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Force fluctuations on a wall in interaction with a granular lid-driven cavity flow
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The force fluctuations experienced by a boundary wall subjected to a lid-driven cavity flow are investigated
by means of numerical simulations based on the discrete-element method. The time-averaged dynamics inside
the cavity volume and the resulting steady force on the wall are governed by the boundary macroscopic inertial
number, the latter being derived from the shearing velocity and the confinement pressure imposed at the top.
The force fluctuations are quantified through measuring both the autocorrelation of force time series and the
distributions of grain-wall forces, at distinct spatial scales from particle scale to wall scale. A key result is that
the grain-wall force distributions are entirely driven by the boundary macroscopic inertial number, whatever the
spatial scale considered. In particular, when the wall scale is considered, the distributions are found to evolve
from nearly exponential to nearly Gaussian distributions by decreasing the macroscopic inertial number. The
transition from quasistatic to dense inertial flow is well identified through remarkable changes in the shapes of
the distributions of grain-wall forces, accompanied by a loss of system memory in terms of the mesoscale force
transmitted toward the wall.
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I. INTRODUCTION

Granular materials are ubiquitous in nature and daily
life situations. Depending on the stress level applied, dense
packings of grains can exhibit solidlike or fluidlike behavior.
The rheology of dense granular flows is a key question
among others in granular physics that has attracted increasing
attention in the last twenty years [1–3]. The still unsolved
questions, in particular related to the transition between
quasistatic and dense inertial regimes, are relevant to a number
of physical problems. Two examples are the modeling of the
processes at stake when a full-scale granular flow—such as an
avalanche or a landslide—initiates in the release area or ceases
in the run-out zone on the one hand, and the optimal design
of silos to guarantee an efficient transport of particles in food
processing or the mining industry on the other hand.

Though outstanding progress was recently made regarding
the rheology of dense granular flows, most of the existing
models were developed to predict the average flow with
only limited attention paid to the fluctuating part (fluctuating
trajectories of grains, velocity fluctuations, stress fluctuations)
of the flow [3]. In a similar manner, many studies of the force
experienced by objects immersed in dense granular flows [4]
focused on the average force signal but only a few of them (see
for instance [5]) addressed the problem of the fluctuating part
of the force signal.

There exists a large body of statistical studies which are
focused on spatial force variability, more particularly on the
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analysis of the distributions of forces, in static (unsheared)
or slowly sheared granular media, thanks to laboratory tests
[6–11], numerical simulations [12–14], and theory [15–21].
In contrast, there are only a few studies that have tackled
the problem of temporal and/or spatiotemporal fluctuations
(the distinction between both being not so clear in a number
of studies) in slow to fast flows of granular materials
[5,14,22–27]. A brief overview of those studies is given in
Appendix A.

The present paper proposes to investigate in detail the
fluctuating part of the force experienced by a boundary
wall subjected to a granular flow. Our study is based on an
original system, namely the granular lid-driven cavity, which
is simulated by the discrete-element method (DEM). This
follows a preliminary analysis of the time-averaged dynamics
of this granular cavity system that was presented in [28].
The force fluctuations experienced by the boundary wall
are analyzed with the help of a systematic characterization
of the probability distributions of grain-wall forces, under
different confinement pressures and shear velocities at the top
of the cavity. Moreover, various spatial scales are analyzed
including particle microscale, wall macroscale, and mesoscale
(intermediate between the two previous scales). The original
system considered in the present paper allows us to investigate
how the distributions of grain-wall contact forces evolve over a
wide range of both shearing velocity and confinement pressure
imparted to a complicated dense granular-flow geometry, and
considering different spatial scales from a single grain to the
entire boundary wall.

The present paper is organized as follows. Following our
initial numerical study on the time-averaged dynamics of
the granular lid-driven cavity system [28], Sec. II gives a
summary of the macroscopic boundary conditions and the
microscopic parameters which we are using for this numerical
study. Section III recalls briefly the main results regarding the
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FIG. 1. Geometry and boundary conditions for the lid-driven
cavity simulated by DEM. The granular sample is trapped between
four walls; the top one (the lid) applies the shear displacement U and
the confinement pressure P (see text for details).

time-averaged dynamics and enriches them with analysis of
the horizontal position of the vortex formed within the cavity,
as well as of the local rheology in the granular bulk. Section IV
tackles the temporal fluctuations of force by analyzing in detail
the autocorrelation of the force time series on both the entire
height of the wall and portions of the wall. Section V is devoted
to the analysis of the grain-wall force distributions at the
microscale (particle scale), macroscale (entire height of the
wall), and mesoscale (portion of wall). Finally, the paper ends
by discussing the main results and some potential implications
for basic aspects of granular physics.

II. THE GRANULAR LID-DRIVEN CAVITY
SIMULATED BY DEM

A planar assembly of spheres is trapped in a box made of
four walls, as sketched in Fig. 1. The bottom horizontal wall
is fixed and rough, while both lateral walls are fixed, smooth,
and spaced by a distance L = 5H . The upper horizontal wall,
namely the lid, is rough and has an infinite length in order
to allow for a uniform horizontal displacement. This choice
was initially motivated by practical applications in geophysics
which involve (i) a rough bottom, (ii) moving grains that
entrain static grains (rough top wall), and (iii) obstacles with a
smooth surface (lateral smooth walls). The top wall produces
a constant shearing to the sample at velocity U through the
x-axis direction, and remains horizontal as it is not allowed
to rotate. A constant vertical confinement force Fc is added
continuously to the lid whose vertical position is computed
through the DEM algorithm. Although the grains’ reaction to
this force is not homogeneous along the lid—but rather exhibits
an exponential shape (see Fig. 4 of our preliminary study on
this system [28])—an equivalent macroscopic confinement
pressure P can be defined from the system dimensions:
P = Fc/Ld, where d is the particle diameter. As the grains
are forced to stay inside the cavity and the force profile is
heterogeneous, a perpetual circulation takes place within the
whole volume of the cavity, as further discussed in Sec. III of
the present paper.

The following dimensionless macroscopic parameters are
used to run the numerical simulations over a broad range
of confinement pressure P and shear velocity U , namely

NP and NU :

NP = P

�ρpgH
, (1)

NU = U√
gd

. (2)

The parameter NP is the ratio of the pressure P to the typical
hydrostatic pressure associated with height H of a system
under gravity. The gravity acceleration g = 9.81 m s−2 is
used for convenience in order to facilitate the parallel with
any potential real laboratory tests in the future, though the
numerical system considered here is gravity-free. A constant
macroscopic volume fraction � = 0.6 is considered here,
which corresponds roughly to the random close packing of
a three-dimensional assembly of spheres of width d. The
particle density was taken equal to ρp = 2500 kg m−3. Our
numerical simulations use spherical particles whose centers
are forced to stay on a planar surface [plane (x,y) in Fig. 1].
Any volume fraction measured in two dimensions (2D) is
systematically transformed into an equivalent volume in three
dimensions (3D), assuming �3D = 2

3�2D if we compare a
sphere of diameter d included in a cube of identical size d

to a disk of diameter d included in a square of size d. The
parameter NU is the ratio of the shear velocity U at the top to
the typical velocity associated with one particle of diameter d

under gravity. Those choices are also made for convenience to
facilitate the parallel with any potential real laboratory tests in
the future.

