [40]:

S(k,ω) = k2T

πω2e2ne

Re[σe(k,ω)], (53)

where σe is the AC electric collisional conductivity that
describes the electron current responding to external electric

043207-8



ELECTROSTATIC FLUCTUATIONS IN COLLISIONAL PLASMAS PHYSICAL REVIEW E 96, 043207 (2017)

λ1-λ0 [Å] 

ωpeS(k,ω) 

FIG. 1. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 2 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 μm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

field perturbation acting on electrons. Braginskii’s equations
[15] that are used to evaluate σe were simplified and only
three dominant transport processes were retained described
by the electron thermal conductivity κe0 = 3.14nev

2
T e/νei , the

ion thermal conductivity κi0 = 3.91niv
2
T i/νii , and the ion

viscosity ηi0 = 0.96niTi/νii . All three transport coefficients
represent stationary (ω → 0) and local (k → 0) limits of
the transport coefficients that were introduced in transport
relations Eqs. (18) and (20) of our theory for plasmas with
Z = 1 according to the experimental conditions in Ref. [34].
With these approximations, the dynamical form factor Eq. (53)
has the following form [34]:

S(k,ω) = 2
A(k) + B(k)b(k)/D(k,ω)

[A(k) + B(k)b(k)/D(k,ω)]2ω2 + H (k,ω)2
,

H (k,ω) = 2 − ω2/ω2
0i + 1.5B(k)ω2/D(k,ω),

B(k) = 1 + 3(me/mi)neνei/(k2κe0),

A(k) = ne/(k2κe0) + (4/3)ηi0/(neT ),

D(k,ω) = (3ω/2)2 + b(k)2, ω0i = k(T/mi)
1/2,

b(k) = k2κi0/ne + 3(me/mi)νei . (54)

Comparison between results for the dynamic form factor based
on Eq. (54) and our theory Eq. (51) is shown in Fig. 1.
At the typical plasma parameters from Ref. [34] used in
Fig. 1 we find that the collisional parameter for electrons
is kλei = 0.08 and for ions kλii = 0.11. The TS parameter
α = 1/(kλDe) = 489.7. While for these parameters electrons
can be described by the Braginskii transport theory, i.e.,
nonlocal effects are small, the ion response will nevertheless
be affected by nonlocal effects. In particular, the ion thermal
conductivity is reduced from the κi0 and this lowers the
damping of the entropy mode as it is seen in Fig. 4 of Ref. [18],
cf. also Ref. [20]. This explains the discrepancy between two
curves in Fig. 1 at the zero-frequency entropy mode.

This trend continues for plasma parameters corresponding
to less collisional plasmas. Figure 2 shows the results for in-

λ1-λ0 [Å] 

ωpeS(k,ω) 

FIG. 2. Dynamical form factors for argon plasma at ne =
1017 cm−3, T = 5 eV, Z = 1, A = 18. The probe wavelength is
λ0 = 10.6 μm and the scattering angle θ = 6◦. Dashed line is
obtained using Eq. (54) and the continuous black line corresponds to
the full theoretical S(k,ω) of our theory Eq. (51) for Te = Ti = T .

creased temperature of Te = Ti = 5 eV (the rest of parameters
are as in Fig. 1). In hotter plasmas, collisional parameters are
kλei = 0.38 and for ions kλii = 0.54 and the TS parameter is
α = 1/(kλDe) = 309.7.

Now, the strong collision theory Eq. (54) is not only
incorrect for the entropy mode but electron transport is also
in the nonlocal regime causing changes in the frequency
and damping of the ion-acoustic fluctuations. Again, results
in Fig. 2 reflect changes to the dispersion relations of the
ion-acoustic waves and entropy modes in the regime of weaker
collisions discussed in Ref. [18].

