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Acoustic manipulation: Bessel beams and active carriers
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In this paper, we address the interaction of zero-order acoustic Bessel beams as an acoustic manipulation tool,
with an active spherical shell, as a carrier in drug, agent, or material delivery systems, in order to investigate
the controllability of exerted acoustic radiation force as the driver. The active body is comprised of a spherical
elastic shell stimulated in its monopole mode of vibrations with the same frequency as the incident wave field
via an internally bonded and spatially uniformly excited piezoelectric actuator. The main aim of this work is
to examine the performance of a nondiffracting and self-reconstructing zero-order Bessel beam to obtain the
full manipulability condition of active carriers in comparison with the case of a plane wave field. The results
unveil some unique potentials of the Bessel beams in the company of active carriers, with emphasis on the
consumed power of the actuation system. This paper will widen the path toward the single-beam robust acoustic
manipulation techniques and may lead to the prospect of combined tweezers and fields, with applications in
delivery systems, microswimmers, and trapper designs.
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I. INTRODUCTION

The modern interest in the properties of piezoelectric
materials was introduced more than three decades ago with
various applications in practical engineering and medicine
such as sound navigation and ranging, industrial sonics,
manufacturing, nondestructive testing (NDT), structural health
monitoring, medical diagnostics, electro-optics, communica-
tions, and geophysical investigations [1–9].

The contactless and remote handling of milli- or
microsized particles has increasing applications in medicine
applications such as targeted drug or agent delivery
systems, remote sampling systems, contrast agents, etc.,
and also engineering applications such as small-sized mass
transformation, trapping, levitation, and cleaning systems in
micro or normal gravity conditions or hazardous media, etc.,
using noncontact driving systems such as optics [10–15];
electrokinetics [16,17]; and acoustics [18–34]. Focusing on
acoustic based systems due to their appropriate in-depth
penetration and noninvasive nature, the full handling by a
single-beam manipulation system is a challenge, due to the
complexity of pulling force generation [35–41].

Acoustic Bessel beams have attracted much attention
among researchers due to their inherent characteristics
such as nondiffracting propagation, the property of self-
reconstruction, the capability of resonance control, and the
claimed potential of generating interesting negative radiation
force on targets, on and off the wave propagation axis [8,35–
38,42–45]. This kind of beam has been nominated as one of
the main assets for single-beam acoustic manipulations.

A glance at the results of many research works conducted
to show the possibility of the pulling effects of Bessel beams
reveals that the amplitude of the generated negative radiation
forces is negligible in comparison with the amplitude of
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common positive forces. Moreover, this pulling state occurs
commonly in relatively high cone angles (i.e., considering the
fact that as the cone angle increases, the progressive wave field
approaches the standing wave field for which the asymmetry
of induced pressure distribution around the scatterer tends
to symmetric patterns and, therefore, it is expected that the
amplitude of possible exerted forces decreases) [10,11].

Recently, the strategy of using activated carri-
ers [39,40,46,47], manipulated by an ordinary progressive
plane wave, has been introduced as a candidate for com-
mon strategies of acoustic manipulations based on com-
plicated beam patterns such as Gaussian [48], zero- and
high-order Bessel beams [35–38,41,48–51], and standing
waves [28,30,31]. The mainstay of the proposed technique
is founded on the physical fact that the radiation force is
the result of momentum transport and energy flux from the
surrounding medium toward the body through the interaction
of an asymmetric wave field with the scatterer. Clearly, a
controllable stimulation of the body may lead to surrounding
field variations and, therefore, the desired radiation force effect
can be attained.

Considering the possible capabilities of activated carriers
along with the special properties of the Bessel beam motivated
us to investigate the opportunity of enhancing the acoustic
handling performance of Bessel beams over the spherical
active carriers. In the mathematical modeling, the dynamic
effects of insulators and electrodes as well as those of the
transducer are ignored. The frequency content associated with
the incident Bessel beams are assumed to be monochromatic.
The surrounding ambient is considered as an ideal fluid. In
order to drive the equations of motion of the body, linear and
three-dimensional elasticity are used.

II. FORMULATION

A. Configuration of problem

In this section, we shall consider the mathematical modeling
of interaction between a harmonic zero-order Bessel beam
(ZOBB) with a pulsating spherical carrier. Figure 1(a) depicts
the schematic of the problem.
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FIG. 1. (a) Schematic of the problem: A Bessel beam illuminating
an active spherical body and exerting radiation force upon it.
(b) Configuration of problem: A bilaminate PZT4-steel spherical
shell where a and c are the outer and inner radius of the sphere,
respectively; b is the interface radius, submerged in water, which
is insonified by a Bessel beam of cone angle β. V is the applied
harmonic voltage on the piezoelectric actuator.

