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Oscillation of particles in a dust crystal formed in a low-pressure radio-frequency gas discharge under
microgravity conditions is studied. Analysis of experimental data obtained in our previous study shows that
the oscillations are highly isotropic and nearly homogeneous in the bulk of a dust crystal; oscillations of the
neighboring particles are significantly correlated. We demonstrate that the standard deviation of the particle
radius vector along with the local particle number density fully define the coupling parameter of the particle
subsystem. The latter proves to be of the order of 100, which is two orders of magnitude lower than the coupling
parameter estimated for the Brownian diffusion of particles with the gas temperature. This means significant
kinetic overheating of particles under stationary conditions. A theoretical interpretation of the large amplitude of
oscillation implies the increase of particle charge fluctuations in the dust crystal. The theoretical estimates are
based on the ionization equation of state for the complex plasma and the equation for the plasma perturbation
evolution. They are shown to match the results of experimental data processing. Estimated order of magnitude
of the coupling parameter accounts for the existence of the solid-liquid phase transition observed for similar
systems in experiments.
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I. INTRODUCTION

The ionized gas including dust particles typically in the
range from tens of nanometers to thousands of micrometers is
commonly called the complex (or dusty) plasmas [1–6]. Such
a system makes it possible to study fundamental processes in
the strong coupling regime on the kinetic level through the
observation of individual particles. In ground-based experi-
ments, gravity has a dominant effect on the structures formed
in complex plasmas so that three-dimensional (3D) dust clouds
with an adoptable level of the cloud homogeneity cannot
be created. In contrast, relatively homogeneous dust particle
structures are realized under microgravity conditions either
in parabolic flights [7–11] or onboard the International Space
Station (ISS) [7,12–17]. Due to the high mobility of electrons,
particles acquire a significant (macroscopic) negative electric
charge, which leads to the great Coulomb coupling parameter
of the dust subsystem � [1–6,18,19]. Thus, such a subsystem
forms a 3D dust crystal, which, in principle, can undergo phase
transitions, in particular, the solid-liquid first-order transition.
In the ground-based experiment, such a transition was first
observed in study [20].

Although complex plasmas are open nonequilibrium sys-
tems, there are grounds to consider a first-order transition
observed in the dust subsystem similar to that in an equilibrium
system. A close analog of the dust subsystem is a model system
known as the one-component plasma (OCP) [21]. Then, one
can expect the coupling parameter of the order of 102 for the
solid-liquid binodal of the dust subsystem. However, under the
conditions of PK-3 Plus laboratory onboard the ISS [15,22,23],
this parameter amounts to 104 due to a significant particle
charge. Taking into account the Debye screening of the particle
charge cannot reduce this parameter significantly because the
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Debye length is on the same order as the interparticle distance.
Inclusion of the ion-neutral collisions into calculation of the
particle charge can reduce � at most by an order of magnitude,
which is insufficient to account for the solid-liquid binodal
(and is incompatible with the particle oscillation amplitude).

We suggest that the particle kinetic temperature that appears
in � is highly increased as compared to the gas temperature
and the temperature of the particle material. Thus, we suggest
the anomalous kinetic heating of particles in the dust cloud that
takes place under stationary conditions and does not imply the
development of instability. Note that the anomalous heating
was observed in the two-dimensional (2D) dust crystal [24]
and at the bottom of the dust cloud trapped in a striation [25].
In both cases, the overheating was a result of the development
of instability. There is evidence that the kinetic temperature of
particles in PK-4 experiments is of the order of 0.8 eV [26],
which is much higher than the gas temperature but it is still
insufficient to reduce � properly.

In this study, we continue to analyze the results obtained
in the PK-3 Plus experiments [23] and propose the method
of determination of the particle kinetic temperature. Based on
the Wigner-Seitz cell model for the dust crystal, we show
that � can be only expressed in terms of the cell radius
and the particle radius-vector standard deviation. Thus, the
information on the particle charge, which cannot be defined for
a dust cloud, and on the particle velocity, which also cannot be
determined due to a coarse time resolution of video recording,
is unnecessary. We arrive at very high kinetic temperature of
the particles in a stationary dust crystal, which proves to be two
orders of magnitude higher than that of the gas. We proposed
the interpretation of the effect of anomalous heating based
on treatment of the particle charge fluctuations that increase
significantly the particle oscillation amplitude. On the basis of
the ionization equation of state (IEOS) [23,27], which is valid
both for the stationary and perturbed local plasma parameters,
and of the equation for propagation of a perturbation in the
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dust crystal, we show that the charge fluctuations in the
dust crystal have much greater amplitude than that for a
solitary particle in an infinite plasma. Eventually, we obtain
the estimation � ∼ 102 and demonstrate that this order of
magnitude is compatible with the possibility of observation of
the solid-liquid phase transition.

