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Langevin equation elucidates the mechanism of the Rayleigh-Bénard instability by coupling
molecular motions and macroscopic fluctuations
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It is well known that Brownian motion can be described using Langevin equation. In this paper we extend the
application of the Langevin equation to the Rayleigh-Bénard (RB) flow, assuming that each molecule in the system
is a Brownian particle colliding with its surrounding molecules. The phenomenon of thermal instability, changing
from a conductive to a convective state, is well reproduced by Langevin dynamics simulations. The roles of the
drag force and the random force terms in the Langevin equation in triggering thermal instability are elucidated
via numerical tests. Furthermore, we demonstrate that the strength of the fluctuation correlations increases as
the Rayleigh number approaches the critical value, and the characteristics of the fluctuation correlations below
the onset of instability foreshadow the form of the convective patterns emerging above the critical point. The
Langevin equation, together with the form of the fluctuation correlations, sheds new light on the mechanism of
the RB instability.
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I. INTRODUCTION

The Rayleigh-Bénard (RB) system—a fluid confined be-
tween two horizontal parallel plates that are heated from
below or cooled from above—is a paradigm in the studies
of hydrodynamic instability, pattern formation, and nonlinear
dynamics and chaos. Since the seminal experimental work of
Bénard in 1900 and the linear stability analysis of Rayleigh in
1916 (for a review of the early studies, see Chandrasekhar’s
monograph [1]), there have been numerous studies on this sub-
ject including experiments, theoretical analyses, and numerical
simulations [2,3].

Now it is well known that the occurrence of the RB
instability under the conditions of Boussinesq approximation
can be predicted by one dimensionless control parameter,
namely, the Rayleigh number (Ra),

Ra = αgd3�T

νκ
, (1)

where α, ν, and κ are the isobaric thermal expansion coeffi-
cient, kinematic viscosity, and thermal diffusivity, respectively,
g is the acceleration of gravity, d is the height of the fluid layer,
and �T = Th − Tc is the temperature difference between the
lower and upper plates. As long as Ra is not too large, the fluids
remain quiescent and heat is transported only by conduction. If
Ra exceeds the critical value Rac ≈ 1708, however, instability
sets in and a well-ordered convection structure appears.

A fundamental question to be asked about the RB system is
this: How does the well-ordered spatial pattern arise out of the
disordered state of molecules or atoms? A lot of efforts have
been made over the past half century aiming to answer this
question. Dissipative structure theory proposed by Prigogine
[4] and synergetics founded by Haken [5] might be two of the
most successful theories for explaining the formation of the
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self-organizing structure. Prigogine considered RB instabili-
ties from the standpoint of irreversible thermodynamics. He
stated that the distance from equilibrium and the nonlinearity
were the sources capable of driving the system to an ordered
configuration. Haken’s theory particularly investigates what
happens at the instability point and determines the new
structure beyond it. According to synergetics, when the system
is close to the instability point, a new set of collective variables
can be identified as the “order parameters,” which determine
the system’s behavior. Note that both the dissipative structure
theory and synergetics are still at the macroscopic scale, so
they cannot explain from a microscopic point of view how the
molecules or atoms in a disordered state change to an ordered
state above the critical point.

Rapid development in high performance computing over
the past three decades has made it possible to study hy-
drodynamic instability [6,7] and even turbulence [8] at the
microscopic level using molecular simulation methods, where
the dynamics of molecules or atoms are explicitly calculated
and the macroscopic fluid properties are obtained as averages
over the trajectories of the particles. Two of the most popular
molecular simulation methods, the direct simulation Monte
Carlo (DSMC) method and the molecular dynamics (MD)
method, have been employed to study the RB convection
in gases [9,10] and liquids [11,12], respectively. Basically,
very good agreement between molecular simulations and
macroscopic continuum simulations has been demonstrated
for the RB convection. The advantage of molecular simulations
is that molecular thermal motions are inherently involved, so it
is convenient to investigate the role of the thermal fluctuations
in the RB instability [10,13]. In contrast to the short-range
characteristic in equilibrium, the thermal fluctuations in the RB
system are long-range correlated [14], and this has been proved
to be important for the occurrence of instability, especially near
the critical point [15].

However, due to the enormous requirement of the com-
putational resources for the molecular simulations of the

2470-0045/2017/96(4)/043104(6) 043104-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.96.043104


JUN ZHANG AND THOMAS ÖNSKOG PHYSICAL REVIEW E 96, 043104 (2017)

RB flow, the spatial scale achieved in the current molecule
simulations is still several orders smaller than those in exper-
iments. More importantly, individual molecular information
is not directly connected to macroscopic phenomena such
as thermal instability, as there is a clear scale gap between
the individual molecular motions and macroscopic motions.
Molecular information needs to be averaged to get macro-
scopic quantities, which are then used to explain macroscopic
phenomena.