The cavity is initially filled of grains under gravity deposi-
tion in order to produce a dense granular packing of height H .
Once the system reaches the static equilibrium, the gravity is
set to zero and the shearing starts for a period of 10 seconds. As
will be defined in Sec. IV (see Fig. 7), the data recording starts
one second after the shearing has started. One second typically
corresponds to the maximal time needed for the system to
reach a permanent regime in terms of force measured on
the sidewall (see also more details in [28]). In most of the
simulations presented in the present study, H/d was taken
equal to 30 with H = 0.3 m and d = 1 mm. Some results
from numerical simulations with H = 0.3 m but d = 0.3 mm
will be discussed in the conclusion.

Following the analysis proposed by [1] at the local grain
scale, if we consider the typical time tP = d

√
ρ/P associated

with the top confinement pressure P and the typical time tU =
H/U equal to the inverse of the macroscopic shear rate, one
can define the macroscopic inertial number IM :

IM = tP

tU
= d

√
ρ/P

H/U
, (3)

where ρ = �ρp holds for the density of the granular sample
within the cavity.

In the present study, NP varied from 0.01 to 100 and NU

from 1 to 20, which allows us to investigate a wide range
of granular flow regimes defined by IM ranging typically
from 5 × 10−4 to 0.6. A very slight variation of �∗—the
volume fraction actually measured in our simulations—with
the boundary conditions in terms of U and P was observed.
This point will be discussed in Sec. VI. In addition to IM ,
another dimensionless parameter that controls the system is
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the length L of the cavity relative to its height H . It has been
shown in our preliminary study of this granular lid-driven
cavity system [28] that the constraint L/H � 5 should be
respected to prevent an effect of the cavity length on the steady
force experienced by the wall facing the shear displacement
(namely the right sidewall shown in Fig. 1).

All the results shown in the present paper were obtained
for L/H = 5, but their sensitivity to L/H was investigated by
performing simulations with L/H = 7 and L/H = 10. This
sensitivity analysis revealed that—as observed for the mean
force—the force fluctuations remained not influenced by L/H

as soon as L/H � 5.
The contact laws for normal (viscoelastic) and tangential

(elastic with a Coulomb threshold) forces between particles
and the corresponding micromechanical parameters (normal
and tangential stiffnesses, damping coefficient accounting for
inelasticity and related to restitution coefficient, interparticle
friction), used in our DEM numerical simulations, are de-
scribed in detail in Appendix B (see also [28]).

III. TIME-AVERAGED DYNAMICS

The overarching goal of the present paper is to study in
detail the force fluctuations experienced by the boundary wall
that faces the direction of the shearing velocity at the top.
In our previous study of this system [28], we reported an
analysis of the results regarding the time-averaged dynamics.
Before going into the details of force fluctuations, this section
proposes to recall some important results reported in [28] and
to further extend some of the results concerning the time-
averaged dynamics.

A. Steady vortex and mean force

The macroscopic inertial number IM , defined from the
boundary condition [see Eq. (3)], is the relevant parameter
to quantify the flow inertial state and to predict the mean
force experienced on the sidewall scaled by the force imposed
at the top, namely F/(PLd) (see Fig. 8 in [28]). More
specifically, our previous study showed that the mean force
on the right sidewall is entirely controlled by the changes in
granular flow regimes, the latter regimes being governed by
the macroscopic inertial number. In the quasistatic regime at
low IM , F/(PLd) is constant. In the dense inertial regime
at intermediate IM , F/(PLd) is a nearly linear increasing
function of IM . In the rapid regime at higher IM values,
F/(PLd) starts saturating. The measurement of time-averaged
local granular flow velocity fields revealed the formation of one
single vortex occupying the whole volume of the cavity. This
cavity-scale vortex is caused by the fact this system forces
the grains to move within the cavity volume, without any
possibility to escape it.

Figure 2 shows examples of the streamlines inside the cavity
for low (IM = 1.2 × 10−3), intermediate (IM = 6 × 10−2) and
high (IM = 0.3) values of IM . The x position of the vortex
center along the cavity was extracted from the streamlines (as
shown by the vertical dotted lines in Fig. 2), thus allowing
us to deduce the horizontal distance � between the vortex
center and the right sidewall. Figure 3(a) shows � scaled by
the cavity length L as a function of IM . In the quasistatic regime
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FIG. 2. Time-averaged streamlines within the cavity for three
different values of IM . (a) IM = 1.2 × 10−3, NU = 1, NP = 25;
(b) IM = 6 × 10−2, NU = 10, NP = 1; (c) IM = 0.3, NU = 10,
NP = 0.04.

(IM � 10−2), � is relatively constant at an approximative value
of L/2, meaning that the vortex is centered. Beyond IM �
10−2, the symmetry of the velocity pattern is lost, as depicted
by �/L which starts decreasing sharply. The vortex center is
more and more shifted toward the right sidewall when IM is
increased, thus producing an important horizontal asymmetry
at the highest IM .

Figure 3(b) depicts how the mean force on the wall F

relative to the typical pressure force PLd imposed at the
top evolves with the macroscopic inertial number (see [28]
for more details). The variation of both F/(PLd) and �/L

with IM reveals the same transition from quasistatic to dense
inertial regime. While comparing the two curves, a significant
coupling can be detected, which becomes obvious when
plotting F/(PLd) as a function of �/L in Fig. 4. F/(PLd) and
�/L are linearly linked, meaning that the mean force on the
wall scaled by PLd may be deduced from the vortex position,
and vice versa. It is worth noting that the scattering at low
F/(PLd) in Fig. 4 is due to the very low velocity of the flow
in this region, making difficult the identification of the vortex
center position.

In our previous study, we proposed an empirical scaling for
F as a function of IM in the following form [28]:

F = PLd

⎡⎣r1 + (r2 − r1)
1

1 + I 0
M

IM

⎤⎦, (4)

where r1, r2, and I 0
M were constant fitting parameters. For

the data shown in Fig. 3, a good fit is obtained with r1 = 0.53,
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FIG. 3. (a) Distance of the vortex center from the right sidewall,
�, relative to the cavity length L, as a function of the macroscopic
inertial number IM . (b) Mean force F on the wall relative to the
pressure force PLd imposed at the top, as a function of IM .

r2 = 0.86, and I 0
M = 0.02. The interparticle friction does affect

the values of r1, r2, and I0, as will be discussed in Sec. VI.
Considering that the mean force on the wall is controlled

by the distance of the vortex center from the wall [� being
a function of IM as displayed in Fig. 3(a)], we can specify
another scaling that is given by the following relation:

F = PLd

(
c1 − c2

�(IM )

L

)
, (5)

where c1 and c2 are two constants that may depend on the
micromechanical parameters of the grains. In this specific case
c1 = 0.88 and c2 = 0.5, as shown by the dashed line in Fig. 4.

The above analysis showing the link between the vortex
center position and the mean force on the right sidewall (that
faces the shearing direction at the top) further extends the
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FIG. 4. F/(PLd) versus �/L. The gray dashed line is a fit of
Eq. (5) for IM > 10−2 (R2 = 0.96 is the regression coefficient). This
graph reveals that the mean force on the wall is entirely controlled by
the distance of the vortex from the right sidewall.

(a)

(b)

FIG. 5. Spatial maps of the principal strain (a) and stress (b)
orientations averaged over time within the cavity volume: example
for IM = 6.09 × 10−2, NU = 10, NP = 1.

results reported in [28] concerning the mean dynamics of the
granular lid-driven cavity. For given micromechanical grain
properties, all macroscopic physical quantities measured in the
cavity can be deduced from the macroscopic inertial number
defined on the imposed shearing velocity and confinement
pressure.