The carrier is composed of an elastic casing with outer
and inner radii of a and b, respectively. The elastic shell is
internally coated with a radially polarized piezoelectric layer
(film) with outer and inner radii of b and c, respectively. The
structure is immersed in an ideal fluid. The problem geometry
is illustrated in Fig. 1(b) where (x,y,z) is the Cartesian
coordinate system and (r,θ ) is the corresponding spherical
coordinate system, assuming axisymmetry. For simplicity, the
dynamics of the bonding layers and resins, and the electrodes,
are ignored and it is assumed the source of the ZOBB is far
enough from the object.

B. Acoustic field equations

Based on the classical procedure of linear acoustics, the
Helmholtz equation for the external fluid regions is(∇2 + k2

f

)
ϕ = 0, (1)

where ϕ is the velocity potential and kf = ω/cf is the wave
number. Also the corresponding pressure can be written as

p = −iωρf ϕ. (2)

Bessel beams are represented as axisymmetric solutions
for Eq. (1) [52]; thus the scalar velocity potential function
of the incident plane and its corresponding acoustic pressure
in terms of zero Bessel function (so-called zero-order Bessel

beam), can be written as

ϕinc(x,y,z) = ϕ0e
iκzJ0(μR),

(3)
pinc(x,y,z) = −iωρf ϕ0e

iκzJ0(μR),

where ωρf ϕinc is the amplitude of beam pressure, J0(· · · ) is a
zero-order Bessel function of the first kind [53], κ2 + μ2 = k2

f ,
and R2 = x2 + y2. β = cos−1(κ/kf ) is the cone angle formed
by the plane wave components of the Bessel beam, relative
to the axial coordinate, z. Equation (3) can be expanded in
spherical coordinates as [54]

ϕinc(r,θ,ω) = ϕ0(ω)
∞∑

n=0

(2n+1)injn(kf r)Pn(cos β)Pn(cos θ ),

pinc(r,θ,ω) = −ϕ0(ω)
∞∑

n=0

ρf ω(2n + 1)in+1jn(kf r)

×Pn(cos β)Pn(cos θ ), (4)

where jn is the nth-order spherical Bessel function of the first
kind and Pn is the Legendre function of order n [53].

Likewise, keeping in mind the Sommerfeld radiation
condition for a scattered field, the solutions of the Helmholtz
equation for the scattered velocity potential functions in the
surrounding fluid medium can be expressed as

ϕscatt(r,θ,ω) = ϕ0(ω)
∞∑

n=0

(2n + 1)inAn(ω)h(1)
n (kf r)

×Pn(cos β)Pn(cos θ ),

pscatt(r,θ,ω) = −ϕ0(ω)
∞∑

n=0

ρf ω(2n + 1)in+1An(ω)h(1)
n (kf r)

×Pn(cos β)Pn(cos θ ), (5)

where h(1)
n (· · · ) is the spherical Hankel function of the first

kind of order n [53] and An(ω) is the unknown modal
coefficient. Considering the superposition principle in linear
acoustic regimes, the total velocity potential, the velocity field,
and the acoustic pressure in the surrounding medium can be
evaluated by

ϕt = ϕscatt + ϕinc, vf = −∇(ϕscatt + ϕinc),

pt = pscatt + pinc = −iωρf (ϕscatt + ϕinc). (6)

C. Dynamics of the carrier

The dynamics of the carrier’s structure and its general
solution in the presence of harmonic loading is given in
Ref. [46], in detail. Here, the governing equations are just
reviewed.

The fundamental equations for the casing and the piezo-
electric materials in linear elasticity are given as [55,56]

σ = cs, � = CS − �	, � = eS + Q	, (7)

where σ = [σrr , σθθ , σφφ, σrθ , σrφ, σθφ]T and
s = [srr , sθθ , sφφ, 2srθ , 2srφ, 2sθφ]T indicate the stress
and strain vectors of the isotropic elastic material,
respectively; and σ = [�rr, �θθ , �φφ, �rθ , �rφ, �θφ]T,
S = [Srr , Sθθ , Sφφ, 2Srθ , 2Srφ, 2Sθφ]T, � = [r, θ , φ]T

are the stress, strain, and electric displacement of the
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piezoelectric material, respectively [46]. Also, 	 refers to the
electric potential function. The elastic constant matrices of
the casing and actuator, c and C; the piezoelectricity matrix
e; and the operator matrix Q are given in Appendix A. The
strain-displacement relations are s = Hu, S = HU, where
u = [ur, uθ , uφ]T and U = [Ur, Uθ , Uφ]T are displacement
vectors of the isotropic elastic material and the piezoelectric
material, respectively, and H is given in Appendix A. In the
absence of the body forces, the relevant structural dynamic
equations may be described as [57][

ϒ [0]3×6
[0]3×6 ϒ

]{
σ

�

}
=

{
ρcü
ρpÜ

}
, (8)

where ρc and ρp are the densities of the casing and piezoelec-
tric actuator materials, respectively, and the 3 × 6 operator
matrix,ϒ, is represented in Appendix A.

In the absence of free charge density, the
Gaussian representation of the equation of electric
equilibrium is ∇2r + r + (1/sinθ )∂/∂θ (θ sinθ ) +
(1/r sin θ )∂/∂φ(φ) = 0, where ∇2 = r∂/∂r (i.e., the
electric equilibrium equation is a quasistatic approximation of
the Maxwell auxiliary equation which originally is ∇ · � = ρe

where ρe is free electric charge density, not including the
charge from the polarization of the material).