The paper is organized as follows. In Sec. II, we propose
the method of experimental data processing and analyze the
accuracy of particle coordinate determination. In Sec. III,
we discuss main peculiarities of the particle oscillation. In
Sec. IV, the theory of dust charge fluctuations is developed
and the relation between charge fluctuations and the particle
oscillation amplitude is revealed. The results of theoretical
estimations and of experimental data processing are compared
and discussed in Sec. V. The results of this study are
summarized in Sec. VI.

II. METHOD OF DETERMINATION OF THE COUPLING
PARAMETER FOR THE DUST SUBSYSTEM

Consider a dust cloud in the low-pressure gas discharge
under microgravity conditions. We will assume that the
coupling parameter for the dust subsystem,

� = Z2
0e

2

rdTd

� 1, (1)

where Z0 is the average stationary dust particle charge in
units of the electron charge, e is the elementary electric
charge, rd = (3/4πnd )1/3 is the Wigner-Seitz radius for the
dust particles, nd is the particle number density, Td is the dust
particle kinetic temperature, and the Boltzmann constant is set
to unity. Then the system is indeed a dust crystal, for which
the Wigner-Seitz cell model is valid. Within the framework of
this model, a particle with finite Td oscillates in the spherical
harmonic potential of its cell. The characteristic oscillation
frequency is given by the expression ω2

0 = Z2
0e

2/Mr3
d [28],

where M = (4π/3)ρ0a
3 is the particle mass, ρ0 and a are the

density of particle material and the particle radius, respectively
(spherical particles are assumed). For typical experiments with
the particles of the diameter 2a = 2.55 μm (see Sec. III), we
have ω0 � 600 s−1, which exceeds significantly the frequency
of video exposure (50 frames/s) for the high-resolution camera
used in the PK-3 Plus setup [23]. This means that the particle
displacement observed in successive frames must be on the
same order as its fluctuation amplitude and, therefore, it is
not small enough to determine Td directly from the particle
velocity. Moreover, a direct determination of Z0 for the dust
crystal is also problematic with the available diagnostic tools.
However, we will show that the coupling parameter � is
fully determined by the local number density of particles
and their standard deviation from their equilibrium positions
δr . Provided that the Wigner-Seitz cell model is valid, these
positions coincide with the centers of corresponding cells.

In what follows, we will treat a single particle in the Wigner-
Seitz cell with the origin of the coordinate system in its center.
If we denote the distance of a particle from the center by r ,
and its velocity by v, then the average particle potential energy
Mω2

0〈r2〉/2 is equal to its average kinetic energy M〈v2〉/2.
Here, angular brackets denote time averaging. According to
the equipartition theorem M〈v2〉/2 = 3Td/2, which yields

Td = (Z2
0e

2/3r3
d )〈r2〉. We substitute the latter expression in

the definition of the coupling parameter to derive

� = 3r2
d

〈r2〉 = 3

(
rd

δr

)2

, (2)

where δr =
√

〈r2〉. It is worth mentioning that Z0 cancels in
the expression (2), therefore, � proves to be independent of
the particle charge.

We have to keep in mind that δr is a three-dimensional
standard deviation while a sequence of video frames provides
the information on the projection of the deviation on the
frame plane. Note that the method of 3D particle coordinate
determination developed in Ref. [23] is not efficient for
the particle oscillation because the scan time is orders of
magnitude longer than the particle oscillation period ∝ ω−1

0 .
To estimate δr , we assume isotropy of the particle oscillations
(which is the case for our system; see Sec. III). Then

δr =
√

3

2
(〈x2〉 + 〈z2〉), (3)

where x and z are the two-dimensional Cartesian particle
coordinates (〈x〉 = 〈z〉 = 0 is implied). Hence, (2) can be
rewritten in the form,

� = 2r2
d

〈x2〉 + 〈z2〉 . (4)

Assuming that the dust crystal is stationary, we can estimate
〈x2〉 and 〈z2〉 from the particle positions observed in successive
frames. Obviously, the ratio between the frequency of video
exposure and ω0 does not matter in this case. The Wigner-
Seitz radius rd can be calculated using the method of the local
particle number density determination [23].

Below, we will discuss determination of the particle
coordinates in individual frames. Since the expected standard
deviation is on the same order as the size of a camera pixel
(∼10 μm), a satisfactory accuracy of such a procedure is
problematic. A favorable circumstance increases the accuracy
dramatically. In fact, albeit the particle diameter (∼3 μm) is
smaller than a pixel, the light scattered from a particle and
passed through the optical system of a video camera form the
Gaussian beam with a typical width of 1.5 pixel and, therefore,
each particle “illuminates” more than 10 pixels by the light
with different intensities. Each pixel codes this light intensity
by brightness. If we group together the pixels corresponding
to a given particle then we can define the determined particle
radius vector as the weighted sum,

r =
∑N

k=1 IkRk∑N
k=1 Ik

, (5)

where the sum runs over all pixels pertaining to the selected
group, Ik is the brightness of a pixel (0 � Ik � 255), Rk is the
radius vector of its center. In (5), we have to ignore the pixels
with the brightness comparable to the noise brightness (Ik <

Ith), where Ith = 20 for used video camera. It is the information
on the pixel brightness involved in (5) that increases the
coordinate determination accuracy. We performed a simulation
that allows one to estimate this accuracy.
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FIG. 1. Distribution of the absolute error involved in the proposed
method of particle coordinate determination over the surface area of
a pixel. The distance dr between the center of a true Gaussian beam
and the determined position of a particle is color coded. The beam
amplitude is (a) A = 100 and (b) A = 50; for both cases, the width
is w = 1.5 px and the recognition brightness threshold is Ith = 20.

