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Limit regimes of ice formation in turbulent supercooled water
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A study of ice formation in stationary turbulent conditions is carried out in various limit regimes of crystal
growth, supercooling, and ice entrainment at the water surface. Analytical expressions for the temperature,
salinity, and ice concentration mean profiles are provided, and the role of fluctuations in ice production is
numerically quantified. Lower bounds on the ratio of sensible heat flux to latent heat flux to the atmosphere are
derived and their dependence on key parameters such as salt rejection in freezing and ice entrainment in the water
column is elucidated.
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I. INTRODUCTION

Ice production in polar oceans usually occurs in the
presence of turbulence and wave motions induced by strong
winds. This prevents the formation of a continuous ice layer
at the sea surface in the initial phases (thin ice films, called
nilas, are indeed observed in very calm conditions). A slurry of
ice crystals, with a characteristic milky or greasy appearance,
called grease ice, is generated instead. The ice crystals, called
frazil crystals or frazil ice, have diameters ranging from 0.01
up to ∼4 mm and thickness from 1−100 μm [1]. If the wind is
sufficiently strong, the frazil ice may be blown away, leaving
the water surface exposed to the cold air, thus enhancing the
ice production and the heat transfer to the atmosphere [2].
Agglomeration of the frazil crystals first into pancake-shaped
objects (so-called pancake ice [3]) and then into larger floes,
leads eventually to the formation of a compact ice layer.

Frazil ice is typically present in the marginal ice zone, which
is the transition region between the open polar ocean and the
continuous ice that covers the central basin, but is also present
under ice shelves, in polynyas, and in leads. Ice production
is accompanied by salt rejection, and is thus believed to play
an important role in stimulating convection in ocean waters.
Frazil ice may also contribute to transport of nutrients and
other trace elements entrained in its body [4,5].

Frazil ice formation is a complex phenomenon in which
many physical processes play a relevant role [6]. We can list
the most important ones.

(i) Small droplets and foam are continuously lifted up from
the water surface and freeze in contact of the cold air. When
they return to the water column they act as primary ice seeds.

(ii) If the upper layers of the ocean are sufficiently
supercooled, ice crystals grow out of the seeds and reach size
up to the millimeter range. New seeds are generated through
fragmentation induced by collisions with other crystals (sec-
ondary nucleation).

(iii) Part of the crystals are entrained by the turbulence and
are transported down the column. Additional ice production
may take place away from the surface if the supercooling is
sufficient. Field data indicate that underwater frazil ice and
significant supercooling in the water column may indeed be
present down to depths of 5–50 m (see, e.g., Ref. [7]).
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Theoretical models for the growth and transport of frazil ice
have been developed over the years. In the one-dimensional
(1D) theory of Omstedt and Svensson [8], the upper ocean
was modeled as a turbulent Ekman layer with the sea-ice
mixture treated as a continuum. This model was improved
in Refs. [9,10] to take into account the size spectrum of
the crystals. Ice production under ice shelves was studied
in Ref. [11], adopting a Boussinesq-like approximation. This
latter study was later extended in Ref. [12] to account for
the size spectrum of the frazil crystals. A detailed study of
the precipitation of the frazil crystals on the shelf was carried
out in Ref. [13]. The dynamics of frazil ice was included in
regional ocean models [14]. Large eddy simulations (LES)
were utilized in Ref. [15] to study the frazil ice dynamics
under polar ice covers and leads, but no account was taken
of the size distribution of the ice crystals. Only recently there
has been some attempt to include such information in LES of
frazil ice formation in open ocean [16].

Due to the complexity of the process, all these models
necessarily rely on parametrization of small-scale phenomena
and on the introduction of empirical constants. In such
circumstances, it may be of some interest to look for limit
regimes in which a reduced number of parameters is at
play and identification of key physical aspects is simpler.
This is precisely the strategy adopted in the present paper.
The analysis will focus on the constraints imposed by the
conservation laws and the thermodynamics of the process. The
case of a homogeneous domain is examined first, analyzing the
relative importance of salinity and heat release in ice formation
in controlling supercooling. The analysis shifts then to the
real problem, i.e., ice production in a water column that is
mechanically forced and simultaneously cooled down at the
top surface. Lower bounds on the ratio of sensible to total
heat flux to the atmosphere, valid in stationary conditions, are
derived. Predictions on the depth of the supercooled region
and on the depth reached by frazil ice are provided.

II. ICE PRODUCTION: BUDGET EQUATIONS

Let us start by considering ice formation at constant pres-
sure in a thermally isolated, initially supercooled volume of
salt water. The water is stirred vigorously to maintain uniform
conditions and to ensure that only small ice crystals are
present. The volume is taken small enough for complications
associated with differences between temperature and potential
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temperature, and with the depth dependence of the freezing
point, to be negligible.

We know that a variation δC in the volume fraction of ice
leads to a heat release per unit volume in the liquid phase,

δQL = LρiδC, (1)

where L is the latent heat of fusion per unit mass of ice and ρi

is the ice density. This will produce a temperature increase in
the liquid phase,

δT = (ρ̂L/cP )δC, (2)

where we have indicated with

ρ̂ = ρi/ρw � 0.89 (3)

the density ratio of ice and water, and cP is the water
specific heat (we consider a small C regime such that the ice
contribution to the ice capacity of the medium is negligible;
we also neglect the contribution to the heat flux from the
temperature difference between the liquid phase and the ice
[13], as it is much smaller than that from the latent heat).

During freezing a fraction β ≈ 1 of the salt that was in the
water forming the crystals is expelled to the surroundings [6].
The local salinity can be expressed as the sum of a reference
salinity SR = 35 g/kg and a deviation S that is expected in
most situations to be small. A volume fraction increase δC

in the ice thus corresponds to a decrease ρ̂δC of the liquid
volume fraction, and to a release of salt per unit volume

δS = ρ̂βSRδC. (4)

The water freezing temperature decreases for increasing
pressure (depth) and salinity content. For small deviations,
we have a linear relation [6]

Ti = −aSS + azz, (5)

where −z is the depth and Ti is the deviation of the freezing
temperature from the reference value TiR � −2.09 ◦C at
salinity SR and zero depth. Similarly, T will indicate from
now on the deviation of the water temperature with respect to
TiR , i.e., the supercooling at salinity SR and zero depth.

The decrease of the freezing point from creation of a volume
fraction δC of ice is

δTi = −ρ̂aSβSRδC. (6)

The supercooling in a water volume with initial supercooling
T0 − Ti0 and no ice, will be therefore, after formation of an ice
volume fraction C,

T − Ti = T0 − Ti0 + (aSŜR + L̂)C, (7)

where

ŜR = ρ̂βSR and L̂ = ρ̂L/cP . (8)

From Table I we find aSŜR � 1.76 ◦C and L̂ � 75.5 ◦C.
Warming from latent heat release is more effective in de-
stroying supercooling than freezing point lowering by salinity
increase. This implies that ice production can be sustained
longer more effectively by cooling down the mass of water
than by removing salt.

