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Understanding the transport properties of charged particle beams is important not only from a fundamental
point of view but also due to its relevance in a variety of applications. A theoretical model is established in this
article, to model the interaction of a tenuous positively charged ion beam with an ultradense quantum electron-ion
plasma, by employing a rigorous relativistic quantum-hydrodynamic (fluid plasma) electrostatic model proposed
in McKerr et al. [M. McKerr, F. Haas, and I. Kourakis, Phys. Rev. E 90, 033112 (2014)]. A nonlinear analysis is
carried out to elucidate the propagation characteristics and the existence conditions of large amplitude electrostatic
solitary waves propagating in the plasma in the presence of the beam. Anticipating stationary profile excitations,
a pseudomechanical energy balance formalism is adopted to reduce the fluid evolution equation to an ordinary
differential equation. Exact solutions are thus obtained numerically, predicting localized excitations (pulses) for
all of the plasma state variables, in response to an electrostatic potential disturbance. An ambipolar electric field
form is also obtained. Thorough analysis of the reality conditions for all variables is undertaken in order to
determine the range of allowed values for the solitonic pulse speed and how it varies as a function of the beam

characteristics (beam velocity and density).
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I. INTRODUCTION

Quantum plasmas are ubiquitous in astrophysical envi-
ronments, e.g., in planetary interiors and in white dwarfs,
magnetars, and pulsars [1,2], and are also relevant in appli-
cations, e.g., related to quantum wells [3], plasmonics [4],
spintronics [5], and ultracold plasmas [6]. Quantum plasma
effects are also of relevance in solids, in particular metals,
for which the conduction electrons can be viewed as a
mobile plasma neutralized by background ions [7]. Quantum
degeneracy effects start playing a significant role when the
de Broglie length Ap, which represents the spatial extension
of the particle’s wave function, is larger than the average
interparticle distance. Thus, the particle cannot be considered
as pointlike any more, as in classical plasma, and quantum
interference of overlapping particles’ wave functions needs
to be taken into account [8]. When the Fermi temperature
exceeds the thermal temperature, the equilibrium distribution
function changes from Maxwell-Boltzmann to a Fermi-Dirac
distribution [9,10]. Quantum effects are manifested in dense
plasma in various ways, e.g., quantum statistical pressure may
be dominant (exceeding the thermal pressure) and quantum
wave diffraction or tunneling (modeled via a Bohm potential)
and adopting a quantum exchange and correlation potential
(due to spin effects) may be necessary in the modeling [11-13].

Ion beams are relevant in various real applications of
plasmas, including heavy-ion inertial fusion [14-16], intense
laser-produced proton beams for laser-based fast ignition
(inertial confinement fusion) schemes [17-20], semiconductor
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lasers [21-23], and electron cooling of ion beams [24,25].
Nonlinear electrostatic localized modes (nonlinear waves)
occur widely in plasmas [26,27]; the impact of ion beam
injection in a plasma has been studied theoretically [28] and
also numerically, e.g., via particle-in-cell (PIC) simulations
[29-33].

Relativistic effects become relevant either when the bulk
(fluid) velocity of a plasma fluid component is comparable
in order of magnitude to the velocity of light or when the
average kinetic energy of the charged particles is greater
than the electron rest energy (e.g., the Fermi energy of
plasma Eg, > mc?) [34]. This may happen under the influence
of an ultrastrong electromagnetic field, e.g., a laser beam
[35,36]. In the framework of interaction of intense laser pulses
with underdense plasma, relativistic localized solitary pulses,
commonly regarded as self-trapped localized structures, have
been detected experimentally [37-39] and have also been
modeled numerically, via PIC simulations [40,41]. A wide
variety of nonlinear mechanisms may affect the formation
and propagation of relativistic solitons, such as finite particle
inertia, relativistic particle mass variation, ponderomotive
forces, etc. [42—-44].