B. The local μ(I) rheology

To further test the rheology, the local effective friction μloc

and the local inertial number I were measured within the
whole volume of the cavity. Detailed steps for the calculation
of those local quantities are provided in Appendix C. Though
the strain field is rather complicated inside the cavity (see the
streamlines in Fig. 2), we observed that the strain and the stress
tensors were generally well aligned within most of the cavity
volume. Figure 5 shows an example for IM = 6.09 × 10−2.
The patterns were similar at higher IM . At lower IM , the
collinearity between stress and strain tensors was generally
well verified, except close to the top and bottom boundary walls
for the lowest IM . This point will need further investigation in a
future work. Under the reasonable assumption of collinearity
between stress and strain tensors, the local μ(I ) rheology,
given by the relation μth = μ1 + (μ2 − μ1)(1 + I/I0)−1 [29],
was analyzed. It was found to be valid in most of the cavity
volume whatever IM . The values found for the parameters
of the μloc(I ) friction law were μ1 = 0.12, μ2 = 0.40, and
I0 = 0.13 (see many more details in Appendix C 3). The
difference between the μloc actually measured and μth was
calculated. Figure 6 displays the results in terms of maps
of (μloc − μth)/μth, for two distinct yet very close values of
IM ∼ 10−2 and IM ∼ 6 × 10−2. The latter value corresponds
to the first point shown in gray in Fig. 3 and the former value
holds for the last point in black in Fig. 3.

At IM ∼ 10−2, a symmetrical bowlike pattern appears
across the entire length of the cavity [see Fig. 6(a)].
Similar symmetrical bowlike patterns (not shown here) were
systematically obtained for IM below 10−2. Above the bowlike
pattern and below it (apart from the two regions close to the two
lateral walls), μloc − μth is nil, which means that the spatial
region is well governed by the μ(I ) inertial rheology. For
higher values of IM [see Fig. 6(b)], the symmetry and the
bowlike shape were broken. In other words, the region inside
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FIG. 6. Maps of (μloc − μth)/μth. (a) IM = 1.22 × 10−2, NU =
10, NP = 25; (b) IM = 6.09 × 10−2, NU = 10, NP = 1.

the cavity where μloc − μth was nil could extend over the
whole height of the cavity.

Note that a great number of values of μloc were found
to be lower than μ1 for IM below 10−2 (see Fig. 19). This
corresponds to the region in the center of the cavity in Fig. 6(a),
forming the bowlike pattern across the entire length of the
cavity, where (μloc − μth)/μth is negative. These negative
values of μloc − μth suggest that the granular bulk in this
region is able to flow below the friction threshold μ1. Such
a situation was highlighted in a couple of granular systems
and explained by nonlocal effects [30,31]. The conditions to
have this bowlike pattern over the entire length of the cavity
and its link to nonlocality in dense granular flows (see [32]
and references therein for an overview of nonlocal models for
granular flows) will need further investigation in the future.
However, it can be said that such a symmetrical bowlike pattern
appears when the boundary macroscopic inertial number is
low, thus showing the limits of the local μ(I ) rheology in the
quasistatic regime. In conclusion, the crossover from a bowlike
pattern extending across the entire length of the cavity (at low
IM ) to a smaller pattern in the confines of the boundary wall
(at large IM ) appears to show proof of the quasistatic to dense
inertial transition in the system studied here.

Moreover, one can note that triangular regions close to
the lateral walls are well identified in Fig. 6. Note that the
collinearity between stress and strain tensors is well verified
inside those zones, also identified in Fig. 5. In those regions,
μloc − μth is positive, thus meaning that local friction is higher
than the value predicted by the local μ(I ) rheology. This
suggests that the μ(I ) rheology is not a sufficient tool to
estimate the magnitude of the local force at the walls. However,
we will show in the rest of the paper that the macroscopic
inertial number is a good indicator for the transition from
quasistatic through dense inertial to collisional regimes in
terms of force fluctuations.

IV. FORCE DATA AUTOCORRELATIONS

A. Data recordings

While analyzing temporal fluctuations, data acquisition
frequency requires particular attention: it has to be large
enough to be able to capture short-life force events, and simul-
taneously small enough to avoid practical memory allocation
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FIG. 7. Example of time series of total force on the wall, obtained
for IM = 1.2 × 10−2, NU = 10, NP = 25. The instantaneous force F

is highly fluctuating over time. The horizontal dashed line depicts the
value of the time-averaged force, named F , reached in the steady-state
regime (after a short transient of about 1 s). Inset: Same data, zoomed
in a time window of 0.05 s.

issues while recording trends over large durations. The DEM
algorithm is not able to model oscillating phenomena that
occur at frequencies higher than the typical natural contact
frequency fc which is the inverse of the period of the damped
oscillator corresponding to a contact between two grains.
In the present statistical study the record frequency frec

was set to 10 kHz. Using the formulation described in [33]
for the collision time as a function of the grain properties
gives a fc ranging from 4.8 kHz to 320 kHz. The frequency
corresponding to the DEM time step was systematically set
to 10fc, avoiding any instability issues. The overlap between
frec and the lowest values of fc may cause the recording of
unintended effects caused by particle oscillations. It has been
verified that neither the autocorrelations nor the distributions
of the force time series presented in the following statistical
study are sensitive to frec by comparing to simulations with a
doubled (20 kHz) and a halved (5 kHz) record frequency.

B. Force time-series autocorrelation

The force time series on the right sidewall of the cavity
show high temporal fluctuations, as displayed in Fig. 7. This
section aims at studying these fluctuations by analyzing the
autocorrelation of force time series. The first piece of informa-
tion that will be extracted is the force periodicity. The second
piece of information arising from force autocorrelation is the
critical autocorrelation time �tc, which can be interpreted as
the time after which the system has forgotten a certain force
value on the wall. In other words, it reflects the typical time
during which a future state of the system keeps history of its
past state regarding the force transmitted to the wall.

We denote by C(F (t),F (t + �t)) the temporal autocor-
relation function, where �t is the lag between two system
states. The critical autocorrelation time �tc is defined with an
arbitrary low autocorrelation threshold:

C(F (t),F (t + �tc)) = 0.15. (6)
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FIG. 8. Evolution of C(F (t),F (t + �t)) over time for five values
of Im, where F (t) is the force time series on the entire right sidewall.
Inset: C(F (t),F (t + �t)) plotted against (U/d)�t to highlight the
oscillations’ wavelength.

It is worthwhile to note that the above threshold value
does not influence the conclusions presented here as they
are qualitative, focused on main trends. Since the local
autocorrelation function C(F (t),F (t + �t)) is likely to be a
nonmonotonic function, it is expected to cross the threshold
many times. In this case, because we focus on the initial
autocorrelation decrease corresponding to memory loss and
we want to avoid any effect of the signal noise, the lowest
value of �tc is kept.

In the following, we present the autocorrelation of force
time series at macroscopic scale, i.e., on the entire height of
the wall (Sec. IV B 1). Then the autocorrelation at mesoscopic
scale is studied by splitting the wall height into ten portions of
a few grains each (Sec. IV B 2).

1. Autocorrelation for the entire height of the wall

Figure 8 depicts the autocorrelation of the force signal on
the entire height of the right sidewall, for five values of the
macroscopic inertial number IM .