B. Low-frequency fluctuations

TS in the collective regime (α = (kλDe)−1 > 1) and in
the low frequency range (ω � ωpi) is used to investigate
ion-acoustic and entropy mode fluctuations. For α � 1 the
dynamic form factor S(�k,ω) characterizes long wavelength
fluctuations in the hydrodynamical regime as discussed in the
previous section. However, for the typical conditions in laser-
produced plasmas, S(�k,ω) will be in the weakly collisional
regime where damping and dispersion of the modes depend
on the nonlocal and nonstationary properties of transport
relations. To illustrate these features of the S(�k,ω) theory,
we will first address a typical regime encountered in carbon
plasmas that is characteristic of laser produced plasmas at
modest intensities. In fact, we will discuss results relevant to
measurements in Ref. [27] (cf. Fig. 4 therein). Consider the
TS probe at λ0 = 5270 Å, a scattering angle of θ = 117◦, with
Te = 100 eV, ne = 5.6 1018 cm−3, and α = 1.58 in carbon
plasmas. At these conditions kλei = 133 and therefore electron
collisions have no effect on the TS cross-section. On the other
hand, for the three ion temperatures examined in Ref. [27]
ion-ion collisions play a role and their effects are illustrated in
Fig. 3.

Figure 3 displays three panels (a), (b), and (c) that
show redshifted ion-acoustic peaks calculated for the above
plasma parameters and for different ion temperatures using
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λ1-λ0 [Å] 

Ti=60eV 

ωpeS(k,ω) 

Ti=40eV Ti=20eV 

(a) (b) 

(c) 

Ti=60eV 

Ti=40eV 

Ti=20eV (d) 

λ1-λ0 [Å] 
FIG. 3. Dynamic form factors for Thomson scattering probe at λ0 = 5270 Å, scattering angle θ = 117◦, Te = 100 eV, ne = 5.6 1018 cm−3,

and α = 1.58. Only red shifted ion acoustic peaks are shown for three different ion temperatures in panels (a), (b), and (c). Results of the full
collisional theory Eq. (51) of S(�k,ω) are depicted by continuous lines, the collisionless SV (�k,ω) expression Eq. (52) gives results depicted by
dashed lines. Panel (d) shows all three cases calculated using Eq. (51).

our complete theory for S(�k,ω) Eq. (51) (solid lines) and
collisionless SV (�k,ω) theory Eq. (52) (dashed lines). The latter
was also employed in Ref. [27]. The two ion acoustic peaks
are symmetric and there is no entropy mode perturbation thus
by showing only one peak we fully illustrate TS results.
Figure 3(d) combines all three cases in one plot for the

collisional plasma calculations. The origin of discrepancies
between two theories are ion collisions. The most significant
effect is for Ti = 20 eV in Fig. 3(a) resulting in kλii = 0.68,
i.e., relatively collisional case where ion collisions play the
most important role within these three examples. At the same
time, ZTe/Ti = 30 (Z = 6) is the largest in Fig. 3(a) and

λ1-λ0 [Å]

ωpeS(k,ω)

Te=20eV

λ1-λ0 [Å]

ωpeS(k,ω)

Te=160eV

(a) (b)

FIG. 4. Dynamic form factors for ne = 1019 cm−3, λ0 = 5320, θ = 90◦ in nitrogen plasma. Only one, red shifted peak is shown out of
two symmetric resonances. Results for collisional plasma with kλei = 5.67, kλii = 0.27, Z = 4, Te = 2Ti = 20 eV are shown in (a), results
for Te = 2Ti = 160 eV, Z = 7, kλei = 129, kλii = 2.23 are shown in panel (b). Dashed lines correspond to the collisionless theory Eq. (52),
continuous lines correspond to the complete theory of the dynamical form factor Eq. (51).
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therefore ion Landau damping is negligible. This narrows the
width of the ion acoustic peak for SV (�k,ω) Eq. (52) results.
The intermediate case in Fig. 3(b) for Ti = 40 eV, kλii = 2.2,
shows enough broadening of the ion-acoustic peak due to
collisions that the result may exceed the accuracy of the
experimental spectra fitting in Ref. [27]. At Ti = 60 eV, kλii =
4.0, the two theories start to converge as the plasma becomes
less collisional. The importance of ion collisions increases in
high − Z plasmas. Thus, TS from gold plasmas, particularly
for ICF related conditions and very high temperatures is
dominated by ion collisions at Z = 40–50.