D. Boundary conditions, scattered field, and
acoustic radiation force

The boundary value problem will be constructed by
imposing the relevant boundary conditions at the external
surface of the casing layer in contact with the surrounding
medium, and at the internal surface of the piezo actuator layer
free load condition and lastly, at the interface of the piezo
actuator and the casing as follows:

Balance of the radial stress and the fluid pressure.

σrr (r = a) = −p(r = a), �rr (r = c) = 0.

Zero tangential stress components at the inner surface of
the piezo actuator and the outer surface of the casing.

σ2(r = a) = 0, �2(r = c) = 0.

Equality of the normal fluid and solid velocities at the outer
surface of the piezo actuator.

Wn(r = a) = [pn(r = a)h′
n(kf a)]/[aωρf cf hn(kf a)].

Equality of the radial traction vector at the interface of the
piezo actuator and the casing.

σrr (r = b) = �rr (r = b),

σrθ (r = b) = �rθ (r = b),

σrφ(r = b) = �rφ(r = b).

Equality of the displacement vector at the interface of the
piezo actuator and the casing.

ur (r = b) = Ur (r = b),

uθ (r = b) = Uθ (r = b),

uφ(r = b) = Uφ(r = b),

where the mathematical description of the above mechanical
boundary conditions is given in [46]. Moreover, the electrical
boundary condition is expressed as the prescribed axisymmet-
ric electrical voltage imposed at the inner and outer surfaces
of the piezo actuator:

	(r = b,θ,t) = V (θ,ω)e−iωt ,
(9)

	(r = c,θ,t) = 0,

where V (θ,ω) denotes the imposed electric potential in
7monopole mode which may be expanded in the nondimen-
sional form as

V (θ,ω) = [e33a/(2ε33)]	0(r = b). (10)

Note that in monopole mode, V does not depend on θ .
The above boundary conditions will make up a system of

linear coupled equations whose solution leads to the modal
scattering coefficient An as

An =
{
Z1,0 + Z2,0	0 n = 0
Z1,n n > 0 , (11)

where Z1,n and Z2,0 are the modal transfer functions of the
system given in Appendix B. It can be easily shown that the
modal scattering coefficients, An n > 0, are independent of
the cone angle, β.

The time-averaged radiation force function may be rep-
resented as 〈F〉 = EincScY , where Einc = ρf k2

f ϕ2
0/2 is an

indicator of incident wave energy density, Sc = πa2 is the
cross-sectional area of the spherical body, and Y is the
dimensionless radiation force function given as a function of
the scattering coefficient An as [35]

Y = −4

(kexa)2

∞∑
n=0

(n + 1)[αn + αn+1 + 2(αnαn+1 + βnβn+1)]

×Pn(cos β)Pn+1(cos β), (12)

where αn and βn are the real and imaginary parts of An. It
is clear that the acoustic radiation force is dependent on the
modal scattering coefficient, An (which is a superposition of
background scattered field and resonance characteristics of
structure [58–60]), and A0 is dependent on 	0 which may be
adjusted to manipulate the effects of the Bessel beam on the
object.

E. Acoustic manipulation strategy

Here, the acoustic manipulation strategy is based on the
alteration of the acoustic radiation force on the object, by
adjusting the surrounding acoustic field through interaction
of incident Bessel beams and the prescribed monopole
acoustic radiation of the body due to the implementation of
the harmonic spatially uniform voltage on the piezoelectric
actuator (i.e., 	n = 0 for n > 1). The problem should be
mathematically defined as determining the required voltage
in order to attain a desired radiation force function, Yd , with
repulsive (positive values) or attractive (negative) nature or
zero-state condition by combination of Eqs. (11) and (12) as

Rᾱ + Sβ̄ + T = 0, (13)
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where ᾱ = Re{	0(ω)} and β̄ = Im{	0(ω)} are the real and imaginary parts of 	0(ω) and R, S, and T are frequency-dependent
functions as below:

R = −4

(kexb)2 [Re(Z2,0)(1 + 2α1) + Im(Z2,0)(2β1)]P0(cos β)P1(cos β),

S = −4

(kexb)2 [−Im(Z2,0)(1 + 2α1) + Re(Z2,0)(2β1)]P0(cos β)P1(cos β),

T = −Yd + −4

(kexb)2

{
[α1 + Re(Z1,0)(1 + 2α1) + Im(Z1,0)(2β1)]P0(cos β)P1(cos β)

+
∞∑

n=1

(n + 1)[αn + αn+1 + 2(αnαn+1 + βnβn+1)]Pn(cos β)Pn+1(cos β)

}
, (14)

where Yd is the desired radiation force function.
For any specified frequency and cone angle of incident

Bessel beam, R, S, and T are constant values. According
to Eq. (13), the zero radiation force condition occurs for
specified amplitudes, (ᾱ2 + β̄2)1/2, and phase, tan−1(β̄ /ᾱ),
of a prescribed voltage, in the ᾱβ̄ plane. Moreover, the
straight line of zero radiation force, Eq. (14), divides the
ᾱβ̄ plane into two different zones of positive (repulsive)
and negative (attractive) radiation forces. The existence of
a specific frequency-dependent zero-state straight line has
analogy with the case of plane wave interaction with a
pulsating spherical object [46]; even though its distance to
the origin of the coordinate system is dependent on the Bessel
beam pattern β, its slope is independent.