We can determine the ice volume fraction that can be gen-
erated starting from given supercooled condition by equating

TABLE I. Physical parameters for salt water at reference temper-
ature TB = −2.09 ◦C, and total salinity SR = 35 g/kg.

aS � 0.0565 ◦C/(g/kg) haline lowering of freezing point
az � 7.61 × 10−4 ◦C/m lowering of freezing point with depth
αT � 3.79 × 10−4 m/(◦C s2) thermal buoyancy coefficient
αS � 7.6 × 10−3 m/[(g/kg) s2] haline buoyancy coefficient
αC � 1 m/s2 ice buoyancy coefficient
cP � 3947 J/(kg ◦C) water specific heat.
L � 3.35 × 105 J/kg specific latent heat of fusion.
ρw � 1030 kg/m3 reference water density.
ρi � 920 kg/m3 ice density.

to zero the final supercooling T − Ti . From Eq. (7), we find

Csat = Ti0 − T0

L̂ + aSŜR

. (9)

For an initial supercooling T0 − Ti0 = −0.1 ◦C of the order
of what is observed in wave-tank experiments [17], and
considered as maximum transient supercooling in several
models (see, e.g., Refs. [10,15,16]), we would get an ice
volume fraction at saturation Csat � 0.0013. Is it big or is
it small? For a monodisperse suspension of disks of aspect
ratio ε, the maximum volume fraction compatible with random
orientation of the disks is C ∼ ε. This is what would be
obtained if each volume of the fluid of size ∼R3, with
R the radius of the disks, contained on the average one
disk. Higher volume fractions could be achieved (maintaining
random orientation) if smaller crystals filled the gaps among
the disks to form a mortarlike assembly. An estimate of the
aspect ratio of typical frazil crystals is ε ≈ 1/50 [12,13],
which would lead to a threshold volume fraction for grease
ice Cg ≈ 1/50. Higher volume fractions would correspond
to more compact ice mixtures, with the transition to solid
ice occurring at C ≈ 0.3 [18]. Field measurements suggest a
typical volume fraction of grease ice Cg = 0.2–0.3 [19,20].
Even the lower estimate Cg ≈ 1/50 is an order of magnitude
above the saturation concentration Csat predicted by Eq. (9) at a
supercooling T − Ti ≈ −0.1 ◦C. Transport of heat and salinity
away from the production region, together with accumulation
of the ice crystals, are therefore necessary for a grease ice layer
to be established.

III. TRANSPORT

We follow Refs. [8,13,15] and others, and coarse grain the
dynamics at a scale such that the frazil ice can be treated as
a continuum, described locally by the volume fraction field
C(r,t), which is supposed small throughout the analysis (for
extension to a large C regime, see, e.g., Ref. [21]). Momentum
transport is described by the Navier-Stokes equation, which in
the Boussinesq approximation reads

(∂t + u · ∇)u+(1/ρw)∇P = ν∇2u + (αT T + αCC−αSS)ẑ

(10)

(we take the reference system with origin at the water surface,
and the vertical z axis upward directed). The ice buoyancy
coefficient can be expressed in terms of the ice density
ratio as αC = g(1 − ρ̂) � 1 m/s2, where g � 9.8 m/s2 is the
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FIG. 1. Rise velocity ur as a function of the particle radius for
different values of the aspect ratio: ε = 1/100 (bottom curve); ε =
1/50 (middle curve); ε = 1/30 (top curve).

gravitational acceleration. The values of the other coefficients
αT and αS are listed in Table I. The kinematic viscosity of salt
water is ν � 1.95 × 10−6 m2/s.

We can determine the contribution to buoyancy that would
be produced by a local increase δC in the ice volume fraction.
Using Eqs. (2) and (4) to estimate the local increments of
temperature and salinity:

αT δT

αCδC
≈ 0.03, and

αSδS

αCδC
≈ 0.24. (11)

This tells us that, while the dominant contribution to ice
production saturation comes from latent heat release, the
dominant contribution to convection comes directly from ice
loading, followed by salinity.

The three fields T , S, and C are governed by equations (see,
e.g., Ref. [8])

(∂t + u · ∇)T = κT ∇2T + 
T , (12)

(∂t + u · ∇)S = κS∇2S + 
S, (13)

[∂t + (u + ur ) · ∇]C = 
C, (14)

where 
T , 
S , and 
C are production terms whose form will
be specified below.

The diffusivity coefficients in Eqs. (12) and (13) are
κT � 1.4 × 10−7 m2/s, and κS � 7.4 × 10−10 m2/s, and
the molecular diffusivity of the ice crystals is disregarded.
Note that we have included in the equation for the ice fraction
the rise velocity of the crystals relative to the surrounding
water, ur = ur ẑ. This is necessarily an average, as crystals of
different size and aspect ratio will have different rise velocity.
Gosink and Osterkamp [22] provided model equations for ur ,
in the case of individual crystals, as a function of their radius
and thickness. A plot of such dependence is shown in Fig. 1.

The production terms can be taken in the form, from Eqs. (2)
and (4):


C = �C; 
S = ŜR�C; 
T = L̂�C. (15)

Usually, a linear dependence of the growth rate � on the
supercooling is assumed,

� = γ (Ti − T ). (16)

The parameter γ depends on the size distribution and the
morphology of the crystals [23–25]. Some authors [11,13]
hypothesize an asymmetry between melting and freezing rates,
γT >Ti

∼ ε−1γT <Ti
. In general γ can be interpreted as the inverse

time, normalized to the supercooling, required by a crystal to
reach mature size. In the case of a monodisperse distribution,
with aspect ratio of the crystals ε, γ can be evaluated, following
Refs. [23–25]

γ ≈ γ̂ /R2, γ̂ = γ̂ (ε). (17)

Different authors provide different estimates for the parameter
γ̂ . A widely used approximation [11,13,14] is the one from
Ref. [24], γ̂ ≈ 3.7 × 10−9 m2(◦C s)−1; a value higher by a fac-
tor ∼(ε ln ε)−1 is suggested in Refs. [23,25], with experimental
support for the latter choice in Ref. [26]. The two choices
would give for frazil crystals of radius R = 1 mm and aspect
ratio ε = 50, γ ≈ 0.0037 (◦C s)−1, and γ ≈ 0.04 (◦C s)−1,
respectively.

IV. A STATIONARY MODEL

It is likely that a significant portion of grease ice forms
during an initial transient in which supercooling is strong [8].
After this, a quasistationary regime can be expected, although
this is necessarily an idealization, since external conditions
(say weather patterns) vary on the same time scale of the
process itself. An approximation of statistical stationarity
could nevertheless be used to describe the faster processes
taking place near the water surface.

We envision a situation in which ice is formed primarily at
the water surface. Part of this ice may be blown away by the
wind, part of it accumulates at the surface to form a grease ice
layer, and part of it is entrained in the water column. Additional
ice formation may take place in the water column provided
supercooling is sufficient. The depth of the supercooled region
will depend on the ratio between the removal rate of frazil
ice by turbulence and the rate of latent heat release during ice
growth. The depth reached by the frazil ice will depend on
the turbulence intensity, the rise velocity of the crystals, and
the depth of the supercooled region. Whether and where such
additional ice forms, however, is difficult to ascertain in field
observations [7].

We consider the model situation of an infinitely deep,
horizontally homogeneous water body cooled from above
in stationary conditions. We assume that no ice is present
at sufficient depth. This leads us to expect supercooling
decreasing with depth both at the top of the column and in
the ice-free region. We use these assumptions as boundary
conditions in the ice production problem.

In the analysis that follows we disregard the pressure
contribution to Ti [the azz term in Eq. (5)]. For a supercooling
scale |T − Ti | ∼ 0.1 ◦C, this means restricting the analysis to
the top few tens of meters of the physical water column.