TS from the nitrogen gas jet plasma in Ref. [24] was
used to map out temperature profiles of the propagating heat
waves and led to one of the most convincing demonstration
of the nonlocal heat conduction in laser produced plasmas.
Dynamical form factors in this experiment were calculated
over a broad range of electron temperatures from Te = 20 eV,
cf. Fig. 4(a), up to Te = 160 eV, cf. Fig. 4(b) at electron density
ne = 1019 cm−3. The electron temperature was deduced in [24]
from the peak separation in the ion acoustic wave spectra
and discrepancy shown in Fig. 4(a) between the correct
collisional theory and collisionless results used in Ref. [24]
is well within experimental accuracy of these measurements.
The comparisons between collisionless and collisional theory
in Fig. 4(a) involves k vectors such that kλei = 5.67 and
kλii = 0.27. The shift in the position of the ion-acoustic
peak is consistent with the effect of collisions on the ion
acoustic frequency [18]. With the parameters of Fig. 4(a) also
electrons in addition to ions (as in Fig. 3) contribute to damping
and dispersion of the ion acoustic waves through nonlocal
and nonstationary transport coefficients. Contributions of ions
remain in the weakly collisional regime at higher temperatures
(Te = 2Ti = 160 eV) and for Z = 7 in Fig. 4(b), where kλii =
2.23. While the electron’s contributions are in collisionless
regime, kλei = 129.

C. High-frequency fluctuations

Here, we consider the plasma response at frequencies close
to the electron plasma frequency, ωpe. In the collective regime
(k � kDe) the maxima of the dynamic form factor correspond
to resonances at the Langmuir wave frequencies. We will also
consider transitional region into noncollective plasma response
(k � 0.5kDe) at conditions of some plasma experiments. For
high frequencies we can neglect ion dynamics, i.e., taking
Ji = JR

N = g = 0 in Eq. (51), and write the dynamic form
factor as SHF,

SHF(�k,ω) = 2Re
[
KHF

e (�k,ω)
]

(55)

KHF
e (�k,ω) = i

[
1 + iωJN

N

(
1 − k2λ2

De

)]
ωε(�k,ω)k2λ2

De

, (56)

where the plasma dielectric function Eq. (29) is taken in the
following form:

εHF(k,ω) = 1 + 1 + iωJN
N

k2λ2
De

. (57)

Only one moment, JN
N , of the basis function ψeN

0 Eq. (8)
is required in the above expressions to properly describe the
collisional plasma response at high frequencies.

In addition to the complete theory of the dynamical form
factor Eq. (51) and its simpler version that is applicable to high
frequency regime Eq. (55) we will also consider the simpler
and commonly used model based on the Bhatnagar-Gross-
Krook (BGK) [41,42] approximation to the collision operator.
Our implementation of the BGK model involves the following
expression for the plasma dielectric function,

εBGK(�k,ω) = 1 + 4πe2

mek2

∫
d3v

1

ω + iνei(v) − �k · �v
�k · ∂F e

M

∂ �v ,

(58)

where the electron-ion collision frequency, νei =
4πZe4ne�ei/m2

ev
3, is the velocity-dependent function.