III. NUMERICAL RESULTS

In order to examine the performance of the proposed
technique based on simultaneous utilization of Bessel beams
and the activated carriers, a numerical example is considered.
The main structure (outer layer) of the body is supposed
to be made of stainless steel internally coated by PZT4
piezoelectric. Table I gives the material mechanical properties.
The geometrical parameters are taken as a = 1 mm, b =
0.9 mm, c = 0.8 mm. The surrounding fluid is assumed to be
water at atmospheric pressure and ambient temperature with
the properties of ρf = 997.05 kg/m3 and cf = 1497 m/s. All
the computations are performed via a written code in MATLAB

software. The convergence was systematically checked.
Considering the same formulation of the presented work

as the investigated problem in Ref. [46], the verification

TABLE I. Material characteristics. The units are Cij (GPa);
ρp,c (kg/m3); εij (10−11F/m); eij (C/m2).

Steel PZT4

ρc = 7850 ρp = 7500

E = 207 GPa C11 = 139, C12 = 78, C13 = 74.3

ν = 0.29 C33 = 115, C44 = 25.6, C66 = 30.5

ε11 = 650, ε33 = 560

e15 = 12.7, e31 = −5.2, e33 = 15.1

of the computations are just limited to the checking of
Bessel beam modeling. Figures 2(a) and 2(b) demonstrate
the radiation force function of an evacuated aluminum
spherical shell illuminated by Bessel beams at cone angles
β = 45◦ and β = 60◦, in a selected frequency range 0 <

kf a < 2. The material properties of both layers of the
structure are set as the mechanical properties of aluminum as

FIG. 2. Acoustic radiation force function Y , versus nondimen-
sional frequency kf a, of an aluminum spherical shell with c/a =
0.96 submerged in water and interacting with a Bessel beam with
(a) β = 45◦ and (b) β = 60◦.
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FIG. 3. Acoustic radiation force function Y , of a bilaminate
PZT4-steel spherical shell, submerged in water and insonified by
a Bessel beam as (a) a function of cone angle, 0◦ � β � 80◦ and
(b) β = 0◦, 10◦, 20◦, 30◦, 60◦ versus dimensionless frequency (size
factor) kf a.

ρp = ρc = 2712 kg/m3, E = 71.48 GPa, and υ = 0.34. The
dimensionless shell thicknesses are taken as c/a = 0.96.
The surrounding water properties are set ρf = 1000 kg/m3

and cf = 1479 m/s. Figures 2(a) and 2(b) are in excellent
agreement with Fig. 3 of Ref. [36].

Figure 3(a) displays the contour of radiation force function
amplitude exerted on the spherical object in the passive
state due to Bessel beam illumination as a function of
nondimensional frequency, 0.1 < kf a < 50, and Bessel beam
cone angle, 0◦ < β < 80◦. It should be noted that as the cone
angle increases to β = 90◦ the radiation force function value
decreases to zero. This decrease of radiation force is due to the
fact that the incident wave field with β = 90◦ corresponds to a
cylindrical standing wave field [61]. The frequency bandwidth
is chosen so that the equivalent frequency bandwidth covers
the common high kHz to medium MHz region, for objects
of millimeter size order. More interestingly, the illustrated
radiation force takes just positive values which means always
pushing effects in our case study. Therefore, generation of
negative radiation force (NRF) or pulling effect is not intuitive,
considering this fact that the monopole radiation of the body
due to the applied spatially uniform voltage just probably leads
to more symmetric pressure distribution around the object.
Therefore, what makes the problem more attractive is that
we have a ZOBB which generates only pushing effects and a
monopole radiation field which solely produce no forces on
the object.

For comparison of radiation force generated by the plane
wave and Bessel beam, Fig. 3(b) illustrates the radiation
force function as a function of dimensionless frequency,
0.1 < kf a < 50, for β = 0◦ which represents a plane wave

pattern and selected cone angles, β = 10◦, 10◦, 30◦, 60◦.
A clear distinction between the cases of plane wave and
Bessel beam is observed where the radiation force func-
tion tends to Yd = +1 in the former case while the ra-
diation force function tends to near-zero values for the
latter one, especially for higher cone angles, as frequency
increases. The desired (positive or negative) radiation force
functions with the order of |Yd | ∼ O(1) are equivalent to
physical radiation force values of 〈F〉 = ρf k2