Information on the way the heat, salinity, and frazil ice
fluxes get organized in the domain can be obtained from simple
budget considerations. Ice formation leads to a downward
directed salinity flux in the ice-free region, B

S , and to a
latent heat contribution to the heat flux to the atmosphere
L

T . A schematic of the processes is illustrated in Fig. 2. From
Eqs. (1) and (4), we can express the latent heat flux in terms
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FIG. 2. Sketch of the heat, salinity, and ice fluxes generated
during buildup of a grease ice layer. The heat flux to the atmosphere
is split into latent heat L

T and sensible heat B
T contributions. The
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of the salinity flux,

L
T = −(L̂/ŜR)B

S (18)

(we express heat fluxes in units ◦C m/s; conversion to natural
units, W/m2, is achieved by multiplication with ρwcP ). Putting
together with the sensible heat flux B

T , which coincides with
the total heat flux in the ice-free region, we get the total heat
flux to the atmosphere

tot
T = B

T − (L̂/ŜR)B
S . (19)

We can then introduce supercooling and neutral temperature
fields (we focus on a condition in which the pressure
contribution to Ti can be disregarded)

To = T + aSS (20)

and

Tn = T − (L̂/ŜR)S (21)

(note that To < 0 in supercooled regions). As can be checked
from Eqs. (12) and (13), To and Tn are decoupled, with only
To feeling the effect of ice formation and melting. The flux
Tn

= T − (L̂/ŜR)S is therefore conserved. We find from
Eq. (19),

Tn
= tot

T . (22)

The temperature and salinity contributions to buoyancy can
be expressed in terms of the fields To,n: T − (αS/αT )S �
const. − 8.05 To + 9.05 Tn. We note that fixed Tn, a super-
cooled condition at large depth, will be less stable than one in
which the bottom is above freezing.

The condition ∂zT̄
B
o < 0 leads to the requirement that the

supercooling flux in the ice-free region is upward directed [27]

B
To

≡ B
T + aS

B
S > 0. (23)

Equation (23) tells us that the ratio B = B
T /tot

T of sensible
to total heat flux cannot be zero, the minimum value being

Bmin = aSŜR

L̂ + aSŜR

. (24)

From Eq. (8),Bmin is an increasing function of the brine release
coefficient β and is maximum for β = 1, Bmin � 0.025. The
smallness ofBmin has origin in the smallness of the contribution
to supercooling destruction from salinity release with respect
to latent heat release in ice formation [see Eqs. (7) and (8) and
following discussion]. The maximum value B = 1 describes a
situation in which L

T = 0 and there is exact balance between
ice production and melting.

A. Frazil ice fluxes in the water column

Frazil ice in the water column acts as a sink term for the
supercooling field To. Equations (2) and (4) yield conservation
of the flux

X = To
− (L̂ + aSŜR)C, (25)

which is associated with the field

X = To − (L̂ + aSŜR)C. (26)

A formula analogous to Eq. (22) can be derived,

X = B
To

. (27)

As in the case of Tn, the field X is not affected by ice
production.

The frazil ice flux C in the water column is the sum of the
contributions by deposition and turbulent entrainment,

C = C̄ur + ũzC̃ (28)

(overbar and tilde indicate average and fluctuating compo-
nents). The flux on the top of the column, top

C , will be positive
if deposition C̄ur dominates. At stationarity, positive 

top
C

necessarily corresponds to ice production exceeding melting
in the water column.

Let us introduce the ratio E of the frazil flux at the top of
the column, taken with minus sign, −

top
C , and the total ice

production L
T /L̂. The two regimes E > 0 and E < 0 describe

dominant entrainment and dominant deposition, respectively.
In terms of the parameter B,


top
C = (E/L̂)(B − 1)tot

T . (29)

Note, from positive definiteness of the deposition flux, that we
must have E � 1.

The assumption ∂zT̄
top
o < 0 allows us to refine the bound in

Eq. (24). From Eq. (25) and the condition that no ice is present
at large depth, we find


top
To

= B
To

+ (L̂ + aSŜR)top
C > 0. (30)

The salinity flux in the ice-free region, B
S , can be expressed

in terms of the latent heat flux tot
T − B

T = Tn
− B

T :
B

S = (ŜR/L)(B
T − Tn

). Substituting into the supercooling
and neutral fluxes in the ice-free region, B

To
= B

T + aS
B
S

and Tn
= B

T − (L̂/ŜR)B
S , and eliminating B

T , allows us
to write

Tn
= 1 − Bmin

B − Bmin
B

To
, (31)
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where use has been made of Eqs. (22) and (24). Substituting
into Eq. (30) and exploiting Eq. (29) finally gives

B > B̄min(E) = Bmin + E
1 + E . (32)

In the limit B → B̄min(E), all of the supercooling flux B
To

is

utilized to melt the frazil ice in the column, and 
top
To

= 0. For
E = 0 (balance of entrainment and deposition), we recover
the bound in Eq. (24). The same situation occurs for E < 0
(deposition dominant with respect to entrainment), in which
case the bound in Eq. (24) becomes stronger than the one in
Eq. (32). In the limit case in which all the ice is entrained in
the column, the sensible heat flux must be at least a fraction
B̄min(1) � 1/2 of the total heat flux.

V. GREASE ICE LAYER

In order for ice production to be maintained in the grease ice
layer—if at all present—it is necessary that the salt released
in the process is efficiently transported down the layer and
dispersed in the water column. Due to the high viscosity
of the medium (νg � 0.01 m2/s [28]), turbulent transport is
negligible. Wave-induced random motions at the scale of the
ice crystals, however, are likely to enhance transport with
respect to the case of a pure fluid in analogous conditions.
Some analytical progress is possible if we assume that this is
the dominant mechanism of transport, with identical diffusivity
for heat and salinity κg 	 κT,S .

The transport equations derived in Sec. III can be extended
to the finite C conditions characteristic of grease ice. We
continue to assume stationary conditions, in such a way that
all the heat produced during ice formation is transferred to the
liquid phase and carried away by diffusion. Equations (12) and
(13) become

∂z(κg∂zT̄ ) + L̂�C̄ = 0, (33)

∂z(κg∂zS̄) + ŜR�C̄ = 0, (34)

where T̄ and S̄ refer to the liquid phase and a volume factor
1 − C̄ is incorporated in κg .

The rate of ice formation is determined by the removal of
heat and salt in the region around the crystals. We expect that
the equations governing transport at the microscale be linear
in T and S [29], so that for small To, � ≈ −γgTo, with γg a
constant dependent on C and on the crystal geometry. We can
obtain from Eqs. (33) and (34), equations for To and Tn:

∂z(κg∂zT̄o) = L̂γgC̄T̄o and ∂z(κg∂zT̄n) = 0. (35)

We identify in the first of Eq. (35) a characteristic length

l ≈
(

κg

γgL̂C̄

)1/2

, (36)

which we allow to depend on z on scale h. We can make
some estimates from parameters valid in the dilute regime.
Taking γg ≈ 0.04 (◦C s)−1, and C̄ ≈ 0.2, we obtain l values
ranging from millimeters (for κg ≈ κT ) to tens of centimeters
(for κg ≈ νg ≈ 0.01 m/s2).

Of the two relevant limits l 
 h and l 	 h, only the first
is of some interest. For l 	 h, it is easy to see by Taylor

expanding Eq. (35), that ice production in the grease ice layer
contributes to the heat flux with an O(h/l) correction, so that,
in the absence of ice formation in the water column, B � 1.
The interest of the opposite limit regime l 
 h lies in the
fact that it allows an easier interpretation of the lower bound
in Eq. (24). Let us consider first the case T̄ (−h) = 0 (no ice
formation or melting at the bottom of the layer).