The S(�k,ω) based on the BGK approximation Eq. (58) to
particle collisions is derived from the fluctuation dissipation
theorem [2,33],

SBGK(�k,ω) = −2k2λ2
D

ω
Im

[
1

εBGK(�k,ω)

]
. (59)

Figure 5 compares results of the collisionless theory,
SV (�k,ω) Eq. (52) (dashed lines) or equivalently its simplified
version of Ref. [8], complete theory of the dynamical form
factor, Eq. (51) or (55) (continuous lines) and simplified theory
of fluctuations in the collisional plasma based on the BGK
model Eq. (59) (dotted lines marked with letters BGK). We
show only red-shifted peak that is symmetric with the blue
shifted feature. We have examined parameters of the experi-
ment in Ref. [27] that were discussed for the low frequency
response and shown in Fig. 3 (ne = 5.61018 cm−3, Te =
100 eV,Z = 6, α = 1.58, θ = 117◦). As we wrote before for
these parameters of the experiment in Ref. [27] the electron
collisional parameter, kλei = 133, is very large and collisions
do not affect the calculations. All three theories produce
dynamic form factors that are indistinguishable. Therefore, to
illustrate the effects of electron collisions we consider modified
plasma parameters with electron temperature Te = 50 eV and
further introduce scattering angle θ = 10◦ in Fig. 5(a). With
these new parameters α = 21.8 and kλei = 4.05. For such
a small value of kλDe collisionless theory Eq. (52) gives
an extremely narrow and small peak. The plasma density
fluctuations are defined entirely by collisional processes in
spite of the weakly collisional regime at this wavelength
of fluctuations. In Fig. 5(b) the scattering angle is θ = 60◦
that gives α = 3.8 and kλei = 23. Even for these weakly
collisional effects the complete theory significantly differs
from the dominant collisionless peak and agrees reasonably
well with the BGK approximation. The discrepancy between
full kinetic model results Eq. (55) and the calculations based
on the BGK approximation Eq. (59) underscores need for the
careful modeling of collisions with inclusion of high angular
harmonics, frequency effects, and electron-electron in addition
to electron-ion collisions. Perhaps the most surprising outcome
of the comparisons in Fig. 5 corresponds to the essentially
collisionless regime in Fig. 5(b) that still displays significant
deviations from the collisionless theory at the large values of
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λ1-λ0 [Å] 

ωpeS(k,ω) 

BGK BGK 

(a) (b) 

FIG. 5. Dynamic form factors for ne = 5.6 1018 cm−3, λ0 = 5270, Te = 50 eV. (a) θ = 10◦, (b) θ = 60◦. Dashed lines correspond to the
collisionless RPA theory Eq. (52), continuous lines correspond to the complete theory of the dynamic form factor, Eq. (51) or (55) and the
BGK model Eq. (59) is shown by dotted lines, marked with BGK.

the collisionality parameter kλei = 23. Collisions in the BGK
model or in the complete theory are responsible for 30% to
50% differences in the amplitude of the Langmuir waves peaks.

Effect of collisions on the plasma dispersion function in the
high frequency regime and the modifications of the Langmuir
wave dispersion relation have been well understood (cf., e.g.,
Ref. [43]). Also our solutions to the kinetic equations (see
Sec. II) and in particular the method of harmonics summation
by the renormalized effective collision frequency Eq. (10)
have been applied before to the description of Langmuir
wave dispersion and damping [18,44]. In particular, Ref. [44]
examined the BGK approximation Eq. (58) and compared it
with the approach involving harmonic expansion and effective
collision frequency Eq. (10). Discrepancies between dielectric
functions derived from the rigorous solution of the full kinetic
equation of Sec. II and from the approximate models such as
the BGK operator lead also to differences in the dynamical
form factors.

The most interesting developments in TS in recent years
has been application of short wavelength probes, from the
VUV to hard x-ray parts of the spectrum in experiments
with dense highly compressed plasmas [4]. An example in
Fig. 6 illustrates results for the parameters of such experiment
[45], where an x-ray beam (photon energy 5.5 keV) from a
free electron laser is scattered from cryogenic hydrogen. This
example is focused on scattering in the high-frequency regime
because the spectral resolution of the scattered light that is used
in these experiments does not yet allow measurements of the
separation of ion acoustic peaks in the low-frequency regime.
Figure 6 shows again red-shifted Langmuir wave peaks for the
parameters of experiment with the x-ray probe, λ0 = 2.25 Å
scattered from liquid hydrogen jet at ne = 1023 cm−3 and
Te = 20 eV at θ = 10◦. At these parameters the plasma is

approaching the strongly coupled regime and in spite of the
very short probe wavelength the fluctuations are also affected
by collisions, kλei = 1.4. Also for α = 1/kλDe = 1.97 this is