Because of the strong stress localization taking place at
the top right corner of the cavity (see more details on this
wedge effect in [28]), the shearing frequency at the roughness
(particle) scale is transmitted to the right sidewall, as long as
IM is not too high (typically smaller than 10−2). Sinusoid-like
oscillations are therefore observed, with a decreasing period
while increasing NU . The inset of Fig. 8 shows a collapse of
sinusoid-like oscillations when the autocorrelation function is
plotted versus (U/d)�t , the wavelength associated with these
oscillations being d (the diameter of the grains composing the
top wall roughness and shearing the sample).

For the highest IM , this effect is absent, which is in
agreement with a more inertial regime for which short-time
collisions occur in addition to enduring frictional contacts
able to transmit the shear force. The mean-free path of
grains increases, which makes impossible any continuous
transmission of enduring contacts between grains. Again, we
detect the transition from the quasistatic to the dense inertial
granular regime occurring around IM = 10−2, which is a value

similar to the one extracted from the time-averaged dynamics
in Sec. III.

The general shapes of the autocorrelation functions shown
in Fig. 8 resemble a great deal the ones found by Geng
and Behringer [5] in their experimental study of an intruder
slowly dragged into a granular medium (see Fig. 8 in [5]).
We generally observe that C(F (t),F (t + �t)) drops quickly
(exponentially) to zero over a time scale �tc and then fluctuates
around zero. These fluctuations are well explained in our
system by the typical frequency U/d associated with the
shearing velocity at the top and the grain size (see discussion
above). We were not able to find a clear dependency of the
critical time �tc on either the macroscopic inertial number IM

or any input parameter such as the shear velocity of the lid, or
the confinement pressure at the top. In the following, we focus
on portions of the wall.

2. Autocorrelation for portions of the wall

The force time series on the right wall is the result of the
cumulative contact forces applied over the entire height of
the wall. Consequently, the strong spatial heterogeneity of the
granular lid-driven cavity system may require a more localized
analysis by taking into account the position at which individual
forces are applied to the wall. We propose here to investigate
the autocorrelation of force time series on some portions of the
wall. The entire wall height is split into ten slices i ∈ {1 . . . 10}
of identical size. The index i = 1 refers to the bottom slice and
i = 10 refers to the top slice. Each slice has its associated force
time series from which the autocorrelation Ci(F (t),F (t + �t))
is then computed.

Figure 9 shows the autocorrelation of force time series
for each of the ten identical wall portions, for three values
of the macroscopic inertial number. The signal periodicity
already discussed above is still observed at the frequency
U/d—associated with the roughness of the top wall moving at
velocity U . This is particularly clear in the simulation at IM =
1.2 × 10−2 for which each temporal autocorrelation curve
shows this period, whatever the vertical slice i considered
along the wall. This indicates that the periodic fluctuations at
the top can be transmitted to the lowest position at the bottom
of the cavity. This result is consistent with the fact that we
could identify a small, yet nonzero, spatial autocorrelation
at IM = 1.2 × 10−2 (not shown here). At the lowest IM =
1.2 × 10−3, the periodicity caused by the top roughness is
present at the highest portion of the wall (i = 10) but quickly
fades while going deeper into the sample along the wall,
and even disappears for the lowest position at the bottom of
the cavity. In contrast to the intermediate IM , the periodic
fluctuations from the top wall cannot be transmitted over the
entire depth of the wall. This observation is in accordance
with the fact that at IM = 1.2 × 10−3 we did not find any
spatial autocorrelation (not shown here). There might exist
some zones near the cavity top inside which the grains have
enough time to rearrange locally, thus being able to relax the
high stress caused by jamming close to the wedge. At higher
IM , the periodic fluctuations associated with the roughness of
the top wall are lost whatever the vertical position along the
wall, thus further confirming the transition toward a much more
inertial regime for which the increase of the mean-free path
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(a)

(b)

(c)

FIG. 9. Evolution of Ci(F (t),F (t + �t)) over time measured on
10 portions i of the wall, for three values of IM . In each graph, the
horizontal dashed line shows the threshold of 0.15 that was used
to derive �ti

c . (a) IM = 1.2 × 10−3, NU = 1, NP = 25; (b) IM =
6 × 10−2, NU = 10, NP = 1; (c) IM = 0.3, NU = 10, NP = 0.04.

between grains prevents the transmission of those fluctuations
(see Sec. IV B 1).

Figure 10 shows the mean value of autocorrelation time,
〈�tc〉, averaged over all portions of the wall. Though there is
some data scattering regarding �tic (see gray-colored crosses
in Fig. 10), this plot demonstrates that there exists a IM below
which 〈�tc〉 is not zero and beyond which 〈�tc〉 vanishes.

10-3 10-2 10-1 100

0.0

0.1

0.2

0.3

0.4

FIG. 10. Critical time �ti
c (cross symbols) beyond which the

force time series becomes weakly correlated (C < 0.15)—for ten
portions i ∈ [1; 10] of the wall height, as a function of IM . The full
circles show 〈�tc〉 which is the mean over the ten �ti

c values. The data
were extracted from the autocorrelation functions plotted in Fig. 9.

In other words, it means that beyond a IM (	 10−2) it is not
possible to predict a future system state from the past one, thus
indicating that the memory of the system is completely lost.
This observation was still valid by increasing L/H from 5 to
10 (not shown here). The granular lid-driven cavity system
suggests here a remarkable transition from the quasistatic to
the dense inertial granular regime, which is characterized by
a total loss of system memory (not intrinsic to the material) in
terms of the force transmission from the top wall toward the
right sidewall.

V. FORCE DISTRIBUTIONS

The distributions of force time series on the sidewall
give crucial information on fluctuations, as they quantify the
probability of each force value the sidewall may experience. In
this section, the analysis of force distributions concerns three
spatial scales: the microscale focused on individual grain-wall
contact forces, the macroscale focused on the total force on
the wall, and the mesoscale focused on the force experienced
by portions of wall. For each scale, the distribution response
to the same wide range of IM as tackled in the previous
sections is investigated. All distributions presented in this
section were obtained from quantities that were scaled by their
time-averaged value.

A. Force distributions at microscale

The distributions of contact forces measured in our DEM
simulations, for grains in contact with the right sidewall,
characterize the typical force repartition applied locally on
the wall (grain scale). Recorded contact forces on the wall
from all recording times are merged to form the sample, and
then the probability distribution is computed. Let us note f an
individual grain-wall contact force and f the overall mean
grain-wall contact force of a simulation. In the following,
f̃ = f/f is the scaled grain-wall particle contact force.
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FIG. 11. Probability distributions of contact forces for grains in
contact with the wall. For each IM the curves are collapsing whatever
the dipole (U,P ), thus demonstrating that the boundary macroscopic
inertial number fully controls the grain-wall contact distributions.

Figure 11 shows examples of distributions of f̃ obtained
with three different values of IM but from several distinct
dipoles (NU,NP ). The remarkable result is that the distri-
butions collapse very well at each IM , revealing that the
repartition of particle contact forces on the wall is entirely
controlled by the macroscopic inertial number of the granular
lid-driven cavity.

