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Compliant contact versus rigid contact: A comparison in the context of granular dynamics
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We summarize and numerically compare two approaches for modeling and simulating the dynamics of dry
granular matter. The first one, the discrete-element method via penalty (DEM-P), is commonly used in the
soft matter physics and geomechanics communities; it can be traced back to the work of Cundall and Strack
[P. Cundall, Proc. Symp. ISRM, Nancy, France 1, 129 (1971); P. Cundall and O. Strack, Geotechnique 29, 47
(1979)]. The second approach, the discrete-element method via complementarity (DEM-C), considers the grains
perfectly rigid and enforces nonpenetration via complementarity conditions; it is commonly used in robotics and
computer graphics applications and had two strong promoters in Moreau and Jean [J. J. Moreau, in Nonsmooth
Mechanics and Applications, edited by J. J. Moreau and P. D. Panagiotopoulos (Springer, Berlin, 1988), pp.
1–82; J. J. Moreau and M. Jean, Proceedings of the Third Biennial Joint Conference on Engineering Systems
and Analysis, Montpellier, France, 1996, pp. 201–208]. The DEM-P and DEM-C are manifestly unlike each
other: They use different (i) approaches to model the frictional contact problem, (ii) sets of model parameters
to capture the physics of interest, and (iii) classes of numerical methods to solve the differential equations that
govern the dynamics of the granular material. Herein, we report numerical results for five experiments: shock
wave propagation, cone penetration, direct shear, triaxial loading, and hopper flow, which we use to compare
the DEM-P and DEM-C solutions. This exercise helps us reach two conclusions. First, both the DEM-P and
DEM-C are predictive, i.e., they predict well the macroscale emergent behavior by capturing the dynamics at
the microscale. Second, there are classes of problems for which one of the methods has an advantage. Unlike
the DEM-P, the DEM-C cannot capture shock-wave propagation through granular media. However, the DEM-C
is proficient at handling arbitrary grain geometries and solves, at large integration step sizes, smaller problems,
i.e., containing thousands of elements, very effectively. The DEM-P vs DEM-C comparison is carried out using
a public-domain, open-source software package; the models used are available online.

DOI: 10.1103/PhysRevE.96.042905

I. METHOD SUMMARY

The dynamics of articulated systems composed of rigid
and flexible bodies is characterized by a system of index-3
differential algebraic equations [1,2]

q̇ = L(q)v, (1a)

g(q,t) = 0, (1b)

M(q)v̇ = f(t,q,v) + G(q,t)λ̂. (1c)

The differential equation (1a) relates the time derivative of
the generalized positions q and velocities v through a linear
transformation defined by L(q). The presence of articulations,
i.e., mechanical joints that restrict the relative motion of bodies
in the system, leads in Eq. (1b) to a set of nonlinear kinematic
constraint equations that must be satisfied by the generalized
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coordinates q. Finally, the force balance equation (1c) ties
the inertial forces to the applied and constraint forces f(t,q,v)
and G(q,t)λ̂, respectively. The expression of the constraint
force projection operator G is dictated by the nature of the
articulations in the system, i.e., expression of g(q,t) [1].

Granular, many-body, or discrete-element problems lead
to large sets of generalized coordinates q. For instance,
granular flow in a hopper leads to 106–109 of entries in q.
Problems this large are ubiquitous; after all, as pointed out
in [3], more than 50% of the materials processed in industry
come in granular form. Understanding their dynamics is
relevant in a range of practical applications such as additive
manufacturing, terramechanics, nanoparticle self-assembly,
composite materials, pyroclastic flows, formation of asteroids
and planets, and meteorite cratering and also in industries
such as pharmaceuticals, chemical and biological engineering,
food processing, farming, manufacturing, construction, and
mining. Note that granular dynamics does not occur only at the
microscales or mesoscales. Avalanche dynamics and planet
formation involve large bodies yet they qualify as granular
dynamic ones, i.e., problems in which large collections of
bodies mutually interact through friction and contact forces
and have their motion modulated by their individual shape.
Against this backdrop, the goal of this paper is to compare two
methods, the discrete-element method via penalty (DEM-P)
and the discrete-element method via complementarity
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(DEM-C), in relation to their performance in the context of
solving the granular dynamics problem.

Mutual contact and ensuing friction can be accounted for
in at least two ways, via a penalty approach or within a dif-
ferential variational framework that invokes complementarity
conditions. In the context of granular dynamics, we use the
DEM-P to refer to the class of solution methods based on
the penalty approach; we use the DEM-C to refer to the
class of complementarity-based solutions. The DEM-P is a
regularization method that relies on a relaxation of the rigid-
body assumption [4–13]. It assumes that the bodies deform
just slightly at the contact point. Employing the finite-element
method to characterize this deformation would incur a stiff
computational cost. Therefore, at each time step, a surrogate
deformation of two bodies in mutual contact is generated
during the collision detection stage of the solution by relying
on the amount of interpenetration between bodies and also
their shapes. Although the shapes might be overly complex,
it is customary to combine the surrogate deformation with
the Hertzian theory, which is only applicable for a handful of
simple scenarios such as sphere-to-sphere or sphere-to-plane
contact (see, for instance, [6]) in order to yield a general
methodology for computing the normal (Fn) and tangential
(Ft ) forces at the contact point. As an example, a viscoelastic
model based on Hertzian contact theory takes the form