f ϕ2
0(πa2)Yd/2 ∼=

ρf k2
f [pinc/(ρf ω)]2(πa2)Yd/2 ∼ O(10−11) N. Assuming the

low Reynolds number swimming condition, the swimming
velocity due to the exerted force may be estimated by Stokes
law for drag force [62] as Vs = 〈F〉/(6πηa) ∼ O(101) μm/s
where η ∼ O(10−4) Pa s denotes the viscosity of water as host
medium at atmospheric pressure and ambient temperature. The
Reynolds number value, Re = ρVsa/η ∼ O(10−2), proves the
above estimation. This swimming velocity may seem too
small, which is due to the small incident pressure amplitude.
Due to the dependency of acoustic radiation force with the
square of the pressure amplitude, increasing the pressure
amplitude by one order leads to swimming velocities up
to Vs ∼ O(100) mm/s, enough for body size length scale
traveling for a few seconds’ exposure. Comparing the acoustic
radiation force magnitude 〈F〉 ∼ O(10−9) N − O(10−11) N
for the range of |pinc| ∼ O(102) Pa − O(103) Pa with the
fluctuation noise amplitude due to thermal induced random
fluctuations associated with the atoms of the host medium [63–
65], (6πηakBT )1/2 ∼ O(10−13) N, where kB is the Boltzmann
constant of the host medium and T is temperature, which is
sufficiently large for stable manipulation of the object without
occurrence of Brownian motion or random walk.

In addition, despite the clear appearance of resonances in
the plane incident wave as sharp peaks, the resonances are
dependent on beam cone angles in the Bessel beam case. This
occurrence may be considered as an aid to resonance control
applications [42,43].

According to the above comparisons, this question may be
raised about Bessel beam: How could they attract attention,
especially in the acoustic handling applications, while the
required apparatus is much more complicated in comparison
with the plane wave case. In the following figures and discus-
sions, we hope to find a persuasive answer to this question.

In Figs. 4 and 5, the capability of the activated carriers to
influence the surrounding acoustic medium in the presence of
incident Bessel beams in order to attain the desired negative
radiation force state is examined. Figures 4(a) and 4(b) display
the contours of the minimum required normalized voltage V̄ =
(e33V0)/(a|pinc|), amplitude |V̄ |, and phase ∠V̄ , respectively,
for the selected frequency bandwidth 0 < kf a < 50, and
cone angle ranges 0◦ < β < 80◦, so that the desired negative
radiation force amplitude of Yd = −1 is achieved. The word
“minimum” here corresponds to the minimum required voltage
among all the values of the voltage amplitude at any specific
frequency and cone angle which can generate the desired
radiation force on the object, according to Eq. (13).

Figure 4(a) shows the increasing trend of voltage as the
cone angle increases. Clearly, as the cone angles tend to π/2,
the incident beam resembles a symmetric wave pattern which
the radiation force amplitude in the passive state generally
tends to low values. Figure 4(b) shows that the phase of the
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FIG. 4. Normalized minimum required voltage to achieve the
radiation force of Yd = −1 on the bilaminate PZT4-steel spherical
shell, as (a) the amplitude as a function of cone angle, 0◦ � β � 80◦

and dimensionless frequency (size factor), kf a; (b) the phase versus
dimensionless frequency (size factor) kf a; (c) the amplitude versus
dimensionless frequency (size factor) kf a, and for selected cone
angles, β = 0◦, 10◦, 20◦, 45◦, 60◦.

required voltage is constant with respect to the cone angle.
This independency may be mathematically proven by means
of Eqs. (13) and (14), and may be interpreted due to this fact
that the phase of the excitation acoustic field is independent of
the cone angle.

Figure 5 illustrates the contour of the radiation force
function amplitude after implementation of the calculated
voltage, for three selected frequency bandwidths and cone
angles as 5◦ < β < 15◦, 2 < kf a < 10, 60◦ < β < 75◦, 20 <

kf a < 30, 30◦ < β < 45◦, 40 < kf a < 48, in order to attain
Yd = −1. This figure clearly shows the effectiveness of the
proposed technique, by demonstrating the dark blue patches
on the above selected regions, regarding the emergence of
Yd = −1. Considering the practical orders of a ∼ O(10−3) m,
|pinc| ∼ O(102) Pa, the amplitude of the applied voltage in the
practical frequency range of 20 kHz < f < 10 MHz and for

FIG. 5. Manipulated radiation force to Yd = −1 for selected
ranges of cone angles and size factor as 5◦ < β < 15◦, 2 < kf a < 10,
60◦ < β < 75◦, 20 < kf a < 30, 30◦ < β < 45◦, 40 < kf a < 48.

cone angles, 0◦ < β < 50◦, is in the range of O(10−4) V <

V0 < O(10−1) V (V means volt). This range of voltage
regarding the common maximum capacity of applicable
voltage of PZT4 per thickness, 300 kV/mm [66], promises
a practical and executable methodology.