Figure 12 shows the distributions of f̃ computed for
several IM . We have tested a number of well-established
probability density functions (PDFs) to fit these curves, as
well as theoretical or empirical PDFs discussed in the literature
for granular contact forces, specifically the ones proposed by
[6] [Eq. (A2)] and [21] [Eq. (A3)] (see Appendix A). None
of those PDFs was able to give conclusive results over the
whole range of IM tested in our DEM simulations. The results
were conclusive, over the whole range of IM , with a truncated
log-normal distribution that reads as follows:

P(f̃ ) = 1

S
1

f̃σ

√
2π (f̃ + f̃0)

exp

(
− [ln(f̃ + f̃0) − f̃μ]2

2f̃σ
2

)
,

(7)

where f̃ > 0, f̃0 > 0, and S is the normalization factor
corresponding to the value at f̃0 of the survival function of
the (untruncated) log-normal PDF. The scale parameter f̃μ,
the shape parameter f̃σ , and the location parameter f̃0 are
monotonic functions of the macroscopic inertial number IM ,
as shown in Fig. 12(b).

In Appendix D, we provide the data in a log-linear plot
[Fig. 20(a)] in order to highlight that the results are reasonable
overall but not perfect. In particular, the small forces are quite
well reproduced whatever IM but the tails are not well captured
at the highest values of IM .

Apart from the fact that the best fits were obtained with
the truncated log-normal distributions over the whole range of
IM tested, it remains challenging to provide physically based
arguments to justify the use of such a PDF. A key result of the
present study is that the parameters of Eq. (7) are found to be
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FIG. 12. (a) Probability distributions of contact forces for grains
in contact with the wall, for different values of IM ; the dashed lines
show a fit by a truncated log-normal distribution (maximizing the
likelihood with the Nelder-Mead optimization method). (b) Variation
of the parameters of the log-normal distributions as functions of IM

[see Eq. (7)].

well-defined monotonic functions of IM [see Fig. 12(b)]. This
opens a path to predict the force distributions empirically, as
long as the boundary macroscopic inertial number is known.
A question then arises: does that key result too hold for the
distributions of the total force on the entire height of the wall?

B. Force distribution at macroscale

Figure 13 shows the distribution of F̃ , the total force time
series exerted on the sidewall scaled by its mean F , for
seven values of IM ranging from 1.2 × 10−3 to 0.6. At the
lowest IM in the quasistatic regime, the distribution is nearly
Gaussian whereas at the highest IM , the PDF has a nearly
exponential shape. This result is consistent with the crossover
from exponential to Gaussian PDFs generally observed at high
confinement pressures in some past studies [34–36] (see also
the brief review proposed in Appendix A).

At intermediate IM in the dense inertial regime, the
distribution has a more complex shape: at a first glance, it

042906-8



FORCE FLUCTUATIONS ON A WALL IN INTERACTION . . . PHYSICAL REVIEW E 96, 042906 (2017)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

10-3 10-2 10-1 100
−2

−1

0

1

2

3

4

5

6

7

P
ar

am
et

er
 v

al
ue

(a)

(b)

FIG. 13. (a) PDF of the total force on the right sidewall for eight
values of IM ranging from 1.2 × 10−3 to 0.9. A truncated log-normal
distribution can be fitted on the data (dashed lines). (b) The truncated
log-normal parameter variation as a function of IM .

may appear as a distribution which would combine some
properties of a Gaussian-like distribution and an exponential-
like distribution. However, it was impossible to find a way to
model the distributions of total force by an analytical form
that combines both Gaussian and exponential distributions,
over the entire range of IM tested here. The only PDF that
could be fitted to the distributions of the total force on the wall
is again the truncated log-normal distribution [see Eq. (7)], as
shown by the dashed lines drawn in Fig. 13.

In Appendix D, we provide the same data in log-linear
plots [see Fig. 20(b)] to highlight the robustness of the fits
obtained with the truncated log-normal function over a wide
range of the boundary inertial macroscopic number. As for the
distributions of f̃ discussed in Sec. V A, it would be difficult
to give a physical interpretation for the truncated log-normal
PDF for the distributions of F̃ . However, it is possible to
analyze the evolution of the corresponding parameters with
the inertial number. F̃μ, F̃σ , and F̃0 (the scale, shape, and
local parameters, respectively) are presented in Fig. 13(b), as

a function of IM . These parameters follow monotonic paths
with IM , allowing us to predict the distribution of the force on
the sidewall from the inertial number. This result was further
confirmed (with the same set of simulations as in Fig. 11)
because several distinct dipoles (NU,NP ) that give the same
inertial number systematically led to the same distribution
(curves not presented here).

Figure 13(b) displays a jump in the parameters of the
truncated log-normal distribution between IM = 10−2 and
IM = 6 × 10−2. Further looking at the curves Fig. 13(a), this
jump occurs when the nearly Gaussian shape almost disappears
due to the competition with the exponential shape at low forces,
thus displaying a homogeneous repartition (kind of plateau)
from F/F = 0 to F/F = 1. This significant change (for
IM ∼ 10−2) of the distribution of the total force on the wall,
when the low forces and the mean forces have almost the same
probability of occurrence, appears to be an additional marker
of the quasistatic to dense inertial transition, concomitant with
the total loss of system memory discussed in Sec. IV B 2.

C. Force distribution at mesoscale

Because of the heterogeneity of the granular sample
induced by the cavity boundary conditions, it is interesting
to investigate the force distributions at a mesoscopic scale—
smaller than the cavity height and greater than the grain scale,
as already done for the force autocorrelation (see Sec. IV B 2).
We note Fi the force time series on a portion of wall located at a
given i, and Fi its mean. Figure 14(a) displays the distributions
of Fi/Fi obtained on ten wall portions of identical size, for
IM 	 10−2. The distributions corresponding to the portions
located in the center of the right sidewall collapse into one
single curve, while the distributions measured close to the
top and bottom right corners of the cavity differ from this
master curve. This result reflects the spatial heterogeneity of
the cavity over its height, in connection to three zones: a highly
sheared zone of small height at the top, a small dead zone at
the bottom, and (in between) a flowing zone of much larger
height in the center. An identical behavior (curves not shown
here) was observed for all values of IM . These three zones,
extracted from the distributions of Fi/Fi , are fully consistent
with the vertical profile of the time-averaged force measured
on the wall, as depicted in Fig. 5 of our previous study [28].
The time-averaged force was rather homogeneous over the
same (large) central zone of the wall. It is worth noting that
the sizes of the bottom and top zones may be sensitive to the
grain diameter relative to the wall height. Further simulations
with different grain diameters would be necessary to study
the potential influence on the size of the boundary (top and
bottom) zones identified here.

In the following, the collapse of the Fi/Fi distributions,
excluding the extreme (top and bottom) zones of the wall,
is exploited to analyze how the distribution at the mesoscale
evolves with the macroscopic inertial number. This mesoscale
corresponds to a size H/10 = 3d.

Figure 14(b) depicts the mean distribution over seven values
of i ∈ [3; 9] (corresponding to the central zone of the cavity
excluding the top and bottom highly inhomogeneous layers),
for a wide range of IM . As observed for the force distributions
at the micro- and macroscales presented previously (see
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FIG. 14. (a) PDF of force time series on ten wall portions i for
IM = 1.2 × 10−2, NU = 10, NP = 25 (each portion time series is
scaled by its corresponding time-averaged force). The blue, orange,
and red curves respectively correspond to i ∈ [1; 2], i ∈ [3; 9], and
i = 10. (b) Mean distribution over i for i ∈ [3; 9] [yellow curves of
(a)] for seven values of IM .