In this paper, a coarse-grained particle simulation method
based on the Langevin equation is employed to investigate the
RB flows, by assuming that each molecule in the system is
a Brownian particle colliding with its surrounding molecules
on the time scale larger than molecular mean collision time.
Instead of considering the details of intermolecular collisions
or forces in conventional molecular simulation methods, the
Langevin equation uses two coarse-grained force terms, i.e., a
drag force and a random force term, to describe a continuous
stochastic process in any direction for one molecule as follows:

dui

dt
= − 1

τ
(ui − Ui) +

(
2RsT

τ

)1/2
dWi(t)

dt
+ gδiy, (2)

where u and U are the molecular velocity and the local
macroscopic velocity, respectively, the subscript i denotes the
direction of a vector, τ is the characteristic relaxation time, Rs

is the specific gas constant, T is the local temperature, W (t)
refers to a Wiener process, and δiy denotes that the gravity
acceleration g only exerts on the y direction. Note that the
increment dW (t) of the Wiener process is normally distributed
with expectation zero and variance dt . Equivalently, dW (t)
is equal to the product of

√
dt and a standard normally

distributed random variable with expectation zero and unit
variance. According to the theory of stochastic processes,
the Langevin equation is equivalent to the Fokker-Planck
equation for the probability density function. In this context,
the Langevin dynamics described by Eq. (2) can be considered
as a particle Fokker-Planck model. Originally, Jenny et al.
[16] proposed a stochastic particle Fokker-Planck algorithm
based on Eq. (2) for simulations of rarefied gas flows.
Afterwards, Gorji and Jenny [17] developed a more efficient
algorithm. Two critical issues related to Langevin dynamics
simulations, i.e., how to get correct transport properties and
how to deal with boundary conditions, have been successfully
solved by Gorji et al. [18] and Önskog and Zhang [19],
respectively. The latest progress demonstrated the ability
of the Langevin dynamics simulations to study large-scale
flows [20].

Here we apply the Langevin equation to study RB flows.
Our aim is to elucidate the mechanism of the occurrence
of macroscopic structure arising out of a disordered state,
from the viewpoint of molecular movements. It can be seen
from Eq. (2) that the drag force term in the Langevin
equation makes the microscopic molecular velocity tend
to the local macroscopic velocity, while the random force
term behaves as a source adding fluctuations to the molec-
ular velocity. Therefore, it offers a way to study the RB
instability by connecting the microscopic and macroscopic
information.

II. SIMULATION MODEL
AND COMPUTATIONAL CONSIDERATIONS

We employ the Langevin model as Eq. (2) to simulate
two-dimensional RB argon gas flows with the aspect ratio
� = L/d = 2.0; that is, the ratio of the length along the
horizontal direction to the height along the normal direction
is 2.0. Previous studies using the DSMC method [9,21] and
linear stability analysis [22] have demonstrated that, for the
compressible RB gas flows, the instability is not governed by
the single Rayleigh parameter, but governed by the temperature
ratio r = Tc/Th, the Knudsen number Kn, and the Froude
number Fr. Note that in the Langevin model, there is only
one parameter, i.e., the relaxation time τ defined explicitly.
In order to derive the expression of the Rayleigh number in
terms of the temperature ratio, the Knudsen number, and the
Froude number, we employ the hard-sphere model [23], which
is popularly used in the kinetic theory and particle simulation
methods, to give an explicit relationship between transport
coefficients and molecular mean free path. On this point, our
simulation model can be regarded as a combined Langevin
hard-sphere model.

Based on the state equation of a perfect gas, the isobaric
thermal expansion coefficient is dependent on temperature as

α = 1

V

(
∂V

∂T

)
p

= 1

T
, (3)

where V denotes the volume of gas, and p is pressure.
According to the kinetic theory, for a hard-sphere gas, the

viscosity coefficient is related to the molecular mean free path
as follows [23]:

ν = 5
√

π

16
λc̄, (4)

where λ is the molecular mean free path, and c̄ = √
2RsT is

the most probable molecular thermal speed. Previous studies
have demonstrated that the linear Langevin model predicts
the Prandtl number (Pr) of gas as 3/2 [16,24], and hence the
thermal diffusivity coefficient for our model is

κ = 5
√

π

24
λc̄. (5)

Considering the temperature difference between the two
plates, we use the average temperature T = (Tc + Th)/2 in
Eqs. (3)–(5). Substituting Eqs. (3)–(5) into Eq. (1) yields

