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Morphing continuum theory for turbulence: Theory, computation, and visualization
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A high order morphing continuum theory (MCT) is introduced to model highly compressible turbulence. The
theory is formulated under the rigorous framework of rational continuum mechanics. A set of linear constitutive
equations and balance laws are deduced and presented from the Coleman-Noll procedure and Onsager’s reciprocal
relations. The governing equations are then arranged in conservation form and solved through the finite volume
method with a second-order Lax-Friedrichs scheme for shock preservation. A numerical example of transonic flow
over a three-dimensional bump is presented using MCT and the finite volume method. The comparison shows that
MCT-based direct numerical simulation (DNS) provides a better prediction than Navier-Stokes (NS)-based DNS
with less than 10% of the mesh number when compared with experiments. A MCT-based and frame-indifferent
Q criterion is also derived to show the coherent eddy structure of the downstream turbulence in the numerical
example. It should be emphasized that unlike the NS-based Q criterion, the MCT-based Q criterion is objective
without the limitation of Galilean invariance.
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I. INTRODUCTION

Navier-Stokes (NS) equations have been extensively used
to study flow physics for several decades. Other than deriving
the balance laws from the Reynolds transport theorem and
the three-dimensional Leibniz theorem commonly seen in
undergraduate textbooks [1], these laws can also be derived
independently from rational continuum mechanics (RCM)
[2–5] or Boltzmann’s kinetic theory [6–8] or classical irre-
versible thermodynamics [9–14]. This procedure pairs inde-
pendent variables and response functions as thermodynamic
forces and fluxes, i.e., a thermodynamic conjugate [9–11].
The Helmholtz free energy is expanded with thermody-
namic forces and the thermodynamic flux is then found as
the derivative of the Helmholtz free energy with respect
to the corresponding thermodynamic force. The derivation
process for linear constitutive equations was understood as
the Onsager-Casimir relations [15–17]. Nevertheless, though
the framework is mathematically rigorous and theoretically
sound, understanding the physics represented by the material
constants in those equations heavily relies on experimental
observation and measurements.

At the same time, kinetic theory approximates the gas
atoms as points, and models the interaction as collisions.
Boltzmann derived a distribution function for equilibrium
states with the H theorem and introduced a conservation
equation with a collision integral [6,7]. With the proper
definitions for kinetic variables, e.g., mass, linear momentum,
and energy, the conservation equations lead to the balance laws
[8]. However, systems are rarely in equilibrium. As a result,
the distribution function varies with the interactions between
gas atoms through the collision integral. If the distribution is
assumed to linearly deviate from the Boltzmann distribution,
the balance law of linear momentum leads to the celebrated
Navier-Stokes (NS) equations [7]. Since kinetic theory is a
physics-based approach, the physical meanings of material
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constants are explained through the interparticle collisions. For
example, Maxwell showed that the viscosity is independent of
the density for a given temperature through kinetic theory and
later verified this fact with experiments [7]. For dilute gases,
kinetic theory also shows a linear relation for the ratio of
thermal conductivity to the product of the viscosity and specific
heat. Though kinetic theory provides detailed insights for the
governing equations and material constants, Truesdell raised
a concern that all equations derived from kinetic theory only
contain a subset of those from rational continuum theory, and
claimed that the validity of the continuum equations extends
beyond rarefied gases [18].

Regardless of their different theoretical origins, NS equa-
tions have been the core of fluid dynamics research ranging
from turbulence to vortex-dominated flows for decades. Nev-
ertheless, assumptions made in NS equations should always
be kept in mind. Rational continuum mechanics assumes a
continuum homogenizing volumeless points. On the other
hand, kinetic theory approximates a continuous medium
populated with monoatomic gases. This approximation results
in a compromise of relying on an orbital angular velocity,
i.e., vorticity, to describe rotational motions in fluids. In
other words, vorticity or vorticity-based methods have been
employed to describe the rotational eddies in turbulent flows,
coherent vorticies in dynamic stall, or body-vortex interaction
in biomimetics. However, vorticity-based approaches are
only Galilean invariant, and present inconsistent results for
vortex visualization from Q-criterion and λ2 methods in
rotating flows [19]. Therefore, Speziale and Haller have
been emphasizing the importance of objectivity or frame
indifference for vortex descriptions and turbulence models
[19–22]. Further, revealing the detailed eddy structures with
vorticity-based method requires extremely an fine mesh for
numerical differentiation. These arbitrarily fine meshes cause
a heavy computational burden and make numerical simulation
impractical even with the best computational power available
today [23].