Secs. V A and V B, respectively), the curves depict shapes that
resemble a truncated log-normal PDF. While comparing the
distributions over the wide range of IM , they appear however
to be much closer with each other, meaning they exhibit a
weaker dependency toward IM . It has been verified (curves
not shown here) that the distributions at the macroscale for
the entire wall did remain unchanged if the data near the
bottom and top wedges were not considered. The weaker
dependency of the distributions on IM at the mesoscale is
thus striking, as it cannot be explained by a wedge effect only
(this effect would be detected on the macroscale otherwise).
As a consequence, it can be concluded that similar mesoscale
distributions can result in radically different macroscale
distributions through the summation relation that links the
forces on wall portions to the force on the entire height
of the wall. The latter observation may put emphasis on
the crucial role of spatial dependencies between mesoscale
force signals, that are controlled by the granular flow regime
(through the value of IM ). In particular, the Gaussian-like

shapes shown in Fig. 13 obtained for quasistatic regimes
(IM 	 10−3) typically reflect the summation of independent
mesoscale force signals. This is consistent with the fact that
no spatial correlation was found at the lowest IM [as detected
from the temporal autocorrelation functions at different i

shown on Fig. 9(a)]. Conversely, the evolution toward an
exponential-like distribution at intermediate inertial numbers
(IM � 10−2) on Fig. 13 reveals a spatial dependency between
the mesoscale force signals. This is consistent with the spatial
correlation detected between the temporal autocorrelation
functions at different i shown in Fig. 9(b).

At IM 	 10−3, the distribution displays a small amount
of low forces and a nearly Gaussian repartition centered at
about 0.7Fi . Then, with the increase of IM , all distributions
quickly converge to an exponential-like decrease with a high
number of low forces. Finally, the force distribution on wall
portions become independent of IM as soon as IM � 10−2 and
i ∈ [3; 9]. This result allows once again the identification of
a clear signature of the transition from quasistatic to dense
inertial granular flow regime for the cavity system studied
here.

VI. DISCUSSION AND CONCLUSION

A. Time-averaged dynamics

Though there are still unresolved questions associated with
complicated behaviors close to the lateral walls and with
the formation of the bowlike patterns (probably caused by
nonlocal effects), the analysis of the time-averaged dynamics
in Sec. III highlighted the role played by the μ(I ) rheology
(proposed by [1,29]) in the granular force transmission toward
a boundary wall. To further confirm it, we have analyzed the
slight variation of the height H of the cavity system. Up to
now, a constant volume fraction � = 0.6 close to random close
packing in three dimensions has been considered. The cavity
system defined in our study is by construction a volume-free
system, meaning that the volume fraction inside the cavity may
vary. Indeed, though the variation of volume fraction of the
granular bulk was small, one could measure it. Figure 15(a)
displays how the volume fraction �∗, actually measured in
our DEM simulations and transformed into an equivalent
volume fraction in three dimensions (see Sec. II), evolved with
the boundary macroscopic inertial number IM . We observe
a plateau (constant �∗) at the lowest IM , followed by a
slow decrease of �∗ with log(IM ). This slight dilatancy of
the granular bulk while increasing the inertial number is a
robust result for a number of volume-free granular systems
governed by the μ(I ) rheology, such as plane shear flows
[37], free-surface granular flows down inclines [2], annular
shear cell flows [38], etc. Finding this dynamic dilatancy law
in the lid-driven cavity system studied here further confirms
the role played by the μ(I ) rheology. However, it should be
kept in mind that the microrheology difference observed in
some spatial regions of the cavity shows that the local μ(I )
rheology is not sufficient in particular close to the bottom and
top boundary walls where noncollinearity between strain and
stress tensors was detected.

Note that the results in Fig. 15(a) are shown with two
values of both μ and d. A decrease of the interparticle friction
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FIG. 15. Volume fraction �∗ (a) and scaled mean force on
the sidewall F/(PLd) (b) actually measured in the numerical
simulations, as a function of IM : d = 0.001 and μ = 0.5 (blue curve),
d = 0.0003 and μ = 0.5 (green curve), d = 0.001 and μ = 0.27
(red curve). (a) We show the equivalent volume fraction in three
dimensions (3D) deduced from the volume fraction in two dimensions
extracted from DEM (2D): �3D = 2

3 �2D (see discussion in Sec. II).
(b) The fits proposed in [28] are drawn to show how μ affects the
fitting parameters r1, r2, and I 0

M .

coefficient produced a slight increase of �∗ but did not change
the qualitative trend regarding the overall evolution of �∗ with
IM . The slight increase of �∗ with the decrease of the grain
diameter d can be explained by the boundary effects on the
local volume fraction at both lateral and smooth walls of the
cavity. This geometrical effect tends to decrease the volume
fraction in the vicinity of smooth walls as the grains are forced
to line up. A decrease in grain diameter fades the effect of
the latter phenomenon on the macroscopic volume fraction.
Figure 15(b) shows how the scaling between F/(PLd) and
IM was influenced by the interparticle friction μ. The values
of r1, r2, and I 0

M used for the fitting function given by Eq. (4) are
slightly changed when μ is divided by nearly two [see details
in Fig. 15(b)]. Finally, the particle diameter d has a slight
influence on the relation in the quasistatic regime, namely
when IM is below 10−2. The influence of the grain properties

0.0 0.5 1.0 1.5 2.0 2.5 3.0

force/mean force

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

| macroscale

| mesoscale

| microscale

| macroscale

| mesoscale

| microscale

FIG. 16. PDFs of grain-wall forces at three different spatial scales
for two extreme values of IM .

(grain diameter, interparticle friction) will merit more attention
in the future.

B. Grain-wall force distributions

Howell et al. [23] found exponential distributions at the
smallest volume fraction while the distributions exhibited a
peak at larger volume fraction (see Appendix A). Considering
the one-to-one relation between IM and �∗ shown in Fig. 15,
the evolution of the distributions with IM depicted in Figs. 12
and 13 are in qualitative agreement with the evolution of the
distributions with the volume fraction reported by Howell
et al. [23] in their 2D granular Couette experiments.

While varying IM and the spatial scale of interest, the
probability distributions of grain-wall forces which we found
in the present study (summarized in Fig. 16) cover the wide
range of shapes discussed in the literature overview proposed
in Appendix A. In their two-dimensional granular Couette
experiments, Howell et al. [23] compared the distributions at
the particle scale to the ones averaged over a great number
of particles, and found that at large volume fraction the
distributions became nearly Gaussian. The latter observation
appears to be consistent with the evolution of the distributions
for IM = 1.2 × 10−3 (largest volume fraction in this numerical
study) when the spatial scale is increased, as shown in Fig. 16.

A key result of the present study is that the value of the
boundary macroscopic inertial number and, to a lesser extent,
the spatial scale (macro, micro, or meso) considered are key
inputs that contribute to predetermine the transition observed
in the grain-wall force distributions. Note that doubling L/H

(not shown here) did not change the distributions. All measured
distributions could be modeled by truncated log-normal PDFs
whose parameters were fully controlled by IM . The fits were
very good at the wall-scale [see Fig. 20(b)] and reasonable at
the particle scale [Fig. 20(a)].