For better comparison, Fig. 4(c) displays the minimum
required voltage amplitude |V̄ |, as a function of dimensionless
frequency, 0.1 < kf a < 50, for selected cone angles, β =
10◦, 20◦, 45◦, 60◦, and the case of plane incident wave, β =
0◦. It seems that at each frequency of operation, an optimum
cone angle exists in which the minimum required voltage is
in its lowest state. The existence of the optimum operation
state (i.e., frequency and cone angle) will be discussed in the
following figures.

Another aspect in Fig. 5 is the drop of voltage ampli-
tude around frequencies kf a ≈ 5 and kf a ≈ 45. Following
the resonance acoustic spectroscopy technique and utilizing
the background theories for multilayered structure in the
literature [59,67,68] or constructing and direct solving the
corresponding eigenvalue problem, it can be shown that these
resonances are corresponding to the resonance frequencies of
the coupled system of the fluid and the structure (i.e., see
Appendix C).

For more practicable comparison between the advantages
of Bessel beam versus the plane wave, and making more
profound judgment about the performance of the Bessel
beam application in acoustic handling, the consumption power
by the active elements of the active object is investigated.
The required power may be calculated following the theory
developed by Zhang and Marston [50] as

Pabs = πσ0a
2Qabs, (15)

where σ0 = p2
inc/(2ρf cf ) is the intensity of the incident wave

field and Qabs is the normalized absorbed power by the object
which in our case is expected to be negative due to the energy
radiation by the stimulated element, given as [50]

Qabs = (1/(kf a)2)
∞∑

n=0

(2n + 1)(1 − |2αn + 1 + i2βn|2)

× [Pn(cos β)]2. (16)
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FIG. 6. Logarithm of the required normalized power to generate
Yd = −1 on the sphere: (a) 3D plot as a function of cone angle β,
and dimensionless frequency (size factor); (b) 2D plot as a function
of cone angle and for selected size factors kf a = 10, 20, 30, 40, 50.

Figure 6(a) depicts a three-dimensional (3D) plot of the
required normalized power in logarithmic scale, log |Qabs|, as

a function of frequency, 0.1 < kf a < 50, and the cone angle,
0◦ < β < 80◦ so that the desired radiation force function,
Yd = −1, is achieved. The required normalized power, derived
from Eq. (16), has negative values since in our case, an
electrical power supply is needed to generate negative radi-
ation force, i.e., Yd = −1, on the sphere. More fundamental
discussion can be found in Ref. [69] about absorbed power in
the presence of an activated spherical object in its monopole
mode. Figure 6(b) displays some sections of Fig. 6(a) at
selected frequencies, kf a = 10, 20, 30, 40, 50. As is seen,
as the frequency increases, the required normalized power
increases. Moreover, at any specific frequency of operation,
an optimum cone angle with minimum required power exists
such that the desired radiation force emerges. In our example,
the optimum cone angle is in the range of 8◦ < β < 23◦ where
it has an inverse relation with the frequency. This range of cone
angle is feasible considering the limitations of the required
transducer. A comparison between the required power at the
optimum state of the Bessel incident beam with the case
of the incident plane wave, β = 0◦, reveals this fascinating
occurrence that the required power may be decreased up
to 70% in the case of the optimum Bessel beam pattern.
Moreover, in order to verify the practicability of the presented
method, considering the value of incident intensity, one can
see that the required power to achieve Yd = −1 is of the order
Pabs ∼ O(10−3) W.

Figures 7(a) and 7(e) depict the 2D directivity pat-
terns associated with the form function amplitude, i.e.,
limr→∞(2r/a)|Pscatt/Pinc|, at selected frequencies kf a = 5,
for the three cases of passive state 	0 = 0, active state of
zero radiation force function Yd = 0, and active state of
desired pulling radiation force function Yd = −1 at plane

FIG. 7. 2D directivity pattern of form function amplitude over the sphere interacting with progressive plane wave: (a) β = 0◦ and
(e) β = 30◦ at kf a = 5 in the cases of passive sphere (solid curve), canceled radiation force, i.e., Yd = 0 (long-dash curve), and Yd = −1
(short-dash curve). 3D directivity pattern of form function amplitude of what came before at (β = 0◦) and kf a = 5 in the cases of (b) passive
sphere, (c) Yd = 0, and (d) Yd = −1. 3D directivity pattern of form function amplitude over the sphere interacting with a Bessel beam of cone
angle β = 30◦ at kf a = 5 in the cases of (f) passive sphere, (g) Yd = 0, and (h) Yd = −1. (The gray plane represents the θ = 0 plane.)
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FIG. 8. Asymmetry index versus size factor for the cases of
passive sphere (solid curve), canceled radiation force, i.e., Yd = 0
(long-dash curve), and Yd = −1 (short-dash curve) for (a) β = 0◦

and (b) β = 30◦.