Equation (35) has solution, for z 	 −h,

T̄o(z) = T̄o(0) ez/l0 + T (e−z/l − ez/l0 ), (37)

T̄n(z) = T̄n(0) + T̄ ′
nz, (38)

where l0 ≡ l(0). In the regime l 
 h, T �
−T̄o(0) exp[−2

∫ 0
−h

dz/l(z)] � 0, and the second constant T ′
n

in Eq. (38), is fixed by imposing that there is no salt flux to
the atmosphere, S̄ ′(0) = 0. This gives

T̄ ′
n = T̄o(0)/l0. (39)

The fact that there is no supercooling at −l 	 z 	 −h,
T̄o(z) = 0, implies that temperature and salinity are dominated
by T̄n and have a linear profile [see Eq. (38)]. We can calculate
the heat and salinity fluxes T = −κgT̄

′ and S = −κgS̄
′ in

this region. Substituting Eq. (39) and the condition T̄o(z 

−l) = 0 into Eqs. (20) and (21), we get

T = −κgBminT̄o(0)/l0; (40)

S = (1 − Bmin)κgŜRT̄o(0)/(L̂l0). (41)

Since T̄o(−h) = 0, there will be no melting at the bottom
surface and the heat flux right below will still be given by
Eq. (40). If the water in that region is ice free, the heat flux
will coincide with the sensible heat flux B

T and by exploiting
(39) and (22) we obtain B

T = Bmin
tot
T . Thus B = Bmin and

the latent heat contribution to the heat flux to the atmosphere
is maximum. A situation in which B > Bmin corresponds to
ice melting at the bottom of the layer, with the difference
(B − Bmin)tot

T giving precisely the heat required for melting.
The same situation would arise if T̄o remained close to zero at
z = −h, but frazil ice was entrained by turbulence and melted
down upon reaching the region with T̄o > 0 at the bottom of
the column. The interpretation of (B − Bmin)tot

T as a melting
heat is clearly lost if the grease ice is so thin that it loses its
insulating properties and the excess heat is transferred to the
atmosphere.

VI. WATER COLUMN

Frazil ice production requires strong winds. A minimum
wind velocity uwind = 4.35 m/s at 10 m above the water
surface was suggested in Ref. [20] as a necessary condition
for frazil ice formation. A turbulent boundary layer forced
both by mechanical stress and convection induced by heat and
salinity fluxes is thus expected to exist below the grease ice
layer.

An estimate of the friction velocity u∗ generated under the
water surface by the wind stress was provided in Ref. [20],

u∗ ≈ A[ρ̂air(1 + uwind/ū)]1/2uwind, (42)
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where ρ̂air ≈ 10−3 is the air water density ratio, and A and
ū are empirical constants: A = 0.028 and ū = 12.3 m/s. A
ten-meter wind velocity uwind = 10 m/s would lead to a friction
velocity

u∗ ≈ 0.01 m/s. (43)

The strength of the convective forcing can be estimated from
the heat flux to the atmosphere. Estimates of the heat flux
during frazil ice production events fall in the range

tot
T = 2.5 × 10−5–10−4 ◦C m/s, (44)

corresponding in energy units to ρwcP tot
T = 100–1000 W/m2

[8,16,20]. From Eqs. (43) and (19) we can define an Obukhov
depth signaling transition from a mechanical stress dominated
to a thermal convection dominated turbulent region

LT = u3
∗

αT tot
T

= 10–100 m (45)

(this is clearly a lower bound since the heat flux responsible
for convection is only a fraction of T ). The Obukhov depth
is going to be reduced by salt release in ice formation. If all
the heat ceded to the atmosphere came from ice formation we
would get

LS = L̂u3
∗

αSŜRtot
T

= 1–10 m, (46)

which tells us that already 1/10 of tot
T coming from ice

formation would be sufficient to invalidate Eq. (45). The
estimate in Eq. (46) would be further reduced if ice were
transported down the column together with the brine,

LC = L̂u3
∗

αCtot
T

= 0.3–3 m. (47)

Note, from the second of Eq. (11), that transport down the
column of just 1/4 of the ice produced at the surface, would be
sufficient to counterbalance the destabilizing effect of salinity
production.

VII. TURBULENT BOUNDARY LAYER

We assume that a well-developed mechanical boundary
layer, in which the feedback by C, To, and Tn on the turbulence
can be disregarded, exists. We focus on a low-entrainment
regime, E 
 1, such that the depth of the boundary layer is
correctly estimated by LS . The friction velocity u∗ and the
Obukhov length LS provide the natural scales for the velocity
fluctuations in that region. A natural scale for the reacting
fields C and To is the supercooling flux in the ice-free region,
B

To
≡ X .

We rescale quantities in terms of LS , u∗, and X :

z → LSz, t → (LS/u∗)t,To,n → (X /u∗)To,n,

C → [u∗(L̂ + aSŜR)]−1XC. (48)

After rescaling, X = To − C. It is convenient to introduce the
reacting field

Y = To + C. (49)

The ice dynamics is simplified considering that only crystals
with uR 
 u∗ are transported down the column (we are

not interested here in the determination of the deposition
fluxes at the surface, which would require studying the
dynamics of the crystal size spectrum). We thus neglect
ur in Eq. (14). Transport in a horizontally homogeneous
mechanical boundary layer can be modeled by introducing
an eddy diffusivity κturb ≈ −σu∗z, where σ = 0.4 is the von
Karman constant (we neglect all sources of inhomogeneity,
such as Langmuir turbulence [30]). Transport equations in
dimensionless form for the fields Tn, X , and Y can be
obtained from Eqs. (12)–(14) by replacing the advection terms
with an eddy diffusion. Exploiting Eqs. (27), (24), and (46)
allows to eliminate any explicit dependence on the heat fluxes.
We get

∂z(z∂zȲ) + (1/2)[λY2 − λX 2] = 0, (50)

∂z(z∂zT̄n) = ∂z(z∂zX̄ ) = 0, (51)

where

λ = HBu∗γ L̂
σαSŜR

, (52)

with HB = (B − Bmin)/(1 − Bmin), gives the relative strength
of the contributions to the dynamics from ice formation
and transport. The parameter λ could equivalently be seen
as the ratio of the turbulent transport time scale LS/u∗
and the reaction time scale u∗/(B

To
γ ), which explains the

counterintuitive proportionality with u∗. It is interesting to
note that λ vanishes in the limit B → Bmin, corresponding to
the limit E → 0 in Eq. (32). Note that we allow in Eq. (50) for
the possibility of fluctuations in λ, which would develop in the
case of dependence of γ on the sign of To (see discussion at
the end of Sec. III).

We can make some estimates. Assume turbulence strength
u∗ ≈ 0.01 m/s and one-mm crystals with ε = 1/50. The two
estimates γ ≈ 0.0037 (◦C s)−1 [23,25] and γ ≈ 0.04 (◦C s)−1

[24] give λ ≈ 3HB and λ ≈ 0.3HB, respectively. Smaller
crystals lead to larger values of λ, but the effect is
counteracted, at least in part, by the fact that such crys-
tals typically have larger ε [31]. In general, λ is not
small and the nonlinearity in Eq. (50) cannot a priori be
disregarded.

We see from Eq. (51) that the two nonreacting fields Tn and
X obey logarithmic scaling

T̄n(z) = 1

σ

1 − Bmin

B − Bmin
ln(−z/�n), (53)

and

X̄ (z) = (1/σ ) ln(−z/�X ), (54)

where the factors in front of the logarithms are (1/σ ) times
the fluxes Tn

and X expressed in dimensionless form [see
Eqs. (25), (31), and (48)], and �n,X are free parameters
determined by the asymptotic large depth behavior of the fields
T̄ and S̄ (and C̄ if it reaches the bottom of the layer).

The two limit regimes �n 
 1 and �n � 1, correspond
to T̄n > 0 and T̄n < 0, respectively, in most of the domain.
In the same way, �X 
 1 and �X � 1 correspond to X̄ > 0
and X̄ < 0 in most of the domain. For �X 
 1, from positive
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definiteness of C, most of the domain will be above freezing;
for �X � 1, either supercooling, or ice, or both will be present.