The Cosserat brothers initiated the concept of a morphing
continuum theory (MCT), i.e., a continuous space containing
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inner structures [24]. Later, Eringen formulated a class of
morphing continuum allowing rotation at subscale under the
framework of rational continuum mechanics and classical
irreversible thermodynamics [25]. Independently, Grad intro-
duced a concept of a continuum with an arbitrary number
of internal degrees of freedom, and proposed a first-order
differential equation for spins [26]. De Groot and Mazur
extended Grad’s formulation and proposed a balance law for
the internal spins [17]. Snider and Lewchuk later completed
Grad’s formulations with irreversible thermodynamics [27].
The theoretical studies independently initiated by Eringen and
Grad were found to be identical.

Similar to the works done for NS equations with statistical
mechanics and kinetic theory, She and Sather relied on
the Chapman-Enskog method to derive a kinetic theory for
molecules with arbitrary internal degrees of freedom [28].
Brau evaluated several different collision processes under She
and Sather’s formulations [29]. Curtiss later integrated these
studies and officially introduced kinetic theory for molecular
gases [30].

To the author’s limited knowledge, the detailed comparison
between irreversible thermodynamics or rational continuum
mechanics and statistical kinetic theory was first presented
in the book Rational Extended Thermodynamics, by Müller
and Ruggeri [14]. Rational extended thermodynamics has
been used to derive governing equations for shock wave
structure, light scattering, radiation, relativistic mechanics,
phonons, and metal electrons [14]. For monoatomic gases,
the phenomenological equations derived from kinetic theory
are found to be identical to those from thermodynamics
of irreversible process. Motivated by these early studies,
Chen recently proved that the inviscid version of the MCT
governing equations from rational continuum mechanics and
irreversible thermodynamics are identical to the balance laws
at equilibrium from Curtiss’ molecular kinetic theory [31,32].
This study unifies formulations in both kinetic theory and
rational continuum mechanics for fluid system with internal
spins, and derives the Boltzmann-Curtiss distribution from a
quantum statistics perspective [31,32].

Since its introduction, MCT has been used to study the
flow physics with significant internal spins, e.g., turbulence
[33–39]. Ahmadi extended the work of Liu [34] to construct a
statistical theory for turbulence via a functional approach [38].
Peddieson was the first one proposing MCT dimensionless
parameters to characterize the wall shear layers in the boundary
layer turbulence [36]. More recently, Mehrabian and Atefi
compared the analytical solution of plane Poiseulle flow in
MCT with experimental velocity profiles, both laminar and
turbulent [40]. Alizadeth et al. reformulated MCT and studied
turbulent plane Couette flow with slip. The simulation results
agree extremely well with the experiments [41]. However,
all the aforementioned studies are limited in the analytical
solutions for incompressible flows. More recently, researchers
have been focusing on developing numerical methods for MCT
in both incompressible and compressible flows [42–45].

With the rapid developments of numerical solvers, a series
of studies were published on incompressible and compressible
turbulence and their statistical characteristics [46–49]. Cheikh
and Chen validated that MCT is capable of predicting the
velocity profile over a compression ramp in a supersonic

turbulence [48]. However, MCT is still relatively new to
the turbulence community. Tools for turbulence analysis and
visualization are in their infancy. Therefore, this study will
summarize the derivation of MCT, its connection to turbulence,
and an objective tool for visualizing coherent eddy structures.
The derivation of MCT is briefly reviewed in Sec. II. The MCT
governing equations will be rearranged in the conservation
forms for numerical methods implementations, e.g., finite
difference method, finite volume method, and others, in
Sec. III. In Sec. IV, a numerical example of a transonic
flow over a three-dimensional bump will be briefly presented.
An objective Q critirion with MCT will be derived and
discussed in detail for eddy and vortex visualizations. Section
V concludes with the highlights and remarks of this study.

II. MORPHING CONTINUUM THEORY

A morphing continuum is a collection of continuously
distributed, oriented, finite-size subscale structures that allow
rotations. A material point P in the reference frame is identified
by a position and three directors attached to the material point.

The motion, at time t , carries the finite-size subscale
structure to a spatial point and rotates the three directors to
a new orientation. Thus, such a motion can be understood as
the motion of a liquid molecule or an eddy approximated as
a rigid body. MCT possesses not only translational velocity
but also self-spinning gyration on its own axis. These motions
and their inverse motions for the morphing continuum can be
described as [25]

xk = xk(XK,t), XK = XK (xk,t),

ξk = χkK (XK,t)�K, �K = χ̄Kkξk,

K = 1,2,3, k = 1,2,3 (1)

and

χkKχlK = δkl, χ̄Kkχ̄Lk = δKL. (2)

where the lowercase index is for the Eulerian coordinate while
the uppercase index is for the Lagrangian coordinate.