Ra = 1536

25π
× 1 − r

(1 + r)2Kn2Fr
, (6)

where the temperature ratio is r = Tc/Th, the Knudsen number
is Kn = λ/d, and the Froude number is Fr = c̄2

h/gd. Note that
the form of Eq. (6) is the same as that derived in previous
DSMC investigations [9,25], and the only difference lies in the
value of the prefactor due to the fact that the linear Langevin
model in Eq. (2) predicts Pr to be 3/2 instead of 2/3 [24].
Of course we can use a nonlinear Langevin model to get the
correct Pr for monatomic gas molecules [18]. However, in this
paper our focus is to study the mechanism of the RB instability,
so we keep to the linear Langevin model for simplicity.

Our Langevin dynamics simulation is performed under the
fixed condition of r = 0.1 and Kn = 0.01, and the variation of
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Ra is realized by adjusting Fr, more concretely, by changing the
strength of gravity as in previous DSMC investigations [9,25].
The two-dimensional simulation box is 13.74 μm × 6.87 μm
and is divided into 256 × 128 computational cells. At the
initial time, the gas number density is 2.44 × 1025 m−3, and the
gas temperature is the same as the temperature of the lower
plate (300 K). This means that in our simulation setup the
RB flow is cooled from above. In each computational cell, 700
simulation molecules are assigned initially, with one simulated
molecule representing 1.0 × 108 real molecules. The initial
positions of the simulated molecules in one cell are uniformly
and randomly distributed, while the initial velocities of the
simulated molecules are sampled uniformly and randomly
from a Maxwell distribution function at 300 K.

The calculation time step is set as 0.1τ . At every time
step, the required instantaneous local macroscopic quantities
including velocity and temperature in Eq. (2) are determined
by sampling molecular information in the computational cells.
To obtain the instantaneous local relaxation time, we first
determine the local viscosity coefficient according to the
calculated local temperature by using the characteristic of the
hard-sphere model, i.e., ν/νref = (T/Tref)1/2 [23], with νref =
1.19 m2 s−1 at Tref = 273 K for the argon gas model used here.
We then determine the local relaxation time using the property
of the Langevin model, i.e., τ = 2ν/RsT [16,24]. Having the
local temperature, macroscopic velocity, and relaxation time
determined, the Langevin equation as Eq. (2) can be solved
by using the standard algorithm proposed by Jenny et al. [16].
For our two-dimensional (2D) simulations, the positions in
the x and y directions and velocities in all three directions
of the simulated molecules are then updated at every time
step according to the solutions of the Langevin equation.
Diffuse reflections are assumed at the upper and lower walls.
It means that molecules colliding with a wall are reflected
with the velocities sampled uniformly and randomly from a
half-range Maxwellian distribution at the temperature of the
wall. Periodic boundary conditions are adopted for both sides
in the horizontal directions.

III. RESULTS AND DISCUSSIONS

We use the temporal evolution of the heat flux through
the entire lower plate to monitor the instability process of
the RB system, as shown in Fig. 1. The instant heat flux
is an average value over a short time period ts = 100τ , by
sampling the difference between the incident energy and the
reflected energy of the molecules colliding with the lower
plate. For the two cases with Ra = 1200 and Ra = 1600, after
a short time period of oscillation (about 100ts), the heat flux
reaches a constant value. This state corresponds to pure thermal
conduction, where there are no macroscopic motions, and
the temperature and density distributions along the horizontal
direction are uniform, as shown in Figs. 2(a) and 2(b) for the
case of Ra = 1600. Note that the results for steady state shown
in Fig. 2 as well as Fig. 3 are obtained by taking an average
over a time period of 100ts or, equivalently, 10 000τ . For the
other three cases with larger Ra, however, the heat flux does
not stay with the conductive value but increases to a new value
after a transition period. Correspondingly, a steady convective
pattern is formed and the temperature and density distributions
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FIG. 1. The temporal evolution of the heat flux through the entire
lower plate at various Ra.

are no longer uniform in the horizontal direction, as shown in
Figs. 2(c) and 2(d) for the case of Ra = 4000.