C. Quasistatic to dense inertial regime

The analysis of the granular lid-driven cavity problem
showed that the macroscopic inertial number IM fully con-
trolled all the time-averaged quantities (the mean scaled force
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on the wall, the position of the vortex, and the bulk volume
fraction) and the force fluctuations (through the analysis of
probability distributions). Moreover, a clear transition was
observed at IM around 10−2 in the time-averaged dynamics
of the cavity system. This transition was identified by an
increase of the scaled steady force, a displacement of the
vortex position toward the wall, a loss of symmetry in the
|μloc − μth| maps, and a macroscopic dilation of the granular
bulk. The autocorrelation of force time series at the mesoscale
allowed us to reveal a total loss of system memory (not intrinsic
to the material) beyond a value of IM ∼ 10−2. Finally, we
identified drastic changes in the evolution of the shape of
probability distributions beyond a IM once again close to
10−2. All these results are interpreted as a salient signature
of the transition from quasistatic to dense inertial flow regime
in granular media. However, predicting the force fluctuations
on the wall over a wide range of IM remains a challenging
question, as evidenced by the complicated patterns formed
close to the boundary walls (Fig. 6).
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APPENDIX A: FORCE DISTRIBUTIONS IN
GRANULAR MEDIA

The present appendix provides an overview of the literature
about contact force distributions in granular media for static
(unsheared) or slowly sheared systems, as well as for fast flow
systems.

For static granular packings, the q model was early pro-
posed and successful in reproducing the inhomogeneous inter-
particle contact force distributions observed in the pioneering
experimental and numerical studies [15,39]. In particular, the
q model is able to predict the remarkable exponential decay
at large forces generally measured in static granular matter.
The high probability (compared to a Gaussian distribution)
of having forces much larger than the mean is generally
associated with the ability of granular materials to develop
long chainlike structures, the so-called granular force chains,
that can support the large forces [13]. The probability density
function (PDF) of interparticle contact forces f predicted by
the q model in static granular media under gravity takes the
following form [15,39]:

P(f/f ) = kk

(k − 1)!

(
f

f

)k−1

exp

(
−k

f

f

)
, (A1)

where f is the mean and k is the number of downward neighbor
particles considered (see many more details in [15,16,39]).
Considering k = 2–3 generally gives good results for the
forces larger than the mean [12,34]. However, thanks to

technological progress in the field of force sensors, a number of
experimental studies identified a range of complicated shapes
of contact force distributions when approaching forces much
below the mean (see [12] for a detailed summary of those
studies, before 2000, about distributions at weak forces). In
particular, the presence of a plateau, followed by a slight
increase at the smallest forces, was identified under certain
circumstances. In order to fit that more complicated shape of
contact force distributions, the empirical following functional
form was proposed in [6]:

P(f/f ) = a

[
1 − b exp

(
−f 2

f
2

)]
exp

(
−βf

f

)
, (A2)

where a, b, and β correspond to the PDF parameters fitted
on the experimental measurements made by [6]. A slight
modification of Eq. (A2) was proposed by [8] to interpret
their experimental data on the effect of both packing order
(disordered packings versus highly ordered—crystalline—
configurations) and interparticle friction on P(f ). Finally, it is
worthwhile to note that log-normal distributions were reported
in some studies [40,41].

As discussed in a recent review in [21] and a number
of references therein, the key features of the contact force
distributions in static or very slowly sheared granular packings
can be summarized as follows: (i) the distribution functions fall
off exponentially at large forces, (ii) a small peak, or plateau, is
observed below the mean force, and (iii) the vanishingly small
forces remain highly probable. In his review of granular force
transmission in static granular packings, Radjai [21] proposed
an elegant model for contact force distributions and derived an
analytical expression for the density function able to predict
the three aforementioned features:

P(f ) = β0(1 + γ0)
γ0 exp(β0f )

[1 + γ0 exp(β0f )]2
, (A3)

where β0 (homogeneous to a force) and γ0 (dimensionless
coefficient) are the PDF parameters. Under the normalization
f = 1, β0 and γ0 are linked by the relation β0 = (1 +
γ0) ln[(1 + γ0)/γ0)]. Though further studies are needed to
relate γ0 to actual physical properties of the grains, varying
γ0 allows us to cover a wide range of distributions with or
without the presence of a peak [21].

Among the great number of experimental, numerical, and
theoretical results concerning the shape of force distributions
in static packings or slowly sheared granular media, a key
result is that the distribution at small forces (plateau versus
peak, maximum value, nonzero value at vanishingly small
force, etc.) is found to be very sensitive to the granular sample
preparation and shear history the system experiences [12,21].
While interpreting distributions of contact forces in static
granular packings, Antony [12] concluded that it is required
to pay due attention to the shear strain level and any other
quantities related to shear history, such as the volume fraction.
A theoretical study on static packings proposed by [19]
predicted a broadening of the distribution while increasing the
shear stress level, moving from distributions with a peak below
the mean value to exponential distributions. Two-dimensional
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granular packings under anisotropic stresses were studied
theoretically by [20], showing that an increase in the stress
anisotropy produced a transition from distributions with a peak
below the mean to exponential distributions.

A few studies observed the possibility of a crossover in
the shape of P(f ) from exponential to Gaussian at large
confining pressure [34–36]. This change in the shape of P(f )
was attributed to very large deformations of particles [8]. The
effect of particle stiffness on distributions of contact forces
in static packings was investigated by Erikson et al. [9].
They found that beyond a high threshold—around 30% of
deformation—the distributions became sensitive to the particle
stiffness. Decreasing the particle stiffness led to an increase
in the peak and of the slope of the exponential decay at large
forces, thus producing a distribution likely to evolve toward a
Gaussian distribution. The increase of the peak by decreasing
the particle stiffness was also derived from the theory in [19]
(note that this theory predicts an increase of the nonzero
value at f = 0). In the limit of rigid grains (as addressed
in the present study), one can conclude that the distributions
are very weakly—not to say not—affected by the particle
stiffness.

The pioneering laboratory measurements of contact force
distributions in granular media (see for instance [6–8,15,36])
were confined to contact forces between a grain packing and
a boundary wall. It is worthwhile to note that some studies
paid attention to the cross comparison between the grain-grain
(inside the bulk) contact force distributions and the grain-wall
contact force distributions. No significant difference was found
for static packings [18,19,42], suggesting that the results for the
distributions at the boundary walls may generally be extended
to the grain-grain contact forces.

For slowly sheared granular packings, the effect of a slight
variation of the volume fraction on the shape of distributions
was evidenced by the two-dimensional experiments on a gran-
ular Couette geometry [23]. The authors observed exponential
distributions at the smallest volume fraction (around 0.78 in
their 2D system), while the distributions exhibited a peak at
larger volume fraction (around 0.81). Interestingly, Howell
et al. [23] provided a comparison between the distributions
at the particle scale to the distributions averaged over a great
number of particles (∼260 in their study). For the latter, they
found that at large volume fraction the distributions became
nearly Gaussian. The transition from exponential distributions
to narrower distributions with the presence of a peak while
increasing packing density was also reported in a theoretical
study based on the analogy with supercooled liquids and
foams [43].

A study of relatively fast granular flows (a silo discharge)
identified the effect of the velocity (flow rate at the exit
of the silo) on the shape of distributions [24]: the authors
observed a broadening of the distribution at large velocities. A
similar conclusion was drawn from the experiments on objects
dragged into a static granular medium in an annular cell by
Geng and Behringer [5], who observed broader distributions at
large rotation speeds of the annular cell. The theoretical study
of O’Hern et al. [43] based on the analogy with supercooled
liquids and foams predicted the broadening of distributions
with the increase of the shear stress.