It is straightforward to prove that

χkK = χ̄Kk. (3)

Consequently, the right-hand side of Eq. (2) becomes

χkKχkL = δKL. (4)

Here and throughout, an index followed by a comma denotes
a partial derivative, e.g.,

xk,K = ∂xk

∂XK

and XK,k = ∂XK

∂xk

. (5)

For fluid flow, deformation-rate tensors are used to char-
acterize the viscous resistance. Deformation-rate tensors may
be deduced by calculating the material time derivative of the
spatial deformation tensors. For a morphing continuum, two
objective deformation-rate tensors can be derived as

akl = vl,k + elkmωm and bkl = ωk,l, (6)

where vk is the velocity vector and ωk is the self-spinning
gyration vector. The fluid or flow inner structure possesses two
types of motion: translational velocity (vk), found by solving
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the MCT linear momentum equation, and spinning gyration
(ωk), found by solving the MCT angular momentum equation.
In the classical Navier-Stokes equations, the translational
velocity can be directly solved from the balance law of linear
momentum. To investigate the effect of the rotational motion
of the subscale structure, one must use the velocity field and
take the angular velocity to be one-half of the vorticity i.e.,
1
2eijkvj,i . This approximation in the Navier-Stokes equations
not only limits predicting the flow physics involving spinning,
but also fails to represent the interaction between translation
and spinning [27]. In addition, highly refined meshes are also
needed in order to obtain high resolution vorticity fields. This
arbitrary mesh requirement makes numerical simulations in
realistic environments impractical [23]. On the other hand,
MCT provides both the self-spinning motion and the relative
rotation, e.g., vorticity. The arbitrarily fine meshes are no
longer required since part of the information on rotational
motions can be directly obtained from self-spinning gyration.

A. Balance laws

Thermodynamic balance laws for morphing continuum
theory include (1) mass, (2) linear momentum, (3) angular
momentum, (4) energy, and (5) the Clausius-Duhem inequal-
ity. All five can be expressed as follows:

Conservation of mass:

∂ρ

∂t
+ (ρvi),i = 0. (7)

Balance of linear momentum:

tlk,l + ρ(fk − v̇k) = 0. (8)

Balance of angular momentum:

mlk,l + eijktij + ρikm(lm − ω̇m) = 0. (9)

Balance of energy:

ρė − tklakl − mklblk + qk,k = 0. (10)

Clausius-Duhem inequality:

ρ(ψ̇ + ηθ̇) + tklakl + mklblk − qk

θ
θ,k � 0. (11)

Here ρ is mass density, ikm the microinertia for the shape of the
microstructure, fk the body force density, lm the body moment
density, e the internal energy density, η the entropy density,
ψ = e − θη the Helmholtz free energy, tlk the Cauchy stress,
mlk the moment of stress, and qk the heat flux. It is worthwhile
to mention that tlk , mlk , and qk are the constitutive equations
for the morphing continuum theory and can be derived from
the Clausius-Duhem inequality [see Eq. (11)] through the
Coleman-Noll procedure [12,50].

The concept of subscale inertia, ikm ≡∫
ρ ′ξkξmdv′/

∫
ρ ′dv′ ≡ 〈ξkξm〉, is similar to the moment

of inertia in rigid body rotation and measures the resistance
of the subscale structure to changes to its rotation. It can be
further expressed as

jkm = ippδkm − ikm, where j ≡ 1
3jpp. (12)

The volume v′ refers to the volume of the subscale structure.
If the subscale structure is assumed to be a rigid sphere with a
radius d and a constant density ρ, the subscale inertia can be

computed as j = 2
5d2. This result shows the subscale inertia

for a sphere is the moment of inertia of a sphere divided by
its mass. The experimental data of Lagrangian velocities of
a trace particle can be used to determine the geometry of
the subscale structure [50,51]. The new degrees of freedom,
gyration, in MCT can also be directly compared with the direct
experimental measurement of vorticity [52].

B. Constitutive equations

There are multiple different definitions for fluids, including
(1) fluids do not have a preferred shape [1] and (2) fluids
cannot withstand shearing forces, however small, without
sustained motion [53]. Nevertheless, all these definitions
describe the physics of fluid flow, and yet provide little
help in mathematically formulating a continuum theory for
fluids. In rational continuum mechanics, Eringen formally
defined fluids by saying that “a body is called fluid if every
configuration of the body leaving density unchanged can
be taken as the reference configuration” [3]. This definition
implies xk,K → δkK and χkK → δkK , where δkK is the shifter,
the directional cosine between the current configuration and
reference configuration.

Objectivity is followed throughout the derivation of con-
stitutive equations. The axiom of objectivity, or frame indif-
ference, states that the constitutive equations must be form
invariant with respect to rigid body motions of the spatial
frame of reference [2–5].

The state of fluids in morphing continuum theory is ex-
pressed by the characterization of the response functions Y =
{ψ,η,tkl,mkl,qk} as functions of a set of independent variables
Z = {ρ−1,θ,θ,k,akl,bkl}. At the outset the constitutive relations
are written as Y = Y(Z) [54].