Obviously, the heat flux in the convective state increases
with Ra as shown in Fig. 1. We further compare our simulation
results with theoretical and experimental results in terms of
the Nusselt number (Nu), which is defined as the ratio of
the heat flux to that in a pure conductive state. Figure 3
shows the relation between Nu × Ra and Ra. The curve is
based on Schlüter et al.’s theoretical analysis [26] for the
gas with Pr = 0.71 and Rac = 1708. Below Rac, the slope
of the curve is 1.0, as Nu in the conduction state is always 1.0.
Above Rac, the slope changes to 2.41. The experimental data
given by Koschmieder and Pallas [27] show that Rac ≈ 1675,
and the data points are quite close to the theoretical curve.
Overall, our simulation results are in agreement with the
theory and experiment. The predicted Rac is about 1800,
which is a little bit larger than the theoretical value (1708)
and the experimental prediction. The reason for this is that
the temperature and density variations in our simulations are
relatively large, as shown in Fig. 2, and thus the effect of
gas compressibility makes our simulations depart from the
Boussinesq approximation, on which the theory and experi-
ment were carried out. This non-Boussinesq effect has also
been reported by using the DSMC method [9,21] and linear
stability analysis of compressible macroscopic equations [22].
Our results are consistent with their conclusions under the
condition of r = 0.1 and Kn = 0.01.

The aforementioned results demonstrate that Langevin
dynamics simulations using Eq. (2) can predict the RB
instability quite well, although the model looks very simple.
In the Langevin equation, there are three forces exerted on
each molecule, specifically, the drag force, the random force,
and the gravity. The former two forces exist in both directions,
while gravity is along the vertical direction. The roles of these
three forces are different. Gravity accelerates all molecules
downwards in the vertical direction, until they collide with the
lower wall. The drag force relaxes the individual molecular
velocity to the local macroscopic velocity in a characteristic
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FIG. 2. Temperature and density fields for Ra = 1600 and Ra = 4000: (a) temperature field for Ra = 1600, (b) density field for Ra = 1600,
(c) temperature field for Ra = 4000, and (d) density field for Ra = 4000. Velocity vectors are also shown when a convection pattern is formed
at Ra = 4000.

time scale τ . It is obvious that the effect of gravity and the drag
force is to generate collective velocity. The random force, on
the other hand, adds thermal fluctuations to the molecular ve-
locities and makes the molecular motions disordered. For a RB
flow with a certain Ra, the competition between the collective
effect and random effect determines the final pattern. When
Ra is small, the random effect dominates over the collective
effect, so the molecules are in a disordered state and there is

Ra
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4000

6000

8000
Theory: Schlüter, Lortz and Busse
Langevin dynamics simulation
Exp: Koschmieder and Pallas

FIG. 3. Relation between Nu × Ra and Ra. The current results
obtained by Langevin dynamics simulations are compared with
theoretical and experimental results.

no macroscopic motion. When Ra exceeds the critical value,
the collective effect becomes dominant and thus the molecules
tend to an ordered state. This results in a convective pattern.

In order to reveal the separate effects of the drag force and
the random force, we perform two sets of numerical tests.
First, the role of the drag force is investigated by setting
the local macroscopic velocity in Eq. (2) to zero instead of
using the instantaneous value of the local macroscopic velocity
calculated on the fly. In this way, there will be no convective
motion, no matter how large Ra is. The reason for this is that
the drag force term, making the individual molecular velocity
relax to the local macroscopic velocity (it is enforced to be
zero in this set of numerical tests), suppresses the generation
of convective motions.

The second set of numerical tests is performed by dismiss-
ing the random term. Our simulations show that the convective
motions cannot form as well in the absence of the random
term. This demonstrates that thermal fluctuations play an
important role in triggering the instability. Theoretically, the
characteristics of thermal fluctuations in the RB system can be
investigated using fluctuating hydrodynamics [14], in which
the fluctuations are described by the usual hydrodynamic
equations supplemented with random noise terms. Numerous
theoretical analyses [14] based on fluctuating hydrodynamics
have proved that the fluctuations are long-range correlated in
the RB system, even far away from the onset of instability.
In this paper we directly measure the spatial correlations of
the local macroscopic fluctuations in the RB system. The
characteristic of fluctuation correlations in combination with
the Langevin equation are expected to shed light on the
mechanism of the RB instability.
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FIG. 4. Langevin simulation results of (a) the power spectrum and (b) the correlation function of the density fluctuations in the horizontal
direction below the onset of the RB instability. For comparison, the DSMC result of Ra = 1400 under the same condition as the Langevin
simulation is presented.

As a statistical method, the Langevin dynamics simulation
method inevitably has statistical errors similar to the DSMC
method. According to the theory of equilibrium statistical
physics, the velocity for low-speed flows has a much lower
signal-to-noise ratio than the density, so we measure the
density fluctuations instead of the velocity fluctuations. In
our simulations, the instant density field is obtained by
taking an average over the number of molecules in discrete
computational cells in one calculating time step. The density
fluctuation (ρ ′) in each cell is then determined as the difference
between the instant density (ρ) and the average density (ρav),
i.e., ρ ′ = ρ − ρav. Considering that the boundary condition
is periodic in the horizontal direction, it is straightforward to
determine the power spectrum of fluctuations by applying the
fast Fourier transform (FFT) to the fluctuating density data
along the horizontal directions at each fixed y and each instant
of time. To reduce the statistical noise, we average the power
spectrums over y and 1000 different time instants. The spatial
correlations in real space are then obtained by applying inverse
FFT to the averaged power spectrum.