incident wave β = 0◦, and Bessel beam β = 30◦, respectively.
Figures 7(b)–7(d) and 7(f)–7(h) illustrate the 3D plots asso-
ciated with the three represented cases corresponding to the
plane and Bessel beam incident fields. Clearly, for active states
in both cases of plane and Bessel beam incident field pattern,
the scattered pressure increases. The increase of pressure
in the case of the Bessel beam is much more prominent,
but the maximum amplitude of induced pressure due to the
applied voltage is remarkably less than what is required in
the case of the plane incident wave pattern, which is an extra
endorsement on the higher performance of the Bessel beam
in cooperation with the pulsating radiation field on the object.
Another feature associated with the scattered pressure in active
cases is the tendency of the directivity to the symmetric
pattern. This feature can be quantifiably explained by means
of the asymmetry index 〈w〉, which represents the connection
between the acoustic radiation force, the asymmetry of the
scattering field, and the absorbed or induced power by the
object as [50]

Y = Qsca(cos β − 〈w〉) + Qabs cos β, (17)

where Qsca is the efficiency factor related to the scattering
power given as [50,51,70]

Qsca = (4/(ka)2)
∞∑

n=0

(2n + 1)
(
α2

n + β2
n

)
[Pn(cos β)]2, (18)

and −1 < 〈w〉 < 1 is an index of the asymmetry of the
scattering field given as [50,51,70]

〈w〉 = −Y1/Qsca, (19)

in which Y1 = −4/(ka)2 ∑∞
n=0 2(n + 1)(αnαn+1 + βnβn+1).

Obviously, in our case, no absorption occurs, but the energy is
supplied to the system (i.e., Qabs < 0).

Figures 8(a) and 8(b) represent the asymmetry index 〈w〉
as a function of nondimensional frequency kf a, for two cases
of plane incident wave β = 0◦, and Bessel beam β = 30◦,
respectively, at three states of passive, canceled, and desired
pulling radiation forces. As is observed in these figures, the
asymmetry index tends to zero in active cases, especially in
the case of generating the desired radiation force, Yd = −1.
This tendency to zero verifies the symmetric directivity pattern
presented in Fig. 7. Considering the zero asymmetry index,
it may be concluded that the desired radiation force effects
at higher frequencies tend to be just originated from the
interference of the incident field and the scattered field rather
than the asymmetry of the surrounding scattering field, which
is the prominent effect at lower frequencies [50].

IV. CONCLUSIONS

In this study, another remarkable potential of the Bessel
beam has been revealed. This feature is due to the interaction
of the zero-order Bessel beams (ZOBBs) with the radiated field
generated by the stimulated object. With the aid of the recently
introduced concept of “active carriers,” it has been shown that
negative radiation force with much higher amplitudes (i.e, up
to three orders of magnitude) can be generated on the object
by actuating its monopole mode of vibration with a very small
amount of power, ∼O(10−3) W, in the presence of the incident
Bessel beam. It has been shown that in spite of the fact that the
Bessel beam cannot reverse the radiation force direction on the
passive carrier by itself in our example, in combination with
the activated monopole wave field, it can greatly reduce the
required power to not only reverse the direction of radiation
force on the object, but to generate a considerable amount of
NRF on the carrier with an order of magnitude comparable
with the pushing states (positive values). In the example, it
has been demonstrated that for generation of a substantial
value of NRF on the smart carrier, with the help of the Bessel
beam’s inherent features, the required power reduces to less
than one-third of the power required to reach that amount of
radiation force in the case of the incident plane wave. It should
be said that this reduction of power occurs in the practicable
range of cone angles, (i.e., 8◦ < β < 23◦ in our example),
relative to high cone angles determined in previous papers in
which a Bessel beam could generate NRF on passive spherical
objects.

The practicability of the proposed combined methodology
for microparticle handling is highlighted when we consider
the advent of techniques for generation of Bessel beams by a
novel generation of transducers, (e.g., surface acoustic wave
based transducers [71]).

It is hoped that this paper may help widen the path of the
single-beam robust acoustic manipulation techniques and lead
to the prospect of combined tweezers and fields.

043001-8



ACOUSTIC MANIPULATION: BESSEL BEAMS AND . . . PHYSICAL REVIEW E 96, 043001 (2017)

APPENDIX A: STRUCTURAL CONSTANTS AND OPERATOR MATRICES

Elastic constants for casing and piezo layers, c and C; the piezoelectricity matrix e; the operator matrices Q, H, and ϒ:

c =

⎡
⎢⎢⎢⎢⎢⎣

c33 c13 c13 0 0 0
c13 c11 c12 0 0 0
c13 c12 c11 0 0 0
0 0 0 2c44 0 0
0 0 0 0 2c44 0
0 0 0 0 0 2c66

⎤
⎥⎥⎥⎥⎥⎦, C =

⎡
⎢⎢⎢⎢⎢⎣

C33 C13 C13 0 0 0
C13 C11 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C66