A Gaussian beam generates a group of pixels with the
brightness distribution,

Ik =
[
A exp

(
−|Rk − r0|2

w2

)]
, (6)

for Ik > Ith and Ik = 0 otherwise. In Eq. (6), A is the maximum
beam intensity, r0 is the radius vector of the center of a beam
that coincides with a true particle radius vector, w = 1.5 px is
a typical beam width, and square brackets denote an integral
part of a number. The distance between the determined and true
particle position dr = |r − r0| is shown in Fig. 1 for different
r0 and two characteristic maximum pixel brightnesses. Given
r0, dr was calculated using formulas (5) and (6). This quantity
defines the absolute accuracy of the particle coordinate
determination. Obviously, showed distribution is periodic in
both directions. As is seen, the maximum error dr should be
expected if r0 is varied within a single pixel but even in this
case, the relative error is below 10%. This seems to be an
appropriate systematic error as compared to the random error,
which is noticeably higher (Sec. IV). The error decreases with
the increase of A, as it must.

Application of the above-discussed method of the particle
coordinate determination allows one to connect the positions
of individual particles in a sequence of consecutive frames
by lines and thus to obtain a coarse representation of the

particle trajectories within their cells (Fig. 2). Here and in
what follows, we will assume that the Z axis is directed
toward the upper electrode along the symmetry axis of the
discharge. The origin of axes XZ is situated in the discharge
center. Figure 2(a) shows such trajectories for the entire field
of view of the high-resolution camera. In the bottom of this
figure, the void boundary is visible and its top corresponds to
a boundary between the dust crystal and the electrode sheath,
which is beyond the scope of this treatment. If the number of
frames for a given particle (particle trace length) is sufficiently
large, which corresponds to a long observation time, then the
trajectories assume the form of a clew, Fig. 2(b). Analysis of
the particle positions makes it possible to investigate the nature
of dust particle oscillations.

III. PROPERTIES OF THE DUST PARTICLE
OSCILLATIONS

In this section, we will treat a single experiment with the
particles of the diameter 2.55 μm at the gas pressure of 10 Pa.
The first issue is the time scale of averaging the particle
oscillations. Figure 3 shows the standard deviations δx and
δz for the coordinates x and z, respectively, averaged over all
particles whose trace length exceeds a definite threshold n as
a function of this threshold. Here, we assume homogeneity of
a dust crystal and perform averaging over all particles in the
coordinate range corresponding to Fig. 2. One can see that the
slope of both curves changes significantly at n ≈ 40 frames,
which corresponds to 0.8 s, but the deviations determined in
the quiescent (laboratory) coordinate system described above
are not stationary even after a long time (red curves). This is
due to a slow large-scale hydrodynamic motion of the dust
crystal caused by vortices [1,29], which shift the centers of
the particle’s cells. Thus a trend in the positions of particles is
formed. Here and in what follows, we will remove this trend by
polynomial fitting of the particle coordinates (in most cases,
we used cubic polynomials). With trend removal, δx and δz

assume stationary values at n > 40. As is seen in Figs. 3(a)
and 3(b), these values are almost equal, which is indicative
of the system isotropy. One can conclude that the data can
be statistically significant if the trace length is at least 40
frames. Note that further increase of the threshold trace length
decreases the sample size. This conclusion is justified by Fig. 4
that presents 3D deviations of individual particles for different
minimum trace lengths. As is seen, beginning with ca. n = 40,
the scatter of δr becomes moderate and it is almost independent
of n. Figure 4 also illustrates the dependence δr on the vertical
coordinate. A sharp increase of δr at z < 3500 μm is due to the
instability that takes place at the void boundary that involves
the particles in intense motion. At z > 6800 μm, the electrode
sheath zone is situated. Here, the dust crystal no longer exists,
and characteristic layered structure is visible. Within these
limits, δr shows a weak tendency to increase with the increase
of z. This means that the dust crystal is, strictly speaking,
inhomogeneous with respect to the particle oscillations.