The Clausius-Duhem inequality of Eq. (11), also known
as the thermodynamic second law, is a statement concerning
the irreversibility of natural processes, especially when energy
dissipation is involved. Feynman et al. stated, “so we see that a
substance must be limited in a certain way; one cannot make up
anything he wants;... This [entropy] principle, this limitation, is
the only rule that comes out of thermodynamics” [55]. After the
Coleman-Noll procedure, i.e., combining the inequality with
the response function and the independent variables, Eq. (11)
reduces to

tdklakl + mklblk − qkθ,k

θ
� 0. (13)

The current formulation relying on the Coleman-Noll proce-
dure only provides local entropy increase and the conditions
for a first-order weakly nonlocal state.

In Eq. (13), there are three pairs of thermodynamic
conjugates, (tdkl , akl), (mkl, blk), and ( qk

θ
θ,k), that contribute to

the irreversibility of the material. A set of the thermodynamic
fluxes J is defined as J = {tdkl,mkl,

qk

θ
} and are functions of a set

of the thermodynamic forces (ZD) and other independent vari-
ables (ZR), Z = {ZR; ZD} = {ρ−1,θ ; akl,blk,θ,k}. With these
sets of thermodynamic fluxes and thermodynamic forces, the
Clausius-Duhem inequality can be rewritten as

J(ZR; ZD) · ZD � 0. (14)
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Onsager and others proposed that the thermodynamic
fluxes can be obtained by the general dissipative function
[9–11,13,15,16,56]

J = ∂(ZR,ZD)

∂ZD
+ U, (15)

where the vector-valued function U is the constitutive residual
with ZD · U = 0. This result indicates that U does not con-
tribute to the dissipative or entropy production. For simplicity,
one can further set U = 0.

To determine thermodynamic fluxes for a fluid using the
derivative of  with respect to the thermodynamic forces
ZD ,  needs to be invariant under superimposed rigid body
motion; i.e., the dissipative function  must satisfy the axiom
of objectivity [13]. Hence,  is an isotropic function of
scalars and can be expressed by Wang’s representation theorem

[57,58] as

{ZR,ZD} = {I1,I2,I3, . . . ,In}
and

J = ∂

∂ZD
=

n∑
i=1

∂

∂Ii

∂Ii

∂ZD
. (16)

It should be noted here that blk and mkl are pseudo-tensors
while the rest, including θ,k , tdkl , qk , and akl , are normal tensors
[50]. Considering the mixing of pseudotensors and normal
tensors in ZR and ZD for linear constitutive equations, the set
of invariants includes I1 = a(ii), I2 = a(ij )a(ji), I3 = b(ij )b(ji),
I4 = θ,kθ,k , I5 = a[ij ]a[ji], I6 = b[ij ]b[ji], and I7 = eijkbij θk .
Here (· · · ) refers to the symmetric part, [· · · ] indicates the
antisymmetric part, and eijk is the permutation symbol. Hence,
the thermodynamic fluxes can be further derived as

tdkl = td(kl) + td[kl] = ∂

∂a(kl)
+ ∂

∂a[kl]
= ∂

∂I1
δkl + ∂

∂I2
a(kl) + ∂

∂I5
a[kl] = λammδkl + 2μa(kl) + κ(a(kl) + a[kl]),

mkl = m(kl) + m[kl] = ∂

∂b(kl)
+ ∂

∂b[kl]
= ∂

∂I3
b(kl) + ∂

∂I6
b[kl] + ∂

∂I7
eklmθ,m

= αbmmδkl + 1

2
(β + γ )b(kl) + 1

2
(β − γ )b[kl] + αT

θ
eklmθ,m,

qk = ∂

∂θ,k

= ∂

∂I4
θ,k + ∂

∂I7
eijkbij = Kθ,m + αT

θ
eklmb[kl]. (17)

These equations can also be put into matrix form as
⎡
⎢⎢⎢⎢⎣

td(kl)
td[kl]
m(kl)

m[kl]

qk

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

λδkl + 2μ + κ 0 0 0 0
0 κ 0 0 0

0 0 αδkl + 1
2 (β + γ ) 0 0

0 0 0 1
2 (β − γ ) αT eklm

θ

0 0 0 αT eklm

θ
K

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

a(kl)

a[kl]

b(kl)

b[kl]

θ,m

⎤
⎥⎥⎥⎥⎥⎦

(18)

=

⎡
⎢⎢⎢⎢⎢⎣

λδkl + 2μ + κ 0 0 0 0
0 κ 0 0 0

0 0 αδkl + 1
2 (β + γ ) 0 0

0 0 0 1
2 (β − γ ) αT eklm

θ

0 0 0 αT eklm

θ
K

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 (vk,l + vl,k)

1
2 (vl,k − vk,l + 2elkmωm)

1
2 (ωk,l + ωl,k)
1
2 (ωk,l − ωl,k)

θ,m

⎤
⎥⎥⎥⎥⎥⎥⎦

. (19)