λ1-λ0 [Å] 

ωpeS(k,ω) 

BGK 

BM 

FIG. 6. Dynamic form factors in the high frequency regime
corresponding to H plasmas from x-ray probe scattering experiment
with λ0 = 2.25 Å, ne = 1023 cm−3, Te = 20 eV, θ = 10◦, α = 1.97.
Dashed lines correspond to the collisionless theory Eq. (52), contin-
uous lines correspond to the complete theory of the dynamical form
factor, Eq. (51) or (55) and the BGK model Eq. (59) is shown by dotted
lines. For comparison, we also show results from the Born-Mermin
(BM) approximation [46].

043207-12



ELECTROSTATIC FLUCTUATIONS IN COLLISIONAL PLASMAS PHYSICAL REVIEW E 96, 043207 (2017)

ωpeS(k,ω) 

λ1-λ0 [Å] 

Te=30eV 

(c) 

Te=40eV 

(d) 

λ1-λ0 [Å] 

Te=20eV Te=10eV 

(a) (b) 

BGK 

BGK 

BGK BGK 

BM 

BM 

BM B BM B

FIG. 7. Dynamic form factors in the high frequency regime, red shifted peak, corresponding to Be (Z = 2,A = 9) plasmas from x-ray
scattering experiments with λ0 = 4.19 Å, ne = 1023 cm−3, θ = 30◦. Dashed lines correspond to the collisionless theory Eq. (52), continuous
lines correspond to the complete theory of the dynamical form factor, Eq. (51) or (55) and the BGK model Eq. (59) is shown by dotted lines.
(a) Te = 10 eV, kλei = 0.28, α = 1.74; (b) Te = 20 eV, kλei = 1.12, α = 1.23; (c) Te = 30 eV, kλei = 2.51, α = 1; (d) Te = 40 eV, kλei =
4.46, α = 0.87; For comparison, we also show results from the BM approximation [46].

the transitional regime to noncollective plasma response and
at Z = 1 higher-order corrections due to e-e collisions are
comparable to e-i collision contributions. While evaluating
collisional form factors Eq. (51) or (55) and SBGK Eq. (59)
in Fig. 6, we have clamped Coulomb logarithms at 2 in the
collisional frequencies. This approximate treatment of the
strongly coupled limit will be evaluated by comparison with
theory that includes proper treatment of collision frequency in
dense plasmas, such as the Born-Mermin (BM) approximation
[4,46–48]. The BM approximation employs the Mermin
expression [38,39] for the electronic part of the susceptibility
function,

χBM
e (k,ω) =

(
1 + i νB (ω)

ω

)
χRPA

e [k,ω + iνB (ω)]

1 + i νB (ω)
ω

χRPA
e (k,ω+iνB (ω))

χRPA
e (k,0)

, (60)

where νB (ω) is the elecron-ion collision frequency and χRPA
e =

χV
e in classical plasmas. In BM theory, νB (ω) is approximated

by the second-order perturbation expansion in terms of the
electron–ion interaction (Born approximation) [49],

νB(ω) = −i
ε0Zf

6π2e2me

∫ ∞

0
dq q6

[
V S

ei (q)
]2

Sii(q)
1

ω

× [
χRPA

e (q,ω) − χRPA
e (q,0)

]
. (61)

V S
ei (q) = e2/ε0q

2(1 + κ2
sc/q

2) is the statically screened
electron–ion potential with the inverse screening length κsc,
Sii(q) is the static ion–ion structure factor, taken here in
the Debye-Hückel approximation Sii(k) = k2/(k2 + κ2