Another illustration of the particle oscillation isotropy and
weak inhomogeneity is presented by Fig. 5. In this figure,
the deviations δx and δz are shown only for the individual
particles with n > 40. These data are fitted by the quadratic
polynomials. One can see that the fitting curves almost
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FIG. 2. View of the particle trajectories convoluted into clews obtained by superposition of successive frames. For different trajectories, the
trace length varies from 5 to 185 frames. Shown are (a) a view from the high-resolution camera and (b) its enlarged fragment. The origin of the
coordinate system coincides with the void center, which finds itself almost at the discharge chamber axis in the middle of the space between
the electrodes. The particle diameter is 2.55 μm and the argon pressure is 10 Pa.

coincide, which testifies the system isotropy. More exactly, one
can state that within the accuracy of data processing performed
in this study, no anisotropy was found. Obviously, the system
is homogeneous along the X axis and weakly inhomogeneous
along the Z axis.

One more isotropy test is shown in Fig. 6, where the
probability distribution over the coordinates is presented. This
distribution was calculated from the coordinates of all particles
with n > 40. It is seen that the distributions over both x and
z are almost the same (which provides another evidence of
isotropy) and they are well approximated by the Gaussian
exponent, whence it follows that the particles indeed oscillate
in the 3D harmonic potential. This justifies the use of the
Wigner-Seitz cell model. Apparently, slight deviation of the

FIG. 3. Standard deviation (a) δx for the coordinate x and
(b) δz, for z as a function of the minimum trace length (minimum
number of successive frames available for the observation of an
individual particle). Lines show the results of averaging over all
particle trajectories within the x- and z-coordinate range shown in
Fig. 1(a) (field of view of the high-resolution camera); the particle
diameter and the gas pressure are the same as in this figure. Blue
and red lines indicate the results obtained with and without the trend
removal. The particle diameter and the gas pressure are the same as
in Fig. 2.

distribution from the Gaussian exponent at its wings arises
from the potential anharmonicity at large deviations. It can
be the result of some error involved in the trend removal
procedure.

Next, consider the correlation of particle oscillations.
We failed to estimate the time autocorrelation function for
individual particles because the decay time for this function
seems to be �0.02 s, i.e., the time interval between successive
frames is too long, while calculation of the pair correlation
coefficient is possible. We used all pairs of the particles, for
which the common part n of the trace lengths is not shorter than
60 frames. Let the positions of a pair of particles be defined by
the radius vectors r1 = {x1, y1, z1} and r2 = {x2, y2, z2} with
the origins in corresponding centers of the Wigner-Seitz cells.
The trend is assumed to be removed so that 〈r1〉 = 〈r2〉 = 0.

FIG. 4. Three-dimensional standard deviations of particles from
its equilibrium positions vs the coordinate z for different minimum
trace lengths (color coded). Each point indicates averaging over the
trace length of an individual particle. The range of coordinate x

corresponds to Fig. 2(a); the particle diameter and the gas pressure
are the same as in this figure. For each particle, the trend was removed.
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FIG. 5. Standard deviations δx and δz vs (a) the coordinate x and (b) z. Dots show averaging for the individual particles, for which the
trace length exceeds 40 frames. The range of particle coordinates z in (a) is the same as the range of the Z axis in (b) and the range of particle
coordinates x in (b) is the same as the range of the X axis in (a). Lines show fitting the experimental results by the quadratic polynomials. Red
lines and dots indicate δx and blue, δz. The particle diameter and the gas pressure are the same as in Fig. 2.

By definition, the pair correlation coefficient is

κ =
∑n

i=1 r1i · r2i√∑n
i=1 r2

1i

∑n
i=1 r2

2i

, (7)

where r1i and r2i denote the particle radius vectors in the ith
frame. In view of a weak inhomogeneity of the system in the
z direction (Fig. 5), one can assume the local (small-scale)
homogeneity. Due to this and to the global isotropy of the
system, we have

1

n

n∑
i=1

x1ix2i � 1

n

n∑
i=1

y1iy2i � 1

n

n∑
i=1

z1iz2i . (8)

FIG. 6. Probability to find a particle shifted from its equilibrium
position (a) in the x direction and (b) in the z direction. Corresponding
shifts are �x and �z, respectively. The minimum trace length is 40
frames; averaging is performed over all particles in the range shown
in Fig. 2(a); the particle diameter and the gas pressure are the same
as in this figure.

Since the radius-vector standard deviations δr1 and δr2 for the
particles 1 and 2 can be expressed as

δr2
1,2 = 1

n − 1

(
n∑

i=1

x2
1,2i +

n∑
i=1

y2
1,2i +

n∑
i=1

z2
1,2i

)

� 3

2

1

n − 1

(
n∑

i=1

x2
1,2i +

n∑
i=1

z2
1,2i

)
, (9)

we rewrite Eq. (7) in the form,

κ = 3

2

∑n
i=1 (x1ix2i + z1iz2i)

(n − 1)δr1δr2
. (10)

The pair correlation coefficient averaged over all appropriate
pairs of particles is shown in Fig. 7 as a function of the
interparticle distance. One can see that at the minimum
interparticle distance of 100 μm, the correlation is significant.
Apparently, the maxima at r = 120 and 250 μm correspond
to the first and the second coordination spheres of the dust
crystal. If we fit the dependence κ(r) by the exponential
κ = e−r/rc in the range 100 < r < 450 μm then we obtain
the correlation decay length rc = 138 μm, which is close to
the average interparticle distance (under the conditions of
treated experiment, it is n

−1/3
d = 145 μm). At r > 450 μm,

κ(r) decreases to the constant noise level of 0.02 and no
correlation peaks are observed. Note that at r = 450 μm, κ(r)
is twice as high as the noise level. It follows from Fig. 7 that
the particle oscillation is correlated with that of neighboring
particles.