Notice the symmetry of this thermodynamic matrix. Equations (19) connect the thermodynamic fluxes and the thermodynamic
forces, and can be referred to as Onsager’s reciprocal relations derived in 1931 [15,16] leading to his Nobel Prize in Chemistry
in 1968. It should be noted that the reciprocity is the condition for the existence of the dissipative potential [59,60]. With further
algebraic manipulation, the linear constitutive equations for the morphing continuum are

tlk = −pδkl + λvm,mδkl + μ(vk,l + vl,k) + κ(vk,l + eklmωm),

mlk = αT

θ
elkmθ,m + αωm,mδkl + βωl,k + γωk,l,

qk = αT

θ
elkmωk,l + Kθ,m, (20)

where μ is the viscosity, λ is the secondary viscosity, κ is the subscale viscosity, γ is the subscale diffusivity, and α and β are
related to the compressibility of the subscale structure. Inserting Eq. (20) in all the balance laws, Eqs. (7)–(10), omitting body
force, and adopting a spherical subscale structure, the MCT governing equations can be rewritten as follows:
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Conservation of mass:

∂ρ

∂t
+ (ρvi),i = 0. (21)

Balance of linear momentum:

ρ

(
∂vk

∂t
+ vivk,i

)

= −pk + (λ + μ)vm,mk + (μ + κ)vk,ll + κekijωj,i .

(22)

Balance of angular momentum:

ρj

(
∂ωm

∂t
+ viωm,i

)

= (α + β)ωm,mk + γωm,ll + κ(emnkvk,n − 2ωm). (23)

Balance of energy:

ρ

(
∂e

∂t
+ vie,i

)
= [−pδkl + λvm,mδkl + μ(vk,l + vl,k)

+ κ(vl,k + elkmωm)](vl,k + elkmωm)

+
(αT

θ
eklmθ,m+αωm,mδkl+βωk,l + γωl,k

)

× ωk,l

+ Kθ,mm. (24)

III. NUMERICAL METHODS

Equations (21)–(24) can be directly discretized and solved
with the classical finite difference method [42]; however,
in order to adopt modern numerical schemes, such as the
finite volume method [48,61], spectral difference method
[43,62,63], spectral volume method [64,65], and others [66],
the governing equations should be cast into the conservation
forms. Chen et al. formulated the conservation form for MCT
as [43]

∂ρ

∂t
+ ∇ · (ρ�v) = 0, (25)

∂ρ�v
∂t

+ ∇ · (�v ⊗ ρ�v)

= −∇p + (λ + μ)∇∇ · �v + (μ + κ)∇2�v + κ∇ × �v,

(26)
∂ρj �ω
∂t

+ ∇ · (�v ⊗ ρj �ω)

= (α + β)∇∇ · �ω + γ∇2 �ω + κ(∇ × �v − 2 �ω), (27)

∂ρE

∂t
+ ∇ · (�vρE) = ∇ · (t · �v) + ∇ · (m · �ω) − ∇ · �q, (28)

where t is the MCT Cauchy stress, m is the MCT moment
stress and �q is the MCT heat flux [cf. Eq. (20)]. In addition, E

is the MCT total energy, defined as the sum of internal energy
density, translational kinetic energy density, and rotational
kinetic energy density as E = e + 1

2 (�v · �v + j �ω · �ω).
Several researchers have started focusing on numerical

methods for MCT [42–45,67]. More specifically, three dif-
ferent numerical schemes have been introduced in the past

few years: (1) the finite difference method with second-
order temporal and spatial accuracy for incompressible flows
[42]; (2) the finite volume method with second-order shock
preserving scheme for compressible flows [48]; and (3) the
high order spectral difference method for compressible flows
[43]. In this study, the finite volume method with second-order
shock preserving scheme is used; it is summarized as follows.

The finite volume method directly implements a numerical
procedure solving the conservation forms of governing
equations. The general form over a control volume can be
expressed as

∂

∂t
+ ∇ · (�v) − ∇ · (�∇) = S, (29)

where  is any physical quantity, ∂
∂t

is the unsteady term,
∇ · (�v) is the convective term, ∇ · (�∇) is the diffusion
term, and S is the source term.

The diffusion term is discretized by the central difference
method and Green-Gauss theorem, i.e.,∫

V

∇ · (�∇)dV =
∮

�A
�∇ · d �A ≈

∑
f

�f
�Af · ∇f ,

(30)

where V is the control volume, �A is the enclosed surfaces with
normal vectors for the control volume, and f indicates each
of thesurfaces in the control volume for calculation.

The convective term was discretized by the second-order
Lax-Friedrich flux splitting method by Kuganov, Noelle, and
Petrova (KNP) [68]; i.e.,∫

V

∇ · (�v)dV =
∮

�A
�v · d �A ≈

∑
f

�Af · �vf f =
∑
f

φf f

(31)

and ∑
f

φf f =
∑
f

[αφf +f + + (1 − α)φf −f −

+ ωf (f − − f +)], (32)

where α is calculated based on the local speed of sound, i.e.,

f + = max(cf +| �Af | + φf +,cf −| �Af | + φf −,0),

f − = max(cf +| �Af | − φf +,cf −| �Af | − φf −,0),

α = f +
f + + f −

,

ωf = α(1 − α)(f + + f −).