A. Two limit regimes

For small λ, the dynamics of Y in the mechanical boundary
layer reduces to that of a passive scalar; Y and therefore also
To and C obey in the first approximation logarithmic scaling.

For λ � 1, solution of Eq. (50) is complicated by non-
linearity and by the presence of fluctuations. To make
analytical progress, we momentarily neglect fluctuations. We
can linearize the dynamics when either C̄ or T̄o are small.

Small C̄ corresponds to a regime of small entrainment on the
scale of To and above freezing conditions: 

top
C 
 1, T̄o > 0.

In this case, T̄o � X̄ and the domain of interest is �X 
 −z.
This corresponds to studying the melting dynamics of C̄ for
fixed T̄o > 0.

Small T̄o corresponds to a regime in which large amounts
of frazil ice are present in the column. In this case C̄ � −X̄
and the domain of interest is −z 
 �X (note that the frazil
ice may reach the bottom of the mechanical boundary layer).
This corresponds to studying the decay of T̄o induced by ice
formation or melting for fixed C̄.

For small C̄ we can approximate Ȳ2 − X̄ 2 = 4C̄T̄o � 4X̄ C̄

and Eq. (54) becomes, exploiting Eqs. (51) and (54),

σ∂z(z∂zC̄) + λ̄C̄ ln(−z/�X ) = 0. (55)

For small T̄o we can approximate Ȳ2 − X̄ 2 = 4C̄T̄o �
−4X̄ T̄o and Eq. (54) becomes, exploiting again Eqs. (51)
and (54),

σ∂z(z∂zT̄o)−λ̄T̄o ln(−z/�X ) = 0. (56)

The logarithm on the right-hand side of Eq. (55) gives the
profile of T̄o, with −z = �X the depth of the supercooled
region; in Eq. (56), the logarithm gives the profile of −C̄, with
−z = �X the maximum depth reached by the frazil ice.

Equations (55) and (56) are identical in form and describe
decay (within logarithms) at depth −z ∼ λ̄−1 of the respective
field (note the minus sign in Eq. (56), which cancels the
negative sign of the logarithm in the region −z < �X ). Let
us calculate the decay explicitly. We assume that decay takes
place in the region of applicability of Eqs. (55) and (56), that
is, the mechanical boundary layer −z < 1.

Consider first the case of Eq. (55), in which C̄ is small and
T̄o � X̄ . The singularity at z → −∞ in Eq. (55) is treated by
working in the eikonal representation, C̄ = exp(W ) [32]. To
leading order in z, Eq. (55) becomes

σz(W ′)2 + λ̄ ln(−z/�X ) = 0, (57)

which has solution, for −z 	 �X ,

W (z) = ±2
√

(−zλ̄/σ ) ln(−z/�X ). (58)

We get the asymptotic behavior

C̄(z) ∼ exp

[
−2

√
(−zλ̄/σ ) ln(−z/�X )

]
, (59)

which leads to the decay depth for C̄(z)

− zC ∼ |λ̄ ln(λ̄�X )|−1. (60)

ΦT

ΦT
B

B

z=0

z=1

z=−1

F(z)

o

o

o

o

ΦT
ΦC

ΦCΦT

top top

top top

FIG. 3. Sketch of the computation domain.

The case in which T̄o is small and C̄ � −X̄ is treated in exactly
the same way. We proceed with Eq. (56) as with Eq. (55),
except that now −z 
 �X . We obtain for T̄o(z) the same
decay law in Eq. (60), −zTo

∼ |λ̄ ln(λ̄�X )|−1.

VIII. FLUCTUATIONS

We estimate fluctuations in the mechanical boundary layer
by means of a simple Kraichnan model [33,34], in a periodic
2D domain [−1,1] × [−1,1]. We focus on the dynamics of
the reacting fields To and C. We take x and z as the horizontal
and vertical coordinates, with z = 0 the water surface and
the periodic point z = ±1 the bottom of the boundary layer
(z = −LS in the original units). The computation domain is
thus split in two statistically equivalent mirror subdomains
at −1 < z < 0 and 0 < z < 1. The situation is illustrated in
Fig. 3. We continue to work with the dimensionless variables
defined in Eq. (48).

A boundary layer structure is imposed on the velocity
fluctuations by means of a shape function F = F (z). We write

ux = ūx − ∂zψF , uz = ∂xψF , (61)

where ψF (r,t) = F (z)ψ(r,t) and ψ(r,t) is zero mean, spa-
tially homogeneous, and white in time,

ψ(r,t)ψ(r′,t ′) = �(r − r′)δ(t − t ′). (62)

We take for the shape function

F =
∏
m∈Z

tanh[2π (z + m)] (63)

and for ūx(z) a sum of logarithms mimicking the mean velocity
profile in a turbulent channel flow.

We chose the shape function in such a way that uz(0) = 0
but ux(0) �= 0, as expected for the turbulent velocity at the
free water surface. The fact that F ′(0) �= 0, together with
periodicity, require, however, that F = 0 and therefore uz = 0
somewhere else in the domain. The choice F (±1) = 0 is the
one that less affects the dynamics, although it somewhat spoils
the interpretation of z = ±1 as the bottom of the mechanical
boundary layer.

We take for the spectrum �k = ∫
d2r e−ik·r�(r),

�k = A
(
k2 + k2

0

)−8/3
, (64)

which guarantees Richardson scaling for relative diffusion at
small separation [34]. The parameter k0 is a large-scale cutoff
that we put equal to 5π . The constant A is fixed by imposing
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FIG. 4. Snapshot of the ice concentration (top) and the supercool-
ing (bottom) for 〈X 〉 = −

top
C = 0.1, λ− = 1, and ε = 1/5.

the condition for the spatial average of the turbulent diffusivity

〈κturb〉 =
∫

dt 〈uz(r,t)uz(r,0)〉 = 1, (65)

which replaces the normalization u∗ = 1 implicit in Eq. (48).
The presence of input and output fluxes for C and To at

the boundaries of a periodic domain is mimicked introducing
forcing terms at z = 0 and z = −1 in the transport equations
(see Fig. 3). From Eqs. (12)–(14) and (48), we find (with z

mod. 2):

(∂t + u · ∇)To = κ∇2To − λCTo + 2
[ − (


top
C + 1

)
δ(z)

+ δ(z + 1)
]
, (66)

[∂t + (u + ur ) · ∇]C = κ∇2C − λCTo − 2
top
C δ(z), (67)

where κ is understood as the turbulent diffusivity of the
unresolved eddies below the spatial discretization scale and
we recall, in dimensionless units, B

To
= 1, 

top
To

= 1 + 
top
C .

Taking the difference of Eqs. (66) and (67), we see that the
spatial average of X = To − C is conserved, (d/dt)〈X 〉 = 0,
which is equivalent to the statement on conservation of X in
the previous section.

We solve numerically the system of equations (66)–(67),
by means of a pseudospectral code on a 256 × 256 grid,
taking κ = 10−3. We smooth the white noise in Eq. (62) by
replacing the Fourier modes ψk(t) with an Ornstein-Uhlenbeck
processes with correlation time below the diffusion time at the
discretization scale. An Adam-Bashford integration scheme

C
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z

-1

-0.8

-0.6

-0.4

-0.2

0
(a)

To

-0.2 0 0.2 0.4 0.6 0.8

z

-1

-0.8

-0.6

-0.4

-0.2

0
(b)

λCTo

-0.2 -0.1 0 0.1 0.2

z

-1

-0.8

-0.6

-0.4

-0.2

0
(c)

FIG. 5. Effect of an ice sink at z = ±1 on the vertical profiles of
(a) ice concentration, (b) supercooling, and (c) ice production rate;
B

C = 0 in red; B
C = −0.3 in black. In (a) and (b), solid lines indicate

average; in (c), they indicate mean-field result λ̄C̄T̄o. In (a) and (b),
dashed line indicate rms; in (c), they indicate the fluctuation (λCTo)f .
Values of other parameters: λ− = 1; 

top
C = −0.5; 〈X 〉 = −0.1; ε =

1/5.

has been used for advancement in time [35,36]. A snapshot of
the fields C and To is shown Fig. 4.