IV. DUST PARTICLE CHARGE FLUCTUATIONS AND THE
OSCILLATION AMPLITUDE

As was demonstrated in Sec. III, the particle oscillations
are highly isotropic. This means that most likely, they are
not related to the ambipolar electric field and the ion flux in
complex plasma, neither do they originate from development
of an instability. We will assume that the emergence of
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FIG. 7. Correlation coefficient κ vs the interparticle distance r .
Dots show averaged experimental results. Averaging was performed
over all pairs of particles at the distance within the intervals of 15-μm
width. Line indicates the curve fit by exponential. The minimum
trace length is 60 frames, the particle coordinate range corresponds
to Fig. 2(a), and the particle diameter and the gas pressure are the
same as in this figure.

oscillations is caused by the dust particle charge fluctuations
and explore the connection between them and the particle
oscillations around their equilibrium positions. The system is
assumed to conform to the ionization equation of state (IEOS)
for complex plasmas with similarity property [23,27,30] based
on the fluid approach. The fields of particle velocity v(t, r) and
density ρ(r) = Mnd (r) are solutions of the Euler equation,

∂v
∂t

+ (v · ∇)v + νv = 1

ρ
(fe + fid − ∇p), (11)

and the continuity equation,

∂ρ

∂t
+ ∇ · (ρv) = 0. (12)

Here, ν = (8
√

2π/3)δmnnnvTn
a2/M is the friction coefficient

defining the neutral drag [5,31], δ � 1.4 is the accommodation
coefficient corresponding to the diffuse scattering of ions
against the particle surface, mn is the mass of a gas molecule, nn

and vTn
= (Tn/mn)1/2 are the number density and the thermal

velocity of gas molecules, respectively, Tn = 300 K is their
temperature,

fe = −ZendE = −aTe

e
�ndE (13)

is the electric field driving force acting on unit volume,
E = (Te/e)∇ ln ne is the electric field strength, Te is the
electron temperature, ne is the electron number density, and
� = Ze2/aTe is the dimensionless potential of a dust particle;

fid = 3

8

(
4π

3

)1/3

n
1/3
d niλeE (14)

is the ion drag force acting on unit volume, ni is the ion number
density, λ is the ion mean free path with respect to the collisions
against gas atoms, and

p = 1

8π

(
aTe

eλ2

)2

p∗, p∗ = �2n
∗4/3
d (15)

is the dust pressure [30], where n∗
d = (4π/3)λ3nd is the

dimensionless particle number density. For a stationary dust
crystal, the force balance equation yields [27,30](

9π

128

)1/3
niλ

n
2/3
d

= aTe

e2
�. (16)

Equation (16) is completed by the equation defining the
particle potential that follows from the OML model [32,33],

ne = niθ�e�, (17)

where θ = √
Teme/Timi , Ti and mi are the ion temperature

and mass, respectively, and me is the electron mass.
The equation for small perturbations of a dust crystal can

be derived from Eqs. (11) and (12) linearized with respect to
small variations of v and ρ,

∂2ψ

∂t2
+ ν

∂ψ

∂t
= c2

s �ψ, (18)

where ∇ψ = v and c2
s = dp/dρ, where cs is the velocity

of dust acoustic waves (DAWs). As was demonstrated in
Ref. [27], cs is almost independent of the dust density
distribution inside the dust crystal and can be treated as a
constant,

cs = aTec
∗
s

e
√

6Mλ
, c∗2

s = 512

27

�2
s (�s + 1)

(3�s + 4)(�s + 2)
, (19)

where �s is the root of the equation,

2θe�s (�s + 1)

1 − θ�se�s
= 1 + 2

�s

. (20)

Constancy of the DAWs velocity dp∗/dn∗
d = c∗2

s makes it
possible to conclude that the relation between the dimension-
less ion number density n∗

i = (e2λ3/aTe)ni and n∗
d [23] is

� = c∗
s

√
n∗

d − n∗
0

n
∗2/3
d

. (21)

The relation between n∗
i and n∗

d follows from (16) and (21):

n∗
i = 2

π
c∗
s

√
n∗

d − n∗
0. (22)

Here, n∗
0 is defined by the “dust invariant” κ [23,30],

n∗
0 = n∗

f

(
1 − �2

f n
∗1/3
f

c∗2
s

)
, n∗−1

f = (aκTe)3/2λ3. (23)

Equations (21) and (22) define the IEOS for a dust crystal.
It was demonstrated in [27] that observed isotropy of DAWs
in an anisotropic dust crystal has an important consequence.
Namely, the variations of all quantities in the perturbation are
related by IEOS.