A comprehensive model was elaborated in Ref. [45], within
the electrostatic approximation, taking into account (quan-
tum) electron degeneracy in combination with a relativistic
formulation of fluid dynamics. Subsequent work based on
that model has revealed the existence of an acoustic and a
Langmuir-like mode(s) [46], in analogy to the classical version
of the problem [47], whose characteristics take into account
relativistic and quantum effects (becoming important at high
densities), as expected. When a tenuous ion beam penetrates
the plasma [48], a second low-frequency acoustic mode arises;
the energy excess due to the beam may then destabilize both
acoustic modes, and a beam-plasma instability occurs [48].
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For a tenuous beam, the instability growth rate is weak and
fails to destabilize electrostatic vibrations, as it operates in a
narrow wave number window.

In this article, we investigate, from first principles, the
dynamical characteristics of localized modes (solitary waves)
propagating in an ultradense electron-ion plasma permeated by
asecondary ion beam. Building upon the formalism introduced
in Ref. [45], here extended to accommodate the dynamics of
the ion beam, a multifluid relativistic model for electrostatic
plasma excitations is laid out in the next section and its
validity and physical limitations are discussed. Nonlinear
analysis based on a (Sagdeev type [49,50]) pseudopotential
method is carried out in Sec. III, leading to a set of explicit
expressions for the state variables in terms of the electrostatic
potential (disturbance). The existence of localized forms
(pulses) is possible in certain regions in parameter space,
which are explored in Sec. IV. A parametric analysis follows,
in Sec. V, elucidating the dependence of electrostatic pulse
characteristics on the beam properties and other intrinsic
plasma parameters. Our findings are finally summarized in
Sec. VL.

II. A MULTIFLUID RELATIVISTIC PLASMA MODEL

We consider a three-component plasma consisting of a
dominant ion population (mass m;, positive charge g; =
+Z;e), a secondary ion species, representing a tenuous beam
(mass my, charge g, = +Ze), and electrons (mass m,, charge
—e); e denotes the elementary (absolute) charge, as usual.
We consider the spatial variation of the plasma (including
the ion beam) to be in the longitudinal direction, so the
plasma dynamics can be described by a one-dimensional
(1D) geometry for simplicity. Our study relies on a mul-
tifluid approach introduced in the following paragraph. We
assume from the outset that magnetic field generation may
be neglected, within the electrostatic approximation, implying
that the total current is negligible (nearly quiescent plasma);
clearly, a very weak beam current is implied by this model,
as the electrostatic approximation breaks down for strongly
relativistic beam flows. Our description follows closely the
electrostatic relativistic model proposed in Refs. [45,46], thus
extending the analytical framework proposed therein to take
into account the ion beam.

The dominant (positive) ion population will be treated as a
cold (classical) fluid, for simplicity, a plausible assumption,
given their high mass (compared to the electrons). The
continuity and momentum equations of motion for the ion
fluid respectively read

a(yin;) 0
—(yiniu;) =0, 1
» + 8x()/n ui) (1)
a(yiui) a(yiui) eZ; 9¢
i =—-——_, 2
ot + ox m; 0x @

where e is the electron charge, Z; is the ion charge state,
m; is the ion mass, n; is the ion fluid density, and u; is the
ion fluid speed. One recognizes the electrostatic force ¢; E in
the right-hand side (RHS) of the momentum equation, where
E = —0¢/dx is the electric field deriving from an electrostatic
potential function ¢.
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The electron fluid equations read [45]
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where m, is the rest mass of the electron, n, is the electron
fluid (number) density, and u, is the electron fluid speed. In
the latter equation, the parameter & = pg./m.c = hn,/(4m.c)
is related to the (high) electron density (note that the classical
limit is recovered for 4 — 0).

In ultrahigh density conditions, electron degeneracy effects
become significant and in fact far exceed the thermal pressure
and, in very high densities, quantum pressure (expressed via a
Bohm term [10]) too. The electrons then obey a Fermi-Dirac
distribution, associated with an appropriate equation of state,
which is incorporated in the model via the effective degeneracy
pressure term in the highly relativistic limit, i.e., the last
term in Eq. (4). Within our model, the quantum relativis-
tic pressure term derives from the (1D) equation of state
[45,51]:
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One also distinguishes in the RHS of Eq. (4) the electrostatic
force term, which relates the momentum equation to the
electrostatic potential ¢.