APPENDIX B: MICROMECHANICAL PARAMETERS
FOR DEM

The grain-grain and the grain-wall interactions are handled
by a viscoelastic contact law for the normal force and an elastic
force with a Coulomb threshold for the shear force. The normal
contact force Fn and the shear contact force Fs are expressed as

Fn = max(0,knδn + cnδ̇n)n,

d Fs = (ks δ̇sdt)s,

|Fs| � μ|Fn|,
(B1)

where n is the normal of the contact plane, s is the unity vector
along the shear direction (n · s = 0), kn and ks are the normal
and tangential contact stiffnesses, δn is the normal penetration
depth, δ̇s is the tangential displacement increment, μ is the
local friction coefficient, cn is a damping factor that accounts
for inelasticity of particles and is related to the restitution
coefficient of particles, and dt is the time step.

For a contact between two identical spheres of diameter
d, Young’s modulus E, and Poisson’s ratio ν, the contact
stiffnesses can be computed as

kn = 1
2Ed, ks = νkn. (B2)

The contact law is governed by four physical parameters:
E, ν, cn, and μ. It has been discussed in a number of studies
(see [28,44] and references therein) that E can be reduced
to decrease the total time of calculation without changing
the numerical results, as long as we stay in the limit of rigid
grains. Such a limit of rigid grains is verified if, for instance,
we take N0 = E/(2P ) = 1.5 × 104, where P holds for the
macroscopic confinement pressure and N0 is a dimensionless
number. According to Eq. (B2), the grain stiffness was not
kept constant but set with respect to the macroscopic pressure
applied P and the above criterion. As a result, the values of kn

typically ranged between 6.6 × 101 N m−1 and 6.6 × 105 N
m−1 over the whole set of simulations. A sensitivity analysis
to grain stiffness was performed and revealed that—as long as
N0 � 1.5 × 104, all the results presented in this paper do not
depend on this parameter. The Poisson ratio ν was taken equal
to 0.3. cn is set in the same manner as in [28], with a restitution
coefficient e = 0.5. Most of the simulations were conducted
with μ = 0.5 but we will shortly discuss some results with
μ = 0.27 in the conclusion of the paper (see Sec. VI).
In order to minimize crystallization on the one side (low
polydispersity) and to prevent migration and segregation
mechanisms on the other side (high polydispersity), the grain
diameters are homogeneously chosen between d(1 − ddisp)
and d(1 + ddisp) where ddisp = 0.15.

APPENDIX C: FROM DISCRETE TO CONTINUUM
MODELING

1. Kernel smoothing

As the granular sample is made of discrete particles involv-
ing discontinuities, the construction of classical fields often
used in continuous mechanics requires particular attention. In
this paper, a spacial kernel smoothing is used, as described in
Fig. 17.
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FIG. 17. Illustration of the kernel smoothing used for regular
mesh field calculations.

A 2D set of points mj spaced by d constitutes a regular mesh
over the whole cavity. The physical quantities are computed at
each mesh point from the particle quantities, according to the
particle-point distance. Thus, any (scalar or tensor) quantity
Qi which is associated with each individual sphere Si can also
be associated with all individual mesh points mj , forming a
continuous field. This quantity at the point mj , noted Qj , is
the result of a spatial kernel smoothing with a Gaussian kernel:

Qj = 1∑
i

N (Dij )

∑
i

QiN (Dij ), (C1)

where Dij are the distances between the spheres centers and
the mesh points, and N is the Gaussian function of mean 0
and standard deviation d/2. It is worth noting that the use of a
Gaussian kernel is arbitrary and any classical kernel such as a
simple rectangular function should not modify the results. The
choice of the standard deviation follows the result presented
in [45]: the coarse-graining width should be of the order of
magnitude of the grain diameter to avoid any oscillation effect
and at the same time to limit sidewall effects.

2. Local stress and strain rate tensors

The per-particle stress tensors and strain rate tensors used
in the current paper are computed thanks to the algorithms that
are part of the YADE-DEM open-source code (see [46] and
[47]). The space inside the cavity is discretized with the help of
a Voronoï tessellation algorithm, as shown by the dotted lines
in Fig. 18. In this way, it is possible to compute quantities
based on an equivalent continuum of the cavity space. Each
sphere is then associated with a list of neighbors forming a
bounding polyhedral contour Cε with their centroid positions,
and a bounding volume Vσ which does not overlap with the
neighbors.

Making the assumption that the spheres are at static
equilibrium, the following Love-Weber expression can be
applied to each sphere in order to compute their associated

FIG. 18. Illustration of the tessellation for the per-particle volume
calculation.

local stress tensors based on the contact forces:

σ = 1

Vσ

∑
cn


fc ⊗ 
lc, (C2)

where cn is the ensemble of contacts on the sphere, 
fc are the
contact forces, and 
lc are the vectors linking the sphere center
to the contact points.

The local strain rate tensor D is defined as D = ε
�t

, where
ε is the strain tensor computed from two system states shifted
by a short lag �t . For a particular sphere, the displacements
of all neighbors during �t are computed. Then the average
displacement gradient 〈∇d
r〉 is obtained from the integration
of the displacement d
r along Cε (see [47] for more details):

〈∇d
r〉 = 1

VD

∫
Cε

d 
x ⊗ 
nds, (C3)

where VD is the volume associated with the contour Cε , and d
r
is linearly interpolated on the segment between two successive
neighbors. Finally, the strain tensor is given by the symmetric
part of 〈∇d
r〉.

3. Inertial number and effective friction coefficient

The stress tensors σ and strain rate tensors D computed
according to Sec. C 2 enable the computation of the spatial
fields of inertial numbers I and effective friction coefficients
μloc. The following formulations are the same as described in
[48] and are applied at each field point m.

The norm ||A|| and the deviatoric component A′ of a matrix
A are defined as

||A|| =
√

Tr(AAT )

2
, (C4)

A′ = A − Tr(A)

3
I3, (C5)
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FIG. 19. Test of the local μ(I ) rheology for all simulations of this
study, including all IM . The points come from a region of the cavity
selected to approach the conditions of a simple shear flow. This region
corresponds to the upper half region along y that is centered in a band
of length L/2 along x.

where I3 is the identity matrix of size 3. The inertial number
I and the effective friction coefficient μloc are

I = d
√

ρp

||D′||√
p

, (C6)

μloc = Tr(σ ′ D′)
3

1

p||D′|| . (C7)

In the above relations, p denotes the pressure that is defined
from the decomposition of the Cauchy stress into the isotropic
pressure and the deviatoric stress: σ = p I3 + σ ′. Figure 19
displays μloc as a function of I for each point m that belongs
to a selected region of the cavity not too close to the boundary
walls (see its definition in the caption of Fig. 19) and for all
simulations of this study—over the whole range of IM tested.
Finally, the empirical following form proposed by [29] is used
to fit all the points, as drawn by the solid line in Fig. 19:

μth(I ) = μ1 + (μ2 − μ1)
1

1 + I0/I
, (C8)

where μ1 = 0.12, μ2 = 0.40, and I0 = 0.13. Note that a
great number of points falls below μ1 at low IM , suggesting
that nonlocality [30] is present. This point will need further
investigation in the future.
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FIG. 20. Log-linear plots of the force distributions under different
values of IM for the grain-wall contact forces at particle scale (a) [see
detail in caption of Fig. 12(a)]; for the mean force on the wall (b) [see
detail in caption of Fig. 13(a)].

APPENDIX D: FORCE DISTRIBUTIONS:
LOG-LINEAR PLOTS

In this Appendix, we provide the log-linear plots of force
distributions for the contact force at particle scale [Fig. 20(a)]
and the mean force on the wall [Fig. 20(b)], which correspond
to the data already shown in the linear-linear plots of Figs. 12(a)
and 13, respectively.
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