043204-6



DUST COUPLING PARAMETER OF RADIO-FREQUENCY- . . . PHYSICAL REVIEW E 96, 043204 (2017)

Now turn to the estimation of the charge fluctuations of
a dust particle. The equation for particle charge kinetics
follows from the balance of the ion and electron fluxes to
the particle surface. In the linearized form, this equation reads
[1,34]

dδZ

dt
+ νf δZ = 2Zνf

1 + �0
θ (t), (24)

where Z = Z0 + δZ is the particle charge, 〈Z〉 = Z0, and
〈δZ〉 = 0 is the charge fluctuation, which is assumed to be
small, |δZ/Z0| � 1, νf = avi(1 + �0)/4r2

Di is the charge
relaxation frequency, vi = √

8Ti/πmi is the ion thermal
velocity, �0 = Z0e

2/aTe, rDi =
√

Ti/4πnie2 is the ion De-
bye length, θ (t) is a random function that satisfies the
conditions,

lim
t→∞

[
t−1

∫ t

0
θ (t) dt

]
= 0, lim

t→∞

[
t−1

∫ t

0
θ2(t) dt

]
= 1.

(25)

The left-hand side of Eq. (24) is responsible for the charge
relaxation while the right-hand side is the source of fluctuations
due to discreteness of the ion and electron charges.

Equation (24) is valid for a solitary particle in infinite
plasma, where ni is independent of the charge fluctuations.
In contrast, in the dust crystal, the charge fluctuation gives
rise to the variation of ni and ne at the length scale of the
order of rd around the particle, and it is these quantities that
define the particle charging. However, the fluctuation source
does not change because it is defined by the averages of ni and
ne. At the same time, the relaxation frequency νf can change
dramatically.

In the following, we will derive the equation for the particle
charge relaxation neglecting the fluctuation source. If we treat
the charge fluctuation as a plasma perturbation then the general
equation for its evolution is (18). Although it is based on
the fluid approach, it can yield reasonable results even at the
length scales of several interparticle distances. Furthermore,
we will use this equation for a single cell to derive, at
least, an order-of-magnitude estimate for the amplitude of the
charge fluctuation. The first term on the left-hand side of (18)
corresponds to the perturbation relaxation due to the DAW
propagation and the second term, to the diffusive relaxation
in the overdamped regime. The corresponding time scales
are τs = rd/cs and τdif = νr2

d /c2
s [35], respectively. Under

the conditions of experiment treated in Sec. III, τdif/τs =
νrd/cs = 0.15, therefore, the diffusive relaxation dominates.
Accordingly, Eq. (18) is reduced to

∂ψ

∂t
= c2

s

ν
�ψ. (26)

Equation (26) has a solution, which decays exponentially in
time, |k| = r−1

d , and the function ϕ satisfies the condition
(c2

s /ν)�ϕ = −ϕ/τdif . Then χ (t) is a solution of the equation,

dχ

dt
+ χ

τdif
= 0. (27)

It follows from the relation between the particle pressure
perturbation δp and ψ [27] that δp � −Mνndψ in the

overdamped regime. Hence, δp also satisfies (27). In view of
(15) and (21), δZ ∝ δ� follows the same relaxation rule (27):
dδZ/dt + δZ/τdif = 0. We compare this with the left-hand
side of (24) to deduce that for the dust crystal, the relaxation
frequency changes from νf to 1/τdif . Thus, one can assume that
during the time τdif , the particle motion in the charge space is
the Brownian diffusion and the drift motion can be neglected.
This diffusion defines the fluctuation amplitude.

Inclusion of the fluctuation source, which is exactly the
same as in (24), in the equation for charge evolution,
leads to

dδZ

dt
+ δZ

τdif
= 2Z0νf

1 + �0
θ (t). (28)

Equations (24) and (28) differ only by the relaxation frequency.
We apply the fluctuation-dissipation theorem to (28) to derive
the standard deviation of charge fluctuations σZZ0 =

√
〈δZ2〉,

where

σ 2
Z = νf νr2

d

(1 + �0)Z0c2
s

. (29)

We use (21) and (22) to represent (29) in the form,

σ 2
Z = 2aνvie

2

λTic2
s

. (30)

As is seen from (30), σZ is independent of the coordinate.
Under typical experimental conditions, it is much higher than
that for a solitary particle in infinite plasma σ−2

Z = (1 + �0)Z0

[1].
According to the IEOS (21) and (22), the charge fluctuations

are related to the standard deviation of the cell radius σdrd =√
〈δr2

d 〉. Since it follows from (21) that �n
∗1/6
d � c∗ at n∗

d �
n∗

0, we obtain σd = 2σZ with due regard for the relation � =
Ze2/aTe. We recall that according to Fig. 7 the positions of
neighboring particles are correlated. If we assume that the
change of the cell radius rd shifts neighboring particles at√

〈δr2
d 〉/3 then we can estimate the standard deviation of the

particle radius vector δr as

(δr)2 = 8

9

aνvie
2r2

d

λTic2
s

. (31)

From (2) and (31), the coupling parameter can be estimated as

� = 27

8

λTic
2
s

aνvie2
. (32)

It follows from (31) and (32) that the relative standard deviation
δr/rd and � are independent of the coordinate.