The equations of motion for the ion beam read as
follows:

o(ypnp) 0
_ =0, 6
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where m, is the beam-ion mass, n; is the beam-ion fluid
density, and u,; is the beam-ion fluid speed. The relativistic
factor y; = 1/,/1 — u’/c? (for j = i,e,b) appears in the fluid-
dynamical equations, as a result of Lorentz transformations
and resulting relations among different state variables between
inertial frames.

The system is closed by Poisson’s equation:

8%¢ e
== = —(Yente = viZini — vy Zpnyp). (®)
0x €0

In the above relations, c is the speed of light in vacuo, h is
Planck’s constant, € is the permittivity of free space, and e is
the fundamental unit of electric charge. The quasineutrality
condition, assumed to hold at equilibrium (only), can be
written as follows: n.o — Z;n;o — ZpYponpo = 0, where n,,
n;o, and npo are the unperturbed densities of the electron, ion,
and beam-ion populations, respectively.
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A. Rescaled (dimensionless) fluid-dynamical model

The fluid model can be cast in a dimensionless form, by
adopting a set of characteristic scales:

 — wpt, X = wpx/cy,
nj — n;/njo,

and ¢ — ed/2Ek., ©))

for j=i,e,b, where w, =,/Zie2neo/60m,~ is the plasma
frequency (in a beam-free electron-ion plasma). Note that

the potential scale (2Eg./¢) and the characteristic speed
scale ¢, = /2Z; Er./m; are determined as functions of the

u; — u;/cs,
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FIG. 1. The Mach number M is depicted versus (a) the beam
velocity Vg (for § = 0.01) and (b) the beam density § (taking Vjy =
0.2). We have considered different values of the (equilibrium) electron
density n,q (as listed in the inset label) and p;, = 1 (H™ beam).
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FIG. 2. The soliton existence region, i.e., the interval of the
permitted Mach number M values, is depicted with n,q in units of
10" m~! (a) for different values of Vo with § = 0.01, (b) for different
values of Vo with § = 0.2, (¢) for different values of § with V},o = 0.2,
and (d) for different values of § with Vo = 0.5.
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nonrelativistic electron Fermi energy Ep. = plz:e /2m, (and
momentum pg. = hn,o/4), which in turn prescribes the length
scale as ¢, /w,,.

The fluid equations take the following forms:

% + %(V[”iui) =0, (10)
B(Jgtui) o 3(38/1';!;') _ _g_f’ (11)
IR 4 (enaee) = 0, (12

H[a(yeue) +M63()/ene)}

ot dx
zig_i_:;—lt(%’:e—i—aue%), (13)
@ + %(ybnbub) =0, (14)
1

[a(gbtuh) n uba(gz;ub)] _ _Ez_f’ (15)
z% = Velle — Byini — Syphp, (16)

where H = /1 + &2 represents the enthalpy of the system

[45], where & = 4},’;’;; the relativistic factor is redefined
2
as y; =1/ /1 —au?, where a = 5 = p.&;. We have also

introduced the ion-to-electron charge ratio 8 = Zn;io", the

beam-to-electron charge density ratio § = %, the electron-
to-ion mass ratio p, = :’nL, (=~ 1/1836 ~ 0.0005 « 1), and the
mass ratio w, = :fo Note that overall charge neutrality is
assumed at equilibrium (imposing 8 = 1 — y06).

Small-amplitude (harmonic wave) solutions are straight-
forward to obtain upon linearizing the model equations,
Egs. (10)—(16), above. The linear aspects of the beam-plasma
system dynamics resulting from this framework have been
analyzed in detail in Ref. [48] and need not be repeated here.
Actually, two low-frequency acoustic modes exist, propagating
at different phase speeds (associated with the two ionic
components), in addition to an electron plasma (Langmuir-
type) high-frequency mode [46], whose characteristics reflect
the relativistic invariance of the model and also incorporate
quantum degeneracy effects (which become important at high
densities), just as intuitively anticipated. In the presence
of the ion beam [48], the surplus energy destabilizes both
low-frequency modes [48], though the associated growth
rate is weak for a tenuous beam and operates in a narrow
wave-number window.