The production term λ is defined following Refs. [11,13],

λ− ≡ λTo<0 = ε−1λTo>0. (68)

One of the motivations for this choice is that Eq. (68) provides
a source of fluctuations analogous to those which could be
expected, presumably, from taking into account the finite-size
spectrum of the crystals.

As control parameters for the simulations we take λ−, ε,


top
C , and 〈X 〉. We concentrate on the three cases λ− = 1,

λ− = 0.1, and λ− = 0.02, which would correspond for u∗ =
0.01 m/s to crystal radii R ≈ 0.14 mm, R ≈ 0.45 mm, and
R ≈ 1 mm [37]. We take ε = 1/50 for the largest crystal
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λ
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z
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-0.8

-0.6

-0.4

-0.2

0

FIG. 6. Vertical profile of λ. Average solid; rms dashed. Values
of the parameters λ− = 1; −

top
C = 〈X 〉 = 0.1; ε = 1/5.

and ε = 1/5 for the smaller ones, in accordance with the
observations in Ref. [31]. The case ε = 1 is also considered to
evaluate the contribution to fluctuations from sources others
than the growth-melt asymmetry in Eq. (68).

We put ūx(z) = 0, as inclusion of a nonzero horizontal
mean velocity profile has been observed to produce negligible
effects on the dynamics. As done in Sec. VII, we put ur = 0,
which is appropriate for the smallest crystals, but may be a
rough approximation for the largest ones (see Fig. 1).

We note that ice may be present at the bottom of the domain,
z = ±1, thus generating spurious ice fluxes. To evaluate
the effect on the dynamics, we compare with the case in
which an ice sink B

C is artificially added at z = ±1, with
B

To
→ B

To
+ B

C , to guarantee conservation of 〈X 〉 (with a
slight abuse of notation we are using superscript B for the
bottom of the numerical domain although the region is not
ice free). As shown in Fig. 5, the dynamics is modified only
in the boundary layer region near z = ±1, the curves being
essentially indistinguishable in the rest of the domain. We thus
expect that the dynamics is properly taken into account by the
model for generic values of the parameters.

As a general rule, we find that the fluctuation contribution to
the production term (λCTo)f = λCTo − λ̄C̄T̄o is small, even
though the rms components of the individual fields C, To,
and λ are not small at all. We see in Figs. 5(b) and 5(c)

λCTo

-0.02 0 0.02 0.04 0.06

z

-1

-0.8

-0.6

-0.4

-0.2

0

FIG. 7. Vertical profiles of the ice production for different values
of ε. ε = 1 in red, ε = 1/5 in black; mean-field contribution λ̄C̄T̄o

solid line, fluctuation contribution (λCTo)f dashed line. Values of the
other parameters: λ− = −C = 〈X 〉 = 0.1.

λCTo

-0.2 0 0.2 0.4

z

-1

-0.8

-0.6

-0.4

-0.2

0

FIG. 8. Same as Fig. 7 for different values of ε and λ. λ− = 0.02,
ε = 1/50 in red; λ− = 1, ε = 1/5 in black.

that ice production fluctuations are concentrated around the
transition region from negative to positive To. We see in Fig. 6
that fluctuations in λ concentrate roughly in the same region,
which suggests that a strong contribution to the ice production
fluctuations comes from the difference in melting and freezing
rates described in Eq. (17).

To determine the effect of the fluctuations of λ on
the dynamics, we compare the case of frazil crystals with
ε = 1 and ε = 1/5. We do not consider the contribution
to fluctuations from the dependence of λ on the crystal
distribution, which remains undetermined in a description
based on the integrated field C(r,t). We observe in Fig. 7

that for ε = 1, (λCTo)f = λC̃T̃o < 0, suggesting a picture in
which fluctuations of CTo arise from cold water parcels rich
in ice transported by turbulence from z = 0 into the body
of the domain. As shown in Figs. 5(c), 7, and 8, for ε < 1,
fluctuations and mean-field components give contribution to
ice production of opposite sign in most of the domain.

Fluctuations become negligible deeper in the column,
where melting is dominant. This tells us that the mean-field
analysis in the previous section may be appropriate for the
decay of C [see Eq. (60)], but not for that of T̄o, due to the
fluctuations of λ in the regions where T̄o → 0 and therefore To

undergoes most changes of sign.

IX. CONCLUSION

We have studied the process of ice formation in a turbulent,
horizontally homogeneous stationary water column, as a
balance of fluxes of heat, salinity, and ice. The following are
our main results.

Imposing supercooling decrease with depth has allowed us
to derive lower bounds on the ratio of sensible and latent heat
fluxes to the atmosphere, which contain important information
on the process of ice formation in the water column.

The minimum sensible heat flux ranges from roughly 1/2
to a few percents of the total flux depending on the strength
of ice entrainment. The sensible heat in excess to the lower
bound may be associated with ice melting at the bottom of the
layer, or with direct heat transfer to the atmosphere, depending
on whether a sufficiently thick grease ice layer is present or
not at the water surface.

In the presence of entrainment, the minimum sensible heat
flux accounts for the heat from the bottom of the column
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required to melt the entrained ice crystals. The same amount of
heat is released at the surface during ice formation. Entrained
frazil ice behaves like a sort of conveyor belt for the heat,
providing a contribution to the total flux, which, depending on
the level of entrainment, may be comparable to the latent heat
contribution from net ice production.

We have derived mean-field analytical expressions for the
vertical profiles of salinity, temperature, and ice concentration
in the limit of low entrainment, assuming the presence of a
wind-induced mechanical boundary layer at the top of the
water column.

It appears that, except in situations in which all of the water
column is well above freezing, and entrainment is so low that
the entrained ice completely melts, frazil ice fluxes reaching
the bottom of the mechanical turbulent layer are present. At the
same time, supercooled conditions can be found at substantial
depth in the water column, confirming observations in the
laboratory [17], in field campaigns [7,38,39], and in numerical
simulations [16].

We explain the symmetric possibility of supercooling and
frazil ice presence deep in the column, with the existence of a
single reacting field actually being affected by ice formation
[the field Y in Eq. (49)]. This has the consequence that the
dynamics of supercooling and ice concentration, in the two
cases in which one of the fields is small, are essentially
identical.

We explain the observation that frazil ice and supercooling
may be present at substantial depth in the water column with
the smallness of the growth or melting rate of the ice crystals

compared to the rate of turbulent mixing [the parameter λ

in Eq. (52)]. The depths (normalized to the haline Obukhov
depth) of the supercooled region in the presence of large frazil
ice amounts, and of the frazil ice region in above-freezing
conditions, are both ∼λ−1.

We stress that all the above results on ice dynamics in
the mechanical boundary layer are conditioned to smallness
of the ratio of the rate of entrainment of frazil ice to total
ice production [the parameter E in Eq. (29)]. It is not clear
whether our results would be confirmed in the presence of
strong entrainment, in which case, turbulence stabilization by
frazil ice may may lead to a double-convection regime.