V. RESULTS AND DISCUSSION

We used the video frames recorded in experiment Ref. [23]
and the particle number density distributions obtained in this
study to calculate the radius-vector standard deviation for the
dust particles δr and the coupling parameter for the dust
subsystem � [formulas (3) and (4), respectively] for three
sets of the particle radius and argon pressure. The results
are summarized in Table I and in Figs. 8–11. As it follows
from Table I, δr increases both with the increase in the
particle diameter and the gas pressure and these dependencies
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TABLE I. Radius-vector standard deviation of the dust particles
δr and the coupling parameter of dust subsystem � in the center of a
dust crystal for the experiments with different particle diameter 2a,
argon pressure p, and the Wigner-Seitz cell radius rd estimated from
experimental data of Ref. [23]. For the relative standard deviation of
the particle charge σZ and the kinetic dust temperature Td , theoretical
estimations for the conditions of corresponding experiments are
presented.

Set No. 2a (μm) p (Pa) rd (μm) δr (μm) � σZ Td (eV)

1 2.55 10 90 12 160 0.144 1.2
2 3.4 11 136 16 220 0.157 3.1
3 3.4 20.5 157 17 250 0.195 4.2

are rather weak. At first sight, the increase of δr with the
gas pressure seems to contradict the increase in the friction
coefficient ν. However, the behavior of δr is also a result of
the change in plasma parameters as the pressure is changed.
In particular, the dependencies nd (z) for different sets are
pressure dependent. It is interesting to note that the ratio
δr/rd for the sets 1–3 is almost constant and it ranges
from 0.13 to 0.11. The plots of δr vs z that were obtained
by processing the particle traces (“clews”) using formula
(3) are shown in Figs. 8–10. In these figures, the regions
near the void boundary and the near-electrode sheath are
not shown because in the former, the particles are unstable
and in the latter, there is no dust crystal. In spite of a
significant dispersion of data points, the trend is obvious. In
Figs. 8 and 9, δr increases with z and in Fig. 10, δr has a
maximum. It can be easily seen that all these dependencies
just follow corresponding dependencies rd (z) (cf. Figs. 5–7,
Ref. [23]). The fact that δr/rd is independent of the coordinates
follows from Eq. (31). One can see that theoretical estimates
agree satisfactory with the results of experimental data
processing.

μ

δ
μ

μ

FIG. 8. Three-dimensional standard deviation of a particle from
its equilibrium position vs the coordinate z. Dots represent the results
of experimental data processing and line shows the calculations
using formula (3). The gas pressure, the particle diameter, and the
coordinate range are the same as in Fig. 2.

μ

δ
μ

μ

FIG. 9. Same as Fig. 8. The particle diameter is 3.4 μm and the
argon pressure is 11 Pa.

For the sets 1–3, the coupling parameter ranges from 160
to 250 (Table I, Fig. 11). This result can be compared with
the crystallization threshold for OCP � = 168 ± 4 [21,36].
Apparently, the dust crystal finds itself far from the solid-liquid
binodal, so that for this system, the coupling parameter at
binodal must be noticeably lower than for OCP. However,
one can testify that � ∼ 100 for both systems. This means
that the dust crystal is an analog of OCP but these systems
are not identical. Note that the same order-of-magnitude
estimation (� ∼ 100) was reported for the Yukawa ball in the
experimental study [37]. Figure 11 illustrates the absence of a
noticeable coordinate dependence of the coupling parameter.
In Fig. 11, the data points from individual “clews” are
averaged within the intervals of z equal to the difference
between successive values of the coordinate. The fact that � is
independent of the coordinate follows from formula (32). One
can see that the results of experiment processing lie within the
minimum and maximum �’s (32) calculated for the sets 1–3,
i.e., the theory proposed in Sec. IV agrees satisfactorily with

μ

δ
μ

μ

FIG. 10. Same as Fig. 8. The particle diameter is 3.4 μm and the
argon pressure is 20.5 Pa.
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Γ

FIG. 11. Coupling parameter for the subsystem of dust particles
vs the relative distance from the void boundary along the discharge
axis (z0 is equal to the minimum z for corresponding dust cloud; see
Figs. 8–10). Dots represent the results of data processing for different
experiments: circles, for 2a = 3.4 μm and p = 20.5 Pa; squares, for
2a = 3.4 μm and p = 11 Pa; and triangles, for 2a = 2.55 μm and
p = 10 Pa. Dashed and dash-and-dot line indicate the lower and
upper bounds from the theory [formula (4)], respectively, for the
above-mentioned experimental conditions.

the experiment. Note that this theory does not match correctly
the pressure dependence of �. This could be a consequence of
(a) simplifying assumptions made, (b) inaccuracy of the IEOS
(21) and (22), and (c) a relatively high sensitivity of � to p.