As a representative “textbook” situation, we henceforth
consider a hydrogen plasma (Z; = 1) and a tenuous beam,
i.e., implicitly assuming § < 1 and u;, ~ 1 throughout.

III. NONLINEAR ANALYSIS

Let us consider a localized perturbation, in the form of a
solitary wave propagating with (dimensionless) speed M =
Uso1/cs, where ¢, here denotes the pseudosound speed, which
was defined in the previous section as ¢; = +/2Z; Ege/m;.
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We have adopted here an analogy with the so-called “Mach
number” in electrostatic soliton theory in classical plasmas
[50], a terminology which in turn reflects an analogy with real
sound (acoustic) waves propagating in air. We pass from the
laboratory frame to the moving reference frame by assuming
that all quantities are functions of a single variable X = x —
Mt, viz.,

0 0 0 0

—_—=—-M— 2 _ 2

ot 0X ax 39X
Combining with the system of Egs. (10)-(16), we obtain the
following system of ordinary differential equations (ODEs):

a7

—M(yin;) + (yinju;) =0,
_M(yene)/ + (yeneue)/ = O’
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—M(yini) + ui(yiu;) +¢' =0,
L Velte Y
_H(M - ue)(yeue) + _(1 - aMue)ug - _¢ = 01
H Me

/ / 1 /
—M(ypnp) + up(ypup) + M_¢ =0,
b

¢" = yen. — Byini — 8ypny. (18)

Assuming vanishing boundary conditions for all of the state
variables (except the ion beam, which satisfies limy_, +oc up =
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FIG. 3. The pseudopotential S(¢) is depicted in terms of the
electrostatic potential ¢ for different values of the unperturbed
electron density n.y in two cases: (a) V0 =0 and (b) V,o = 0.2.
We have assumed § = 0.01, u, = 1, and M = 1.2 everywhere.
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FIG. 4. The plasma (fluid) state variables are shown in terms of the space variable X, for different values of the unperturbed (equilibrium)
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electron density n,9. We have taken M = 1.2, V;,p = 0.2, = 0.01, and p;, = 1.
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Vo), we have manipulated the latter equations into a set of
analytical expressions for the ion, beam-ion, and electron fluid
density and speed variables, as functions of the electrostatic
potential. This was a delicate task, due to the complex structure
of the above equations (in comparison, e.g., with classical
models [49,50]). The procedure is described in full detail in the
Appendix, for reference, yet unnecessary details are omitted
below.

After some tedious but straightforward algebra, we obtain
an ODE in the form

L(d9 ’ S =0 19
§<d_X> + S(¢) =0. (19)

Here, S is a nonlinear function given by

S(@) = (1 — yp00)Si (@) + 8[Sp1(P) — Spol — [Se1(@) — Seol,

(20)
where
Si(9) = Mu;y;,
Sp1(P) = wpyoupYs(M — Vi),
Hy
Sel(d)) = |:yene (¢ + _2>
&
|
- gg(smh "(&one) + soneﬂ)},
Spo = p Vs Vio(M — Vo),
So="10 1 (Ginh~ (&) + &0 Ho) 1)
(:’0 - sg 2%‘8 0 0 0 .

It is easy to identify the contributions of the three plasma
components to the latter expression. Note that S;;(¢ = 0) =
Sjo (for j = i,e,b), at equilibrium, while S;;(¢ = 0) = 0.

Equation (19) has the form of a pseudo-energy-conservation
equation, for a particle of unit mass, where the first term
represents a kinetic energy term and S(¢) is a pseudopotential
energy function (assuming that the variable X plays the role of
“time” and the potential ¢ plays the role of a virtual “position
coordinate” in analogy). This formalism is reminiscent of
the Sagdeev-type methodology [49] for localized electrostatic
excitations (collisionless shocks) in plasmas [50]; details can
be found in related literature (see, e.g., in Ref. [50] for a
thorough discussion) and are thus omitted here.