(33)

The gradient and curl term is also discretized by the
second-order Lax-Friedrich flux splitting method, similarly
to the convective terms:∫

V

∇dV =
∮

�A
d �A =

∑
f

�Af f , (34)

where the KNP scheme further splits the interpolation proce-
dure into f+ and f− directions, i.e.,∑

f

�Af f =
∑
f

[α �Af + + (1 − α) �Af −]. (35)
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This second-order generalized Lax-Friedrich flux was
implemented in the NS framework. Cheikh and Chen further
demonstrated that this approach also provides a second-order
accuracy in space for MCT [48]. If the discretized equations
are solved in a explicit manner, the unsteady term can be
advanced with a Runge-Kutta method of any order in temporal
accuracy. In this study, a first-order Euler method is chosen for
convenience.

IV. NUMERICAL EXAMPLE: TRANSONIC FLOWS OVER
A THREE-DIMENSIONAL BUMP

There have been numerous studies on turbulence simulation
and analysis with morphing continuum theories since the
1970s [33,35–41,46–49]. Most of the published efforts focused
on the velocity profile with analytical means. With the
assistance of the introduced finite volume method with shock
preserving scheme in Sec. III, a transonic flow of Ma = 0.6
over a three-dimensional bump is simulated and compared
with experimental measurements [69] and NS-based direct
numerical simulation (DNS) results [70].

A. MCT simulation compared with DNS and experiments

The inlet is specified with a turbulent boundary layer flow
with a thickness of δ = 39 mm and the free stream velocity
of M∞ = 0.6. The corresponding Reδ∗ = 500, while Reδ is
6.5 times the value of Reδ∗. The boundary layer flows over
a three-dimensional bump with a height of H = 78 mm. The
NS-based DNS (NS-DNS) study of this problem was reported
and presented side by side with a comparable experiment in
2014 [70]. A MCT-based DNS (MCT-DNS) was performed
following exactly the same setup reported in the NS-DNS
study for the purpose of comparison. The pressure coefficients
from NS-DNS (dashed line) [70], experiment (circle) [69],
and MCT-DNS (solid line) [49] are shown in Fig. 1. It can
be seen that the NS-DNS only captures one experimental
data point over the bump, and is unable to clearly identify
the normal shock. On the other hand, MCT-DNS captures
most of the experimental data points over the normal shock
and agrees better with the experiment. In addition, MCT also
has a better prediction than NS of the pressure coefficient
downstream. It should be mentioned that the deviation between
the experiment and simulation is caused by the separation
point in the flow. Neither NS nor MCT was able to predict
the correct separation point. This inconsistency is due to the
unknown channel surface properties, such as roughness, and
the fluid properties. The fluid used in the experiment was
kerosene, while both NS and MCT simulations focused on
the equivalence of dimensionless parameters comparable with
experiments.

The required computational resources between NS and
MCT are also compared. The NS work adopted a high
order finite difference method with a mesh number totaling
∼5.4 × 107 [70]. On the other hand, MCT was solved with
a second-order finite volume method with a shock preserving
scheme and using a mesh number of ∼4.5 × 106. With less
than 10% of the cell number required in DNS, MCT was able
to yield a better prediction of shock position and the pressure
profile in the downstream turbulence. The multiscale nature

FIG. 1. Pressure coefficient comparison among experiment, DNS
and MCT along the centerline on the bump.

of MCT provides a rigorous framework coupling one level of
motion for macroscale translation and another one for subscale
eddy rotation. Therefore, there is no need for an arbitrarily
fine mesh to capture the subscale motion. In MCT, most of
the subscale motions are captured by the additional degrees
of freedom (gyration) at subscale. Part of these results were
reported in AIAA Aviation 2017 [49]. Unlike the classical
Reynolds-averaging numerical simulation (RANS) or large
eddy simulation (LES), MCT does not require any turbulence
models. The numerical solution of MCT is acquired in the
same fashion of direct numerical simulation for NS equations.
The flows at subscales are resolved by the additional degrees
of freedom, gyration.

With a successful prediction from MCT, it is necessary to
provide a tool to visualize the classical hairpin eddy structure
in turbulence. However, the classical velocity-based criteria
have been criticized for inconsistency and the limitation of
being only Galilean invariant [19]. The multiscale MCT can be
further developed into a visualization tool with objectivity (or
frame indifference) and similar physical meanings provided
by the classical criteria.