Knowledge of � allows one to estimate the particle
kinetic temperature Td = Z2

0e
2/rd� (Table I). Surprisingly,

Td amounts to several eV, which is anomalously high and
exceeds the gas temperature Tn by two orders of magnitude.
It is noteworthy that the particles in complex plasmas are
somewhat overheated due to the ion fluxes to their surface.
However, the temperature of particle material cannot exceed
ca. 450 K because this is the temperature of evaporation. Some
degradation of particles during the experiments was in fact
revealed [38]. Thus, high Td is solely of the kinetic nature,
so we can use the term “anomalous kinetic heating.” It is
important that for the first time, this phenomenon was observed
for a stationary 3D dust crystal. In contrast, measurement of the
particle velocities in two-dimensional (2D) dust crystals results
in the particle kinetic temperature close to room temperature;
a substantial increase of this temperature was observed only
for the fluid and gaslike states [3,39,40].

The above estimate for the particle kinetic temperature
includes the particle charge Z0, which was estimated using
the OML approximation. It was demonstrated that the effect
of the ion-neutral collisions [41,42] decreases the calculated
particle charge. However, it follows from these studies that
this effect is small at the gas pressure less than 30 Pa and
Z0nd/ne > 1. Such conditions are typical for the experiments
treated in this work. Thus, the particle kinetic temperatures
listed in Table I seem to be somewhat overestimated. We recall
that the Coulomb coupling parameter � (4) needs no correction
for this effect because it is independent of Z0.

The effect of anomalous kinetic heating is a result of
relatively high particle charge fluctuations. According to the
discussion in Sec. IV the charge fluctuations for a particle in
a dust crystal is much larger than that for a solitary particle.
As indicated in Table I, the relative standard deviation (30)
σZ ∼ 0.1 while for a solitary particle it would be an order of
magnitude lower, σZ = 1/

√
(1 + �0)Z0 ∼ 0.01.

VI. CONCLUSION

To summarize, we have developed a method of the dust
coupling parameter determination that utilizes sequences of
video frames recorded in experiments performed on the PK-3
Plus setup. We have demonstrated that the standard deviation
of the particle radius vector δr and the particle coupling
parameter � are defined by solely the standard deviation
of the particle radius vectors and the local particle number
density. Thus, there is no need for the information on the
particle charge and velocity, the oscillation frequency, etc. For
the particle number density, we borrowed the distributions
determined in our previous study [23]. The peculiarities of
analyzed oscillations of particles in their Wigner-Seitz cells are
as follows. The oscillations prove to be purely isotropic (within
the experimental accuracy) in the entire volume occupied by
the dust crystal, which is indicative of the fact that the particle
oscillations are not related to the ambipolar electric field
and the ion flux in complex plasma. Within the investigated
volume, the oscillations are almost homogeneous along the
X axis and weakly inhomogeneous in the direction of the Z

axis. This mimics exactly the coordinate dependence of the
particle number density. The Gaussian form of the probability
of particle shift from the center of its cell is indicative of the
fact that the particles oscillate in the spherically symmetric
quadratic potential. The oscillations of neighboring particles
are correlated. Their kinetic temperature is anomalously high
and exceeds the gas temperature by two orders of magnitude.

The theoretical interpretation of this anomalous heating
implies the effect of particle charge fluctuations. In a dust crys-
tal, the local particle charge and the electron and ion number
densities are self-consistent variables. Based on the IEOS and
the equation for the perturbation evolution in complex plasma,
we have demonstrated that in this case, the amplitude of charge
fluctuations is much greater than for a solitary particle in
infinite plasma even in the absence of an instability. This
amplitude is sufficiently high to ensure a significant effect
on the particle oscillation amplitude. Proposed interpretation
is rather qualitative because it utilizes a number of crude
assumptions like the applicability of the fluid approach at the
length scale of the interparticle distance. However, the derived
formulas allow one to make order-of-magnitude estimates for
the particle standard deviations. Apparently, a more rigorous
theory would require the treatment of a self-generated phonon
background in the dust crystal. Development of such theory
will be addressed in the future.

The theoretical estimates agree satisfactorily with the
results of processing the data of experiment [23] and point
to the anomalous kinetic heating of particles under stationary
conditions. Both the theory and the experiment lead to the
particle coupling parameter � ∼ 100, which is of the same
order as that for OCP at the binodal of the solid-liquid phase
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transition. This allows us to account qualitatively for the
observed kinetics of phase transition in complex plasma. This
investigation can be a basis for the development of a theory of
phase transitions in strongly coupled complex plasmas.
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