The analysis therefore consists of solving Eq. (19) (numer-
ically) for the electrostatic potential ¢(X) and then calculating
the remaining plasma variables (as functions of space), in the
moving frame. Examples of the outcome of this procedure are
presented in the parametric analysis that follows.

IV. EXISTENCE CONDITIONS FOR SOLITARY WAVES

It is anticipated, from previous applications of the above
methodology in classical plasmas [45,50], that the soliton
speed M must take values included in an interval (M, M)
for solutions to exist. The boundaries (M;, M) depend
on the particular aspects of the problem, here the plasma
configuration and the beam characteristics.

PHYSICAL REVIEW E 96, 043206 (2017)

We determine in the following the Mach number limitations
and then investigate the effect of the beam on the parameter
regions where electrostatic waves may occur. Naturally, in
every step in the analysis that follows, the (beam-free) limit
8 = 0 recovers the expressions and numerical values found in
Ref. [45] for electron-ion plasma.

The pseudopotential S must satisfy a number of conditions
in order for solutions to exist. First of all, one may easily
check that S(¢ =0) = %ﬁ;’) lp=0= 0, reflecting the physical
fact that both the electric field and the charge density are zero
at equilibrium. Furthermore, the curve must have a maximum
at the origin, implying dzssz) l|p=o0< 0, hence the origin is an
unstable fixed point. Finally, we are interested in parameter
values for which S(¢) < 0—as is obvious from Eq. (19)—
which is realised in the interval 0 < ¢ < ¢; here, ¢y, say,
denotes the first nonzero root of S, viz., S(¢p) = 0, which
represents the maximum value of ¢ to be “visited” by the
dynamics.

S(¢)

0.02

0.01

-0.01

1.0/
08!

06!

¢o

04/

02!

FIG. 5. (a) The pseudopotential function S(¢) is shown in terms
of the electrostatic potential ¢, for different values of the beam
velocity V. (b) The maximum pulse amplitude ¢,, is depicted versus
the Mach number M, for different values of the (equilibrium) beam
velocity V. We have taken n, = 10''m~"! (or & = 0.0603798),
up, = 1,8 =0.01, and M = 1.4 as indicative values.
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FIG. 6. The plasma state variables are shown in terms of the space variable X, for different values of the ion beam velocity V,, taking
no = 10"'m=! (or & = 0.0603798), M = 1.4, 8 = 0.01, and p;, = 1.
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a. Minimum Mach number. The superacoustic condition.

2
d df;)(f ) <0 (see above) leads to the

The curvature condition
inequality

1 Hy
M} 1 — u H;M?
81— aVioy(Mi — Vio)
M Vio(Mi — Vio)?

The lower boundary for the Mach number, say M, is thus
obtained by solving the equation S”(¢ = 0; M) = 0 for M.

b. Maximum Mach number. A second physical requirement
is associated with the reality of the state variables, i.e.,
the density variables n; and the fluid speed variables (for
Jj = e,i,b). First of all, from the analytical expression for the
ion fluid speed—see Eq. (A6) in the Appendix—we obtain
an explicit requirement for u; to be real, in the form of the
following inequality:

6 < bmai = é(l T — i), (23)

In the nonrelativistic limit « <« 1, this condition reduces to
¢ < Pmax.i = MTZ, which is the well-known classical require-
ment [49].

Following a similar argument, from Eq. (A10) (in the
Appendix) for the beam fluid speed, we find the following
condition to be imposed, for reality:

(I' = ¥p0d)

<0. (22)

¢ < P = %mo(l — MViya) —v1— M2a], (24)

In the nonrelativistic limitor < 1, we obtain @max p = "7’ (M —

Vio)?; hence for Vjy = 0, we recover Dmax.pb = MTZ, in agree-
ment with the infinite compression limit in the classical case
[49,50]. We see that a maximum value must be imposed for the
electrostatic potential ¢, viz., ¢ < min{@max.i>Pmax.6} = Pm-
In the above considerations, it is understood that M < 1/./a, a
condition which indeed holds for all realistic parameter values
to be adopted in the following.