Figure 4(a) shows the power spectrum S(kx) of the
normalized density fluctuations (ρ ′/ρav) for various Rayleigh
numbers below the onset of instability, where kx is the discrete
wave number in the horizontal direction. It is shown that for
any Ra the power spectrum at kx = 1 is dominant, while
in equilibrium there is no preferred discrete wave number.
Furthermore, as Ra approaches the critical value, the intensity
of the power spectrum at kx = 1 continuously increases. This
means that our simulations predict the critical discrete wave
number as 1. For the sake of comparison with linear stability
analysis, we change the discrete wave number kx to the con-
tinuous wave number αx using the relation αx = 2πkx

L
, where

L is the dimensionless length of the RB system. Using kx = 1
and L = 2 (for our simulation setup) in the above equation,
it predicts that the critical wave number αc

x in continuous
space is about 3.142, which is close to the prediction based on
linear stability analysis (αc

x = 3.117). To validate our Langevin

simulation results, we employ the DSMC method to simulate
RB flows under the same conditions. As shown in Fig. 4(a),
the results for Ra = 1400 obtained by DSMC and Langevin
simulations are consistent. Our results are also in agreement
with Wu et al.’s conclusion based on experiments [15], which
demonstrated that the intensity of fluctuations below the onset
of the convection has the maximum value at the critical wave
number. It can also be seen that for higher wave numbers
(kx > 4), all the data for three different Ra tend to be the
same. This characteristic is consistent with the theoretical
prediction [28] based on fluctuating hydrodynamics, although
direct comparison between our simulations and the theory
is unachievable at present due to the non-Boussinesq effect
in our simulations. Simulation works under the Boussinesq
assumption could be done in the future to compare with
theoretical prediction.

Figure 4(b) shows the spatial correlation function C(x)
of the density fluctuations, where x represents the distance
between the two points along the horizontal direction. It is
obvious that in equilibrium the fluctuations are short ranged.
On the contrary, for the nonequilibrium state with a certain
Ra, the fluctuations are long-range correlated. Specifically,
the correlation first decreases with the distance and then
increases until half of the length in the horizontal direction
is reached, and it is symmetric with respect to the line
at x = 1. Again, the Langevin simulation result for Ra =
1400 is consistent with the DSMC result under the same
computational condition. Figure 4(b) also shows that the
intensity of fluctuation correlations increase with Ra. The
form of the fluctuation correlation is similar to that of a pair
of counter-rotating vortices in a thermal convection state. In
this context, we can conclude that the fluctuation correlations
below the RB instability point already foreshadow to some
extent the ultimate appearance of the convective pattern above
the onset of instability.

Now we can elucidate the mechanism of the RB insta-
bility using the Langevin equation in conjunction with the
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characteristic of fluctuation correlations. In the Langevin
equation, the drag force term relaxes the individual molecular
velocity u to the local instant macroscopic velocity U in a
characteristic time scale τ . Even below the critical point, the
local instant velocity is not zero but fluctuating all the time.
More important, the fluctuating velocities are also long-range
correlated in a form similar to the density fluctuations shown
above. As Ra approaches the critical value, the fluctuation
correlations continuously increase. When Ra is over the critical
point, the individual molecular motions tend to their local
collective motions with strong spatial correlations, and a
convective pattern is finally formed.

IV. CONCLUSIONS

In this paper we employed the Langevin model to study
the Rayleigh-Bénard instability problem, assuming that each
molecule in the system is a Brownian particle colliding with its
surrounding molecules. Our Langevin dynamics simulations
reproduced the onset of thermal instability changing from a

conductive to a convective state very well. The roles of the
drag force and the random force terms in the Langevin equation
in triggering thermal instability are elucidated via numerical
tests. Furthermore, we demonstrated that the strength of the
fluctuation correlations increases as the Rayleigh number
approaches the critical value, and the characteristic of the
fluctuation correlations determines the convective patterns
formed above the critical Rayleigh number. Our latest studies
showed that the Langevin equation can also be applied to
simulate other flow instability problems, such as Kolmogorov
flow [6] and Rayleigh-Taylor instability [29]. It is expected
that researches in this direction will shed new light on the
general mechanism of flow instability.
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