⎤
⎥⎥⎥⎥⎥⎦,

Q =
[
−ε33∇2−ε15

∂

∂θ
− ε15

sin θ

∂

∂φ

]T

, e =
⎡
⎣e33

0
0

e31

0
0

e31

0
0

0
2e15

0

0
0

2e15

0
0
0

⎤
⎦,

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∇2 0 0
1 ∂

∂θ
0

1 cot θ 1
sin θ

∂
∂φ

∂
∂θ

∇2 − 1 0
1

sin θ
∂
∂φ

0 ∇2 − 1
0 1

sin θ
∂
∂φ

∂
∂θ

− cot θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

ϒ =
⎡
⎣ 0 ∂

∂θ
+ cot θ − cot φ

0 0 csc θ ∂
∂φ

∇2 + 1 −1 −1

∇2 + 2 0 csc θ ∂
∂φ

2 ∇2 2 cot φ
∂
∂θ

+ cot θ csc θ ∂
∂φ

0

⎤
⎦,

where ∇2 = r ∂
∂r

and the equality of 2C66 = C11 − C12 holds for the spherical isotropy associated with the piezoelectric structure.
The isotropy condition for elastic isotropic casing leads to the equalities as below:

c11 = c33 = E(1 − ν)

(1 − 2ν)(1 + ν)
, c12 = c13 = Eν

(1 − 2ν)(1 + ν)
, c44 = c66 = E

2(1 + ν)
,

where E and ν are the Young modulus and the Poison ratio constants.

APPENDIX B: PASSIVE AND ACTIVE SCATTERING COEFFICIENT

Coefficients An can be decomposed as in Eq. (11) into two separate components. The Z1,n coefficients correspond to the
passive part of the scattering coefficients, while, in our case, Z2,0	0 corresponds to the active component of the scattering
coefficient in the monopole mode, due to voltage implementation.

Z1,n =

∣∣∣∣∣∣∣∣
Sn(1,3) Sn(1,4) Sn(1,5) −ϕ0ωρf (2n + 1)in+1jn(kf a)/C44
Sn(2,3) Sn(2,4) Sn(2,5) 0
Sn(4,3) Sn(4,4) Sn(4,5) kf ϕ0(2n + 1)in+1j ′

n(kf a)/(aω)
T2,n(6,3) T2,n(6,4) T2,n(6,5) 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Sn(1,3) Sn(1,4) Sn(1,5) ϕ0ωρf (2n + 1)in+1hn(kf a)/C44
Sn(2,3) Sn(2,4) Sn(2,5) 0
Sn(4,3) Sn(4,4) Sn(4,5) −kf ϕ0(2n + 1)in+1h′

n(kf a)/(aω)
T2,n(6,3) T2,n(6,4) T2,n(6,5) 0

∣∣∣∣∣∣∣∣

, (n > 0),

Z1,0 =

∣∣∣∣∣∣
S0(1,2) S0(1,3) −iϕ0ωρf j0(kf a)/C44
S0(2,2) S0(2,3) ikf ϕ0j

′
0(kf a)/(aω)

S0(4,2) S0(4,3) 0

∣∣∣∣∣∣∣∣∣∣∣∣
S0(1,2) S0(1,3) iϕ0ωρf h0(kf a)/C44
S0(2,2) S0(2,3) −ikf ϕ0h

′
0(kf a)/(aω)

S0(4,2) S0(4,3) 0

∣∣∣∣∣∣
, (n = 0),

Z2,0 =

∣∣∣∣∣∣
S0(1,2) S0(1,3) 0
S0(2,2) S0(2,3) 0
S0(4,2) S0(4,3) 1

∣∣∣∣∣∣∣∣∣∣∣∣
S0(1,2) S0(1,3) iϕ0ωρf h0(kf a)/C44
S0(2,2) S0(2,3) −ikf ϕ0h

′
0(kf a)/(aω)

S0(4,2) S0(4,3) 0

∣∣∣∣∣∣
, (n = 0).
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APPENDIX C: RESONANCE IDENTIFICATION

Taking the modal scattering coefficients with the form of An = Nn/Dn, given in Eq. (11) and Appendix B, the resonance
frequencies of the compound solid-fluid structure may be directly found as the roots of Dn = 0 which leads to∣∣∣∣∣∣∣∣

Sn(1,3) Sn(1,4) Sn(1,5) ϕ0ωρf (2n + 1)in+1hn(kf a)/C44
Sn(2,3) Sn(2,4) Sn(2,5) 0
Sn(4,3) Sn(4,4) Sn(4,5) −kf ϕ0(2n + 1)in+1h′

n(kf a)/(aω)
T2,n(6,3) T2,n(6,4) T2,n(6,5) 0

∣∣∣∣∣∣∣∣
= 0, for n > 0

∣∣∣∣∣∣
S0(1,2) S0(1,3) iϕ0ωρf h0(kf a)/C44
S0(2,2) S0(2,3) −ikf ϕ0h

′
0(kf a)/(aω)

S0(4,2) S0(4,3) 0

∣∣∣∣∣∣ = 0, for n = 0

,

or the resonance scattering theories may be used considering improper background approaches [38,39,46,47]. In the selected
frequency range, the resonance frequencies are kf a = 5.39 and kf a = 46.5 for monopole mode and kf a = 1.85, kf a = 7.3,
kf a = 23.68, and kf a = 47.35 in dipole mode, etc.
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