In view of the above reality requirement(s), we impose the
condition

S(ém) = 0, (25)

where ¢,, was defined above. The upper boundary M, is
thus obtained by solving the equation S(¢ = ¢,,; M») =0
(numerically) for M.

In order to determine the soliton existence region, and
to elucidate the role of the beam (characteristics), we have
numerically solved Egs. (22) and (25) for the limit values
M and M,, respectively, assuming a positive hydrogen beam
(up = 1), for various combinations of values for the beam
speed (Vpo), the density (§), and the unperturbed electron
density 7,0.

Figure 1(a) shows the variation of M, with the ion beam
velocity Vo, for certain (fixed) values of n.g, up, and 5. We
can see that M; increases with the beam velocity Vjg. In
an analogous manner, Fig. 1 shows that M is an increasing
function of the beam density § (for given values of n, 5, and
Vo). In both cases, however, M| decreases upon increasing the
density 7.0.

PHYSICAL REVIEW E 96, 043206 (2017)

The permitted range of values for M € [M, M,] was found
numerically and is depicted in Fig. 2, against the electron
density n.o (for given fixed values of Vo §). Solutions occur
between the lower and upper curves in this plot. We note
that the upper curve decreases faster, for higher values of the
electron density n.9, until it crosses over. Solutions will not
exist beyond this crossover point.

V. PARAMETRIC ANALYSIS

We have solved Eqgs. (19) and (20) numerically for various
values of the plasma configuration parameters (7.0, Vp, 6,
and M), keeping the value of u, fixed (to one). The results
are shown in Figs. 3-8. We have studied the effect of the
physical plasma parameters on the shape of the Sagdeev
potential, the maximum amplitude of electrostatic potential
¢m, the corresponding electric field E, and plasma state
variables n,, u,., n;, u;, n,, and u;; these are discussed in the
following.

_ N \ . I.A' ¢

-0.002

________

-0.003} -~

-0.004

FIG. 7. (a) The pseudopotential S(¢) is shown in terms of the
electrostatic potential ¢ for different values of the unperturbed beam
density 6. (b) The maximum pulse amplitude ¢,, is shown versus
the Mach number M. We have taken V,y = 0.2, n,o = 10" m~! (or
& = 0.0603798), up, = 1, and M = 1.2 as indicative values.
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FIG. 8. The plasma state variables are shown in terms of the space variable X, for different values of the beam density 8, withn,g = 10" m~!
(or & = 0.0603798), M = 1.2, Vi = 0.2, and w, = 1.
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A. The effect of the equilibrium electron density

To study the effect of the asymptotic (equilibrium) electron
density n., we have plotted the pseudopotential S(¢), given by
Eq. (20), for different values of . in Fig. 3. The corresponding
electrostatic potential ¢ and the resulting ambipolar electric
field E, in addition to the plasma state variables (namely,
the elecron density n., the electron velocity u,, the ion
density n;, the ion velocity u;, the ion beam density n,,
and the ion beam velocity u;), were found numerically and
are shown in Fig. 4. We see in Fig. 3 that the root of
S(¢) increases monotonically with n.y, suggesting stronger
potential pulses at larger densities. Furthermore, the depth of
the Sagdeev potential well increases with n,0. We can see
from Fig. 4(a) that the amplitude of the electrostatic potential
(pulse) ¢ increases with n.y, while the width decreases; the
pulse therefore becomes narrower (steeper) for higher n.9. An
analogous variation of all other plasma state variables is visible
in Figs. 4(b)-4(h).