The mean-field results are confirmed by numerical analysis
by means of a two-dimensional Kraichnan model. The analysis
shows that a strong contribution to fluctuation is produced
when asymmetry between the rates of ice formation and
melting is assumed, as done in Refs. [12,13]; otherwise,
fluctuations are small. This suggests that more accurate
descriptions of ice formation, in which the size spectrum of
the crystals and the different growth and melting rates of the
different size classes are taken into account, could lead to
similar higher fluctuation levels.

ACKNOWLEDGMENTS

This research was supported by FP7 EU project ICE-ARC
(Grant agreement No. 603887), by MIUR-PNRA, PANACEA
project (Grant No. 2013/AN2.02), and by COST Action grant
MP1305.

[1] S. Martin, Frazil ice in rivers and oceans, Ann. Rev. Fluid Mech.
13, 379 (1981)

[2] A. Alam and J. A. Curry, Evolution of new ice and turbulent
fluxes over freezing winter leads, J. Geophys. Res. 103, 15783
(1998).

[3] M. J. Doble, M. D. Coon, and P. Wadhams, Pancake ice
formation in the Weddell Sea, J. Geophys. Res. 108, C3209
(2003).

[4] H. Eicken, J. Kolatschek, J. Freitag, F. Lindemann, H. Kassen,
and I. Dimitrenko, A key source area and constraints on
entrainment for basin-scale sediment transport by Arctic sea
ice, Geophys. Res. Lett. 27, 1919 (2000).

[5] L. H. Smedsrud, Frazil ice entrainment of sediment: Large tank
laboratory experiments, J. Glaciol. 47, 461 (2001).

[6] S. F. Daly, Evolution of frazil ice in natural water bodies.
in International Association for Hydraulic Research Working
group on Thermal Regimes: Report on Frazil Ice, edited by
S. F. Daly, US Army Cold Regions Research and Engineering
Laboratory, Hanover, New Hampshire, 1994, p. 11.

[7] M. Ito et al., Observations of supercooled water and frazil
ice formation in an Arctic coastal polynya from moorings and
satellite imagery, Ann. Glaciol. 56, 307 (2015).

[8] A. Omstedt and U. Svensson, Modeling supercooling and ice
formation in a turbulent Eckman layer, J. Geophys. Res. 89, 735
(1984).

[9] A. Omstedt, Modeling frazil ice and grease ice formation in
the upper layers of the ocean, Cold Reg. Sci. Technol. 11, 87
(1998).

[10] U. Svensson and A. Omstedt, Simulation of supercooling and
size distribution in frazil ice dynamics, Cold Reg. Sci. Technol.
22, 221 (1994).

[11] A. Jenkins and A. Bombosch, Modeling the effects of frazil ice
crystals on the dynamics and thermodynamics of ice shelf water
plumes, J. Geophys. Res. 100, 6967 (1995).

[12] L. H. Smedsrud and A. D. Jenkins, Frazil ice formation in an
ice shelf water plume, J. Geophys. Res. 109, C03025 (2004).

[13] P. R. Holland and D. L. Feltham, Frazil dynamics and precip-
itation in a water column with depth dependent supercooling,
J. Fluid Mech. 530, 101 (2005).

[14] B. K. Galton-Fenzi, J. R. Hunter, R. Coleman, S. J. Marsland,
and R. C. Warner, Modeling the basal melting and marine ice
accretion of the Amery Ice Shelf, J. Geophys. Res. 117, C09031
(2012).

[15] E. D. Skyllingstad and D. W. Dembo, Turbulence beneath sea
ice and leads: a coupled sea ice/large eddy simulation study,
J. Geophys. Res. 106, 2477 (2001).

[16] Y. Matsumura and K. I. Ohshima, Lagrangian model of frazil
ice in the ocean, Ann. Glaciol. 56, 373 (2015).

[17] S. Ushio and M. Wakatsuchi, A laboratory study of supercooling
and frazil ice production processes in winter coastal polynias,
J. Geophys. Res. 98, 20321 (1993).

[18] S. Maus and S. De la Rosa, Salinity and solid fraction of frazil
and grease ice, J. Glaciol. 58, 594 (2012).

[19] L. H. Smedsrud and R. Skogseth, Field measurements of Arctic
grease ice properties and processes, Cold Reg. Sci. Technol. 44,
171 (2006).

043106-10

https://doi.org/10.1146/annurev.fl.13.010181.002115
https://doi.org/10.1146/annurev.fl.13.010181.002115
https://doi.org/10.1146/annurev.fl.13.010181.002115
https://doi.org/10.1146/annurev.fl.13.010181.002115
https://doi.org/10.1029/98JC01188
https://doi.org/10.1029/98JC01188
https://doi.org/10.1029/98JC01188
https://doi.org/10.1029/98JC01188
https://doi.org/10.1029/2002JC001373
https://doi.org/10.1029/2002JC001373
https://doi.org/10.1029/2002JC001373
https://doi.org/10.1029/2002JC001373
https://doi.org/10.1029/1999GL011132
https://doi.org/10.1029/1999GL011132
https://doi.org/10.1029/1999GL011132
https://doi.org/10.1029/1999GL011132
https://doi.org/10.3189/172756501781832142
https://doi.org/10.3189/172756501781832142
https://doi.org/10.3189/172756501781832142
https://doi.org/10.3189/172756501781832142
https://doi.org/10.3189/2015AoG69A839
https://doi.org/10.3189/2015AoG69A839
https://doi.org/10.3189/2015AoG69A839
https://doi.org/10.3189/2015AoG69A839
https://doi.org/10.1029/JC089iC01p00735
https://doi.org/10.1029/JC089iC01p00735
https://doi.org/10.1029/JC089iC01p00735
https://doi.org/10.1029/JC089iC01p00735
https://doi.org/10.1016/0165-232X(85)90009-6
https://doi.org/10.1016/0165-232X(85)90009-6
https://doi.org/10.1016/0165-232X(85)90009-6
https://doi.org/10.1016/0165-232X(85)90009-6
https://doi.org/10.1016/0165-232X(94)90001-9
https://doi.org/10.1016/0165-232X(94)90001-9
https://doi.org/10.1016/0165-232X(94)90001-9
https://doi.org/10.1016/0165-232X(94)90001-9
https://doi.org/10.1029/94JC03227
https://doi.org/10.1029/94JC03227
https://doi.org/10.1029/94JC03227
https://doi.org/10.1029/94JC03227
https://doi.org/10.1029/2003JC001851
https://doi.org/10.1029/2003JC001851
https://doi.org/10.1029/2003JC001851
https://doi.org/10.1029/2003JC001851
https://doi.org/10.1017/S002211200400285X
https://doi.org/10.1017/S002211200400285X
https://doi.org/10.1017/S002211200400285X
https://doi.org/10.1017/S002211200400285X
https://doi.org/10.1029/2012JC008214
https://doi.org/10.1029/2012JC008214
https://doi.org/10.1029/2012JC008214
https://doi.org/10.1029/2012JC008214
https://doi.org/10.1029/1999JC000091
https://doi.org/10.1029/1999JC000091
https://doi.org/10.1029/1999JC000091
https://doi.org/10.1029/1999JC000091
https://doi.org/10.3189/2015AoG69A657
https://doi.org/10.3189/2015AoG69A657
https://doi.org/10.3189/2015AoG69A657
https://doi.org/10.3189/2015AoG69A657
https://doi.org/10.1029/93JC01905
https://doi.org/10.1029/93JC01905
https://doi.org/10.1029/93JC01905
https://doi.org/10.1029/93JC01905
https://doi.org/10.3189/2012JoG11J110
https://doi.org/10.3189/2012JoG11J110
https://doi.org/10.3189/2012JoG11J110
https://doi.org/10.3189/2012JoG11J110
https://doi.org/10.1016/j.coldregions.2005.11.002
https://doi.org/10.1016/j.coldregions.2005.11.002
https://doi.org/10.1016/j.coldregions.2005.11.002
https://doi.org/10.1016/j.coldregions.2005.11.002


LIMIT REGIMES OF ICE FORMATION IN TURBULENT . . . PHYSICAL REVIEW E 96, 043106 (2017)

[20] J. Bauer and S. Martin, A model of grease ice growth in small
leads, J. Geophys. Res. 88, 2917 (1983).