B. Objective description of vortex visualization

Speziale devoted part of his career laying down the
fundamentals of objectivity, and investigated the requirment of
objectivity over Galilean invariance for turbulence simulation
[20–22,71,72]. More recently, Haller showed the inconsistency
of vortex identification with the classical velocity-gradient-
based approaches and emphasized the importance of the
objectivity or frame-indifference for vortex visualization [19].
The classical Q criterion under the NS framework relies on
the second invariant of the velocity gradient, e.g., 2IIa =
vi,ivj,j − vi,j vj,i = �ij�ji − SijSji , where vi,j is the velocity
gradient, Sij = 1

2 (vi,j + vj,i), and �ij = 1
2 (vi,j − vj,i). It has
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been proven that the symmetric part of velocity gradient, Sij ,
is objective; however, the antisymmetric part, �ij , is only
Galilean invariant.

The objectivity or frame indifference emphasizes the
invariance between two reference frames. Let a rectangular
frame, M , be in relative rigid motion with respect to another
one, M ′. A point with rectangular coordinate xk at time t in M

will have another rectangular coordinate x ′
k at time t ′ in M ′.

Since the reference frames are in rigid motion with respect to
each other, the motion between two frames can be described
as x ′

k(t ′) = Qkl(t)xl(t) + bk(t) where Qkl(t) is the rigid body
rotation matrix between two frames and bk(t) is the translation
between two frames. If the time derivative is performed on
motion, it leads to v′

k(t ′) = Q̇kl(t)xl(t) + Qkl(t)vl(t) + ḃk(t).
The velocity gradient between two frames can then be found
as v′

k,m(t ′) = Q̇kl(t)Qml(t) + Qkl(t)Qmp(t)vl,p(t).
Therefore, the symmetric part of the velocity gradient

between two frames is proven to be objective by S ′
km =

1
2 [v′

k,m(t ′) + v′
m,k(t ′)] = Qkl(t)Qmp(t) 1

2 [vl,p(t) + vp,l(t)] =
Qkl(t)Qmp(t)Slp where Q̇kl(t)Qml(t) + Q̇ml(t)Qkl(t) = d

dt

QmlQkl = d
dt

δkm = 0.
Nevertheless, the antisymmetric part is found to be �′

km =
1
2 [v′

k,m(t ′) − v′
m,k(t ′)] = Qkl(t)Qmp(t)�l,p + 1

2 [Q̇kl(t)Qml(t)
− Q̇ml(t)Qkl(t)]. If the rotation matrix Qkl is no longer time
dependent, i.e., Q̇kl(t)Qml(t) = Q̇ml(t)Qkl(t) = 0, �kl is
invariant. In other words, the antisymmetric part is Galilean
invariant and only stays invariant between two frames with
translation.

In MCT, the Cauchy stress is related to the velocity
gradient and gyration through an objective strain-rate tensor,
akl = vl,k + elkmωm and a′

mn = QmkQnlakl . The objectivity
of akl can be proven through a process similar to that
in the aforementioned paragraph on velocity gradient. The
orientation of inner structure is described by the director tensor,
χkK [cf. Eq. (1)]. The director and its time derivative between
two frames with rigid body motions can be written as

χ ′
kK (t ′) = Qkm(t)χmK (t),

χ̇ ′
kK = Q̇kmχmK + Qkmχ̇mK, (36)

elkmω′
mχ ′

lK = Q̇kmχmK + QkmeambωbχaK,

where χ̇mK = eambωbχaK , ωb is the rotational velocity of an
inner structure. After multiplying another director tensor on
Eq. (36) and utilizing the identity in Eq. (2), one can obtain

emkpω′
p = Q̇kpQmp + QmaQkteatbωb. (37)

From the previous paragraph, one can recall the velocity
gradient described in two frames are related as

v′
m,k = Q̇mpQkp + QmaQktva,t . (38)

Therefore, one can see that

(v′
m,k + emkpω′

p) = QmaQkt (eetbωb + va,t ) (39)

since d
dt

(QkpQmp) = d
dt

δkm = 0. Equation (39) proves that the
strain rate tensor, akm, is objective.

As opposed to using the velocity gradient in NS equations
for vortex identifications with Q criterion, MCT relies on the
strain rate tensors. The classical Q criterion with the velocity

gradient can be found as the second invariant of the ve-
locity gradient, i.e., Q = 1

2 (vi,ivj,j − vi,j vj,i) = 1
2 (�ij�ji −

SijSji), where Sij is the symmetric part and �ij is the
antisymmetric part of the velocity gradient. Following a similar
derivation, the MCT strain rate tensor can also be divided into
a sum of a symmetric and antisymmetric parts:

SMCT
ij = 1

2 (aij + aji) = 1
2 (vj,i + vi,j ), (40)

�MCT
ij = 1

2 (aij − aji) = 1
2 (vj,i − vi,j + 2ejimωm). (41)