B. Beam velocity effect

We have plotted the Sagdeev pseudopotential S(¢) against
¢ in Fig. 5, for different values of the (equilibrium) beam fluid
speed Vjo. Both the root of § (i.e., the maximum value of the
potential ¢ excitation) and the depth of the potential well are
seen to decrease with larger Vjo. The corresponding plasma
state variables were obtained numerically and are shown in
Fig. 6. We see that the amplitude (width) of all plasma variables
increases (decreases) with larger beam velocity value.

C. The effect of the equilibrium beam density

Finally, we have varied the value of the ion beam density
6 in order to study its effect on the shape of the Sagdeev
potential in Fig. 7. Furthermore, its effect (for fixed speed V)
on the amplitude and the width of the associated electrostatic
pulse and electric field is shown in Fig. 8. The conclusions
to be drawn from this analysis are directly analogous to the
ones deduced from varying the beam velocity in the previous
paragraph, as qualitatively expected. Indeed, an increase in
either the beam (fluid) speed or the beam density results in an
increase in the beam (and, in fact, overall) current J, which
therefore affects the propagation characteristics of electrostatic
solitary waves. We have kept the value of the beam current very
low in our sets of numerical values considered, with respect
to the electrostatic approximation (i.e., so as to justify having
neglected dynamical magnetic field generation in our model).

VI. CONCLUSIONS

We have established a rigorous relativistic model for elec-
trostatic excitations in ultradense plasma (assuming quantum
degeneracy for the electrons), and we have used it as a basis
to study the influence of a positive ion beam onto electrostatic
solitary waves propagating in the plasma. Nonlinear analysis
has revealed that positive potential ¢ (only) pulses may occur,
in agreement with experiments on laser-plasma interactions
[52,53]. The existence domain (velocity, or Mach number
interval) of solitary waves has been determined and shown
to become slightly wider with an increase in beam density
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while, reversely, it “shrinks” dramatically with an increase in
beam velocity (for fixed density). Finally, we have studied
the effect of intrinsic plasma parameters on the structural
properties (shape) of solitary waves.

Our nonlinear analysis has focused on large electrostatic
excitations and thus has imposed no restriction on their
amplitude, which was left arbitrary throughout the study. An
independent, linear analysis would have led to small-amplitude
harmonic solutions, i.e., Fourier modes (electrostatic waves),
along the lines proposed, e.g., in Ref. [46] (in the absence
of a beam). We point out that the latter study led to a
dispersion relation which was characterized by two distinct
dispersion branches (for the real frequency w as a function
of the wave number k), namely, an acoustic one and an
(Langmuir-like) electron-plasma branch. In the presence of
an ion beam, however, the dispersion relation becomes a
sixth-order polynomial, whose analysis reveals the existence of
a third (beam-driven) mode [48]. In addition to this qualitative
change, due to the beam, an imaginary part y arises in the (now
complex) frequency, say w = w, + iy, in a small window
of values of the wave number k; hence a linear instability
develops [48]. Admittedly, both the beam-ion component
number density and the velocity were assumed to be small,
with respect to the electrostatic approximation (i.e., in order
for the total current to be negligible and hence the magnetic
field generation to be suppressed); hence the growth rate of this
linear instability should be thought of as small, for practical
situations. However, a stronger beam should lead to a growing
mode which might be dominant and eventually destabilize
the electrostatic wave. From a purely energetic view point,
this would represent a loss term, which should eventually
destabilize not only linear waves but also localized lumps of
energy (solitary waves) occurring in the system.

Apart from the aforementioned (linear) beam instability,
one might expect solitary wave propagation to be affected
by nonlinear beam plasma or kinetic instabilities, such as
Buneman-type instabilities [54,55] or even Landau damping
[56,57], a kinetic effect expectedly overlooked in the fluid
picture adopted herein.