[21] D. L. Feltham, N. Untersteiner, J. S. Wettlaufer, and M. G.
Worster, Sea ice is a mushy layer, Geophys. Res. Lett. 33,
L14501 (2006).

[22] J. P. Gosink and T. E. Osterkamp, Measurements and analyses
of velocity profiles and frazil ice-crystals rise velocities during
periods of frazil ice formation in rivers, Ann. Glaciol. 4, 79
(1983).

[23] T. Fujioka and R. F. Sekerka, Morphological stability of disk
crystals, J. Crystal Growth 24-25, 84 (1974).

[24] L. Hammar and H. T. Shen, Frazil evolution in channels,
J. Hydraul. Res. 33, 291 (1995); P. R. Holland, D. L. Feltham,
and S. Daly, On the Nusselt number for frazil ice growth a
correction to Frazil evolution in channels by Lars Hammar and
Hung-Tao Shen, ibid. 45, 421 (2007).

[25] D. W. Rees Jones and A. J. Wells, Solidification of a disk-shaped
crystal from a weakly supercooled binary melt, Phys. Rev. E 92,
022406 (2015).

[26] W. Shimada and Y. Furukawa, Pattern formation of ice crystals
during free growth in supercooled water, J. Phys. Chem. B 101,
6171 (1997).

[27] In order for a flux-gradient relation between To
and To

to hold, it is necessary that T and S are transported to-
gether, which is reasonable if molecular diffusion can be
disregarded.

[28] S. Martin and P. Kauffman, A field and laboratory study of wave
damping by grease ice, J. Glaciol. 27, 283 (1981).

[29] We are assuming that the microscopic flows in the ice layer
are produced by mechanical means, such as wave stirring and

wind-induced shear motions. Linearity in T and S could be
violated by convection at the crystal scale.

[30] S. Leibovich, The form and dynamics of Langmuir circulation,
Ann. Rev. Fluid Mech. 15, 391 (1983).

[31] T. R. Ghobrial, M. R. Loewen, and F. E. Hicks, Characterizing
suspended frazil ice in rivers using upward looking sonars, Cold
Regions Sci. Technol. 86, 113 (2013).

[32] C. M. Bender and S. A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers. (McGraw-Hill, New
York, 1979).

[33] R. H. Kraichnan, Small-scale structure of a scalar field convected
by turbulence, Phys. Fluids 11, 945 (1968).

[34] G. Falkovich, K. Gawedzki, and M. Vergassola, Particles and
fields in fluid turbulence, Rev. Mod. Phys. 73, 913 (2001).

[35] D. Elhmaidi, A. Provenzale, and A. Babiano, Elementary
topology of two-dimensional turbulence from a Lagrangian
viewpoint and single-particle dispersion, J. Fluid Mech. 257,
533 (1993).

[36] D. Elhmaidi, J. von Hardenberg, and A. Provenzale, Dissipa-
tion and Filament Instability in Two-Dimensional Turbulence,
Phys. Rev. Lett. 95, 014503 (2005).

[37] We are assuming for γ the parametrization in Ref. [24]. The
alternative parametrization in Refs. [23,25] would lead to values
of R larger by a factor ≈3.3.

[38] R. Skogseth, F. Nilsen, and L. H. Smedsrud, Supercooled water
in an Arctic polynya: Observations and modeling, J. Glaciol. 55,
43 (2009).

[39] I. A. Dmitrenko et al., Observations of supercooling and frazil
ice formation in the Laptev Sea coastal polynya, J. Geophys.
Res. Oceans 115, C05015 (2010).

043106-11

https://doi.org/10.1029/JC088iC05p02917
https://doi.org/10.1029/JC088iC05p02917
https://doi.org/10.1029/JC088iC05p02917
https://doi.org/10.1029/JC088iC05p02917
https://doi.org/10.1029/2006GL026290
https://doi.org/10.1029/2006GL026290
https://doi.org/10.1029/2006GL026290
https://doi.org/10.1029/2006GL026290
https://doi.org/10.1017/S0260305500005279
https://doi.org/10.1017/S0260305500005279
https://doi.org/10.1017/S0260305500005279
https://doi.org/10.1017/S0260305500005279
https://doi.org/10.1016/0022-0248(74)90284-X
https://doi.org/10.1016/0022-0248(74)90284-X
https://doi.org/10.1016/0022-0248(74)90284-X
https://doi.org/10.1016/0022-0248(74)90284-X
https://doi.org/10.1080/00221689509498572
https://doi.org/10.1080/00221689509498572
https://doi.org/10.1080/00221689509498572
https://doi.org/10.1080/00221689509498572
https://doi.org/10.1080/00221686.2007.9521775
https://doi.org/10.1080/00221686.2007.9521775
https://doi.org/10.1080/00221686.2007.9521775
https://doi.org/10.1080/00221686.2007.9521775
https://doi.org/10.1103/PhysRevE.92.022406
https://doi.org/10.1103/PhysRevE.92.022406
https://doi.org/10.1103/PhysRevE.92.022406
https://doi.org/10.1103/PhysRevE.92.022406
https://doi.org/10.1021/jp963171s
https://doi.org/10.1021/jp963171s
https://doi.org/10.1021/jp963171s
https://doi.org/10.1021/jp963171s
https://doi.org/10.3189/S0022143000015392
https://doi.org/10.3189/S0022143000015392
https://doi.org/10.3189/S0022143000015392
https://doi.org/10.3189/S0022143000015392
https://doi.org/10.1146/annurev.fl.15.010183.002135
https://doi.org/10.1146/annurev.fl.15.010183.002135
https://doi.org/10.1146/annurev.fl.15.010183.002135
https://doi.org/10.1146/annurev.fl.15.010183.002135
https://doi.org/10.1016/j.coldregions.2012.10.002
https://doi.org/10.1016/j.coldregions.2012.10.002
https://doi.org/10.1016/j.coldregions.2012.10.002
https://doi.org/10.1016/j.coldregions.2012.10.002
https://doi.org/10.1063/1.1692063
https://doi.org/10.1063/1.1692063
https://doi.org/10.1063/1.1692063
https://doi.org/10.1063/1.1692063
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1103/RevModPhys.73.913
https://doi.org/10.1017/S0022112093003192
https://doi.org/10.1017/S0022112093003192
https://doi.org/10.1017/S0022112093003192
https://doi.org/10.1017/S0022112093003192
https://doi.org/10.1103/PhysRevLett.95.014503
https://doi.org/10.1103/PhysRevLett.95.014503
https://doi.org/10.1103/PhysRevLett.95.014503
https://doi.org/10.1103/PhysRevLett.95.014503
https://doi.org/10.3189/002214309788608840
https://doi.org/10.3189/002214309788608840
https://doi.org/10.3189/002214309788608840
https://doi.org/10.3189/002214309788608840
https://doi.org/10.1029/2009JC005798
https://doi.org/10.1029/2009JC005798
https://doi.org/10.1029/2009JC005798
https://doi.org/10.1029/2009JC005798