It should be emphasized that, since aij is objective, the addition
or subtraction between objective tensors, e.g., SMCT

ij and �MCT
ij ,

remain objective. As a result, an objective Q criterion for MCT
is proposed as the second invariant of the strain rate tensor, aij ,
i.e.,

QMCT = 1
2 (aiiajj − aij aji)

= 1
2 (vi,ivj,j − vj,ivi,j − 2vj,ieijmωm + 2ωmωm)

= 1
2

(
�MCT

ij �MCT
ij − SMCT

ij SMCT
ij

)
. (42)

Using Cartesian coordinates, the objective Q criterion can
be written as

QMCT = vx,xvy,y + vx,xvz,z + vy,yvz,z

− (vx,yvy,x + vx,zvz,x + vy,zvz,y)

− (vy,x − vx,y)ωz − (vx,z − vz,x)ωy

− (vz,y − vy,z)ωx + ω2
x + ω2

y + ω2
z . (43)

The symmetric part is the same as the one in NS theory
showing the normal expansion of the flow behaviors. However,
the physical meaning of the antisymmetric part, �MCT

ij , should
be understood as absolute rotation. The off-diagonal part
of an antisymmetric matrix can be represented by a vector.
Therefore, one can rewrite the antisymmetric part as a vector
of absolute rotation (�AR

k ), i.e.,

�AR
k = eijk�

MCT
ij = eijkvj,i − 2ωk ∼ ∇ × �v − 2 �ω. (44)

The first half of the �AR
k is vorticity (∇ × �v) describing the

relative rotation between two inner structures while the second
half ( �ω) is the self-spinning of an inner structure. In other
words, �AR

k measures the phase shift or the rotational speed
difference between the relative rotation and the self-spinning
motion. This is the true rotation between two inner structures
in a continuum and it does not change even when observed
from different reference frames. If �AR

k is zero, it implies that
the relative revolution between two inner structures is equal
to the self-spinning motion. Therefore, two inner structures
always face each other with the same side, like the Earth and
the Moon. Without a global coordinate, the inner structure
behaves as if there is no motion. Mathematically, �AR

k = 0
reduces MCT back to NS equations [73]. This mathematical
relation implies that if one believes vorticity can completely
resolve all possible rotation without self-spinning gyration, NS
theory and MCT are equivalent.

We note that Truesdell followed the momumental work
by Grad [26] and derived a balance law of internal rotation
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FIG. 2. Hairpin eddy structure identified by the objective Q

criterion with MCT.

[4,5]. De Groot and Mazur also discussed a similar governing
equation in their book [17]. The concept of the internal
rotation is similar to the new degrees of freedom, gyration,
in MCT. However, De Groot and Mazur derived the balance
law from a mechanics perspective, so the time evolution of
the intrinsic rotation is only governed by the antisymmetric
part of Cauchy stress, i.e., ekij tij in Eq. (9). On the other
hand, the constitutive equation of gyration in MCT was derived
from the classical nonequilibrium thermodynamics. Therefore,
there is an additional moment stress, i.e., mlk,l in Eq. (9).
Consequently, there is a dissipation or diffusion mechanism in
the balance law of angular momentum, i.e., ωk,ll in Eq. (23).
The diffusion of gyration leads to heat and eventually the
irreversible entropy generation.

Figure 2 shows the isosurface of the objective Q criterion
for the coherent eddy structure in transonic flow over a three-
dimensional bump. The isosurface is colored by the magnitude
of the absolute rotation (�AR

k ). The hairpin structures of the
eddies are clearly seen without being limited by the Galilean
invariance.

V. CONCLUSION

This work reviews the development of morphing continuum
theory from both mathematical and physical perspectives. The
complete MCT framework is derived under the framework of
rational continuum mechanics for turbulence with subscale
eddy structures. A second-order finite volume method with
second-order shock preserving scheme is summarized along
with the recent developments on the numerical methods for
MCT.

A case of a transonic turbulence over a three-dimensional
bump is compared among the MCT, NS theory, and exper-
iments. With less than 10% of the mesh number required
in NS-DNS, MCT-DNS provided a better prediction of the
pressure coefficient and the pressure profile in the downstream
turbulence. It shows that the multiscale MCT does not require
an arbitrarily fine mesh to resolve the subscale eddy motions.
Instead, the subscale eddy motions are captured by the
additional degrees of freedom, e.g., gyration.

In addition, MCT allows for an objective or frame-
indifferent G criterion for eddy or vortex identifications. The
classical NS-based Q criterion is only Galilean invariant. It
changes when the reference frames becomes time dependent.
The newly proposed MCT-based Q criterion does not have this
limitation, and provides sound results for the coherent hairpin
eddy structure in supersonic turbulent flows over a bump.

Future works should be directed at investigating the energy
transfer phenomena, shock structure, and other essential
characteristics in highly compressible turbulence with the mul-
tiscale framework of MCT and an affordable computational
resources.
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