Our results are expected to be important in dense plasmas
arising from solid target irradiation by ultrahigh-intensity laser
beams and also in extreme astrophysical environments, where
high-density plasma models are relevant.
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APPENDIX: DERIVATION OF EXPRESSIONS FOR THE STATE VARIABLES IN THE MOVING FRAME

All of the plasma state variables are assumed to obey constant boundary values at infinity, i.e., limy 1o fjep = 1,
limy_, 100 i = 0,limx_, 4o #p = Vpo, and limy_, 1+ ¢ = 0. One can integrate the continuity equations, the first three equations
in Eq. (18), for the ion, the electron, and the beam-ion density, to obtain

M
np=———, (A1)
vilM — u;)
M
Ny = ————, (A2)
Ye(M — u,)
M -V,
1y = Vpo( bO)’ (A3)
Yo(M — up)
where yp0 = 1//1 — aVbZO. By integrating the equation of motion (19) for the ions, we obtain
vi 1
¢ = Myu; — —+ —, (A4)
a o«

ie.,

) 1 71, 2m 1 1 ?
M+Ol<a—¢) ui—7ui+ E_<E_¢) =0. (AS)

The solution for the ion fluid speed reads
Y VE [ +a(G - o)) - (G- 9)]
M+ a(] - )’

where we chose to proceed with the solution satisfying the boundary condition limy_, +o ¢ = limy_ 1o #; = 0. A thorough
analysis of the quantity under the square root reveals that reality of the ion fluid speed (A6) imposes

¢<§a_/izﬁ5 (A7)

In an analogous manner, upon integrating the equation of motion (19) for the beam (fluid), we obtain

; (A6)

u; =

1 b b
— ¢ = M(yputp — yo0Vio) — 22 + 22 (A8)
Mb o o
or, rearranging,
1 177 2M 1 1 177
2 2
{M +Ol|:)/b0<MVb0 - —> + —4’] }“b ——up+ {—2 - |:VbO<MVbO - —> + —¢i| } =0. (A9)
a) o o a)
The solution
2 2
=V M2 ey (MVio — 3) + o] Haz — [vo(MVio — ) + 0]}
up = (A10)

M2+ o[y (MVy — 1) + Mlb¢]2

satisfies the boundary conditions limy_, 1o, ¢ = 0 and limy_, 1o 4y = Vjo. In order for the beam velocity u, to be a real quantity,
the condition

¢ < “Lly(l = MVia) — V1 = M) (A1)

must hold.

Combining Egs. (A1) and (A6), we obtain the ion fluid density n;(¢) and speed u;(¢) in terms of the potential ¢ (for a given
value of M). The beam-ion fluid properties are obtained in an analogous manner from Eqs. (A3) and (A10).

Integrating the equation of motion of the electrons (19), we obtain

Reg — |:ye 1+ L0201 — aMu,) — HO} (A12)
o e
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or, after some tedious algebra,

PHYSICAL REVIEW E 96, 043206 (2017)

[€2(1 —aMP)|n? + [1 - (826 + Ho)* — aM?(1 — &) ]n2 + aM? = 0. (A13)
The electron density is thus given, in terms of ¢, by the biquadratic polynomial equation
—[1— (826 + Hp)’ — aM?(1 — £2)] + \/[1 — (82 + Ho)* — aM?(1 — 8))] — 482(1 — aM?)a M? Al

ne(¢) =

262(1 — aM?)

Finally, in order to obtain the electron fluid speed in terms of ¢, we substitute Eq. (A14) into Eq. (A2).
Combining the above relations for the density variables into Poisson’s equation (19), we find, for the electrostatic potential ¢,

a differential equation in the form

d2
d_)j; = f(9), (A15)
where the function f in the RHS is given by
aM?
T =T
Y+ 11— G+ 0 — b1~ )] — 4630 — abads? — 1 — (&0 + 1)~ b1 - £9)])
+
1—aM?
M
— (I = ¥09) - -
i L ) B GO
M- )
M2+a($f¢)
_ s Yoo(M — Vboz) _ (A16)
I T P e e T e G
M2+a[}/ho(MVbo*i)+%b¢]
Multiplying by the derivative d¢/d X and integrating, we obtain precisely Eq. (19):
1/ dé\> B
3 (ﬁ) +8(¢) =0, (A7)

where S is the nonlinear function given by Eq. (A17) in the text.
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