D). The
dynamical form factor SBM(�k,ω) in BM approximation is
evaluated using Fluctuation-Dissipation theorem Eq. (59),
where 1 + χBM

e Eq. (60) replaces εBGK. SBM(�k,ω) is shown
by the blue solid line in Fig. 6.
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The BM theory accounts for electron–ion collisions only.
Replacing χRPA

e (k,ω) in Eq. (60) by an expression for the
correlated electron-electron susceptibility, using the local
field correction (LFC) leads to the generalized BM approx-
imation describing also electron-electron collisions [50,51].
The BM curve in Fig. 6 describes collisional broadening of
electron-plasma resonance in qualitative agreement with the
other collisional theories. The peak position is closer to the
collisionless RPA result than the other theories. This is a
well known and understood feature of the BM approximation,
which due to the analytical structure of the BM theory can only
describe the plasmon dispersion of the RPA. Deviations from
the RPA dispersion have been observed in the generalized
BM approximation [50]. However, for the present plasma
parameters, also the generalized BM approximation does not
yield a significant deviation from the RPA dispersion.

The final example is related to first collective x-ray
scattering measurements of fluctuations at plasma frequency in
beryllium solid density plasmas [52] as illustrated in Fig. 7. We
have examined plasmas with increasing electron temperatures,
while all other parameters (scattering angle, plasma density,
and photon energy) are kept constant. Figures 7(b), 7(c) and
7(d) show form factors in regimes where plasma response
become gradually more noncollective, α = 1.23, 1, 0.87,
respectively. All theories, SV Eq. (52), SBM Eq. (60), and
SHF Eq. (55) converge to a single curve with exception of
the BGK approximation Eq. (59) that greatly overestimates
the effect of collisions. Comparisons between form factors at
Te = 10 eV, Fig. 7(a), show strong effect of collisions in SHF

Eq. (55) and lesser modifications by e-i collisions in the BM
Eq. (60) results. The collisionless theory SV Eq. (52) and BGK
approximation Eq. (59) are the least accurate. The difference
between BM approximation and the SHF Eq. (55) demonstrate
importance of the proper modeling of the collision frequency.
The simple fix of clamping Coulomb logarithms at two that is
used in SHF Eq. (55) to account for the strongly coupled plasma
effects overestimates importance of collisions in Fig. 7(a) as
compared with BM results.

V. SUMMARY AND CONCLUSIONS

The theory of density fluctuations of this paper is firmly
based on the results of nonlocal and nonstationary plasma
hydrodynamics which has been developed over the years
[16–18,21,22] and gives rigorous solutions to the linearized
Vlasov-Landau kinetic equation for the two component

plasmas. This approach is well suited to the problem of evalu-
ating plasma fluctuations and the dynamic form factor because
solutions for the small perturbations of the particle distribution
functions are found in terms of Fourier transforms in space
and time. The background state is described by Maxwellian
distribution functions with two different temperatures. We
have derived a new expression for S(�k,ω) for nonequilibrium
two temperature plasmas. We also verified that the proper
expression in the collisionless limit is recovered.

The main result of our theory of the dynamic form factor
S(�k,ω) Eq. (51) is applicable to TS experiments in the entire
weakly coupled plasma regime from the hydrodynamical
fluctuation limit modelled by Braginskii equations to the colli-
sionless RPA limit of Eq. (52). Our theory works for nonequi-
librium plasmas with different temperatures of electrons and
ions, Te �= Ti . Therefore, it avoids limitations imposed by the
application of the fluctuation dissipation theorem [2,33] in
calculations of the S(�k,ω) that requires a complete equilibrium
state to be valid. From the analysis of several TS experiments
and by studying examples corresponding to laboratory plasmas
in Sec. IV we have found that collisions matter and can change
the form factor more than experimental accuracy of the fits.
This is true even for the collisional parameter, kλab � 10.
Such plasmas are in the weakly collisional regime that is well
described by our nonlocal and nonstationary hydrodynamics.
We expect that with time our program using Mathematica to
evaluate Eq. (51) will be commonly available and our theory
will be widely used to reproduce experimental TS data.
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