Fn =
√

R̄δn(Knδn − Cnm̄vn), (2a)

Ft =
√

R̄δn(−Ktδt − Ctm̄vt ) (2b)

in normal n and tangential t directions, respectively. Herein, δ

is the overlap of two interacting bodies, R̄ and m̄ represent the
effective radius of curvature and mass, respectively, and v is
the relative velocity at the contact point [14]. For the materials
in contact, the normal and tangential stiffness and damping
coefficients Kn, Kt , Cn, and Ct are obtained, through various
constitutive laws, from physically measurable quantities, such
as Young’s modulus, Poisson ratio, and the coefficient of
restitution [6,15]. For granular dynamics via the DEM-P, the
equations of motion need not be changed. Indeed, Fn and
Ft are treated as any external forces and factored in the
momentum balance of Eq. (1c) via f(t,q,v). The specific
DEM-P implementation used herein is detailed in [16].

The DEM-P is used widely in soft matter physics and
geomechanics due to several attractive attributes, e.g., a
large body of literature provides guidance via documented
successful previous use, handling of friction and contact does
not lead to any increase in numerical problem size, and the
algorithm is simple with straightforward software implemen-
tation. The DEM-P has several drawbacks, e.g., identifying
model parameters can be challenging, particularly for large
heterogeneous granular systems; integration time steps are
small owing to large values of the contact stiffness coefficients;
proper friction force evaluation calls for maintaining a history
of local tangential deformation (creep) for each contact (see
[16]); and difficulties in handling contact for bodies of complex
shapes, when the sphere-to-sphere or sphere-to-plane contact
assumption that anchors the DEM-P is violated and the user
has to fall back on ad hoc solutions to producing, for instance,
suitable R̄ and m̄ values.

The DEM-C takes a different tack; it draws on a comple-
mentarity condition that imposes a nonpenetration unilateral
constraint [see Eq. (3a)]. That is, for a potential contact i in
the active contact set A(q(t)), either the gap �i between two
geometries is zero and consequently the normal contact force
γ̂i,n is greater than zero, or vice versa. The Coulomb friction
model is posed via a maximum dissipation principle [17],
which for contact i involves the friction force components
(γ̄i,w,γ̄i,u) and the relative motion of the two bodies in contact
[see Eq. (3b)]. The frictional contact force associated with
contact i leads to a set of generalized forces, shown with
an underbracket in Eq. (3c), which are obtained using the
projectors Di,n, Di,u, and Di,w (see, for instance, [18]). This
leads in Eq. (3) to a so-called differential variational inequality
problem [17]

0 � �i(q) ⊥ γ̂i,n � 0, (3a)

(γ̂i,u,γ̂i,w) = arg min√
γ̄ 2

i,u+γ̄ 2
i,w�μi γ̂i,n

vT (γ̄i,u Di,u + γ̄i,w Di,w), (3b)

M(q)v̇ = f(t,q,v) + G(q,t)λ̂

+
∑

i∈A(q)

(γ̂i,n Di,n + γ̂i,u Di,u + γ̂i,w Di,w)︸ ︷︷ ︸
ith frictional contact force

. (3c)

Equations (3) are augmented with the kinematic differential
equations and the set of bilateral constraint equations in
Eqs. (1a) and (1b), respectively. The numerical solution of the
resulting problem is challenging and continues to be an area
of active research. Several numerical discretization approaches
are discussed in [19–24]. The one adopted here was introduced
in [25]; see also [18]. Upon time discretization followed by a
relaxation of the kinematic constraints, the numerical problem
is posed as a conically constrained quadratic optimization
problem

min q(γ ) = 1
2γ T Nγ + pT γ, (4a)

subject to γi ∈ ϒi for i = 1,2, . . . ,nc, (4b)

where nc is the number of active contacts, i.e., the number of
elements in A(q(t)), ϒi is the friction cone of contact i, γ ≡
[γ T

1 ,γ T
2 , . . . ,γ T

nc
]T , and γi ≡ [hγ̄i,n,hγ̄i,w,hγ̄i,u]T ∈ R3, with

h the simulation time step. The vector p ∈ R3nc and positive-
semidefinite matrix N ∈ R3nc×3nc change from time step to
time step but do not depend on the Lagrange multipliers γ . The
expressions of p and N, along with a detailed account of how
the differential variational inequality problem stated in Eq. (3)
leads to the conic constraint optimization problem in Eq. (4),
can be found in [18]. We solve the optimization problem
in Eq. (4) using Barzilai-Borwein or Nesterov algorithms
[26,27]. This step represents the computational bottleneck of
the DEM-C. Once the frictional contact forces γ are available,
the velocity v(l+1) is expeditiously computed using Eq. (3c).
Subsequently, a half-implicit symplectic Euler scheme updates
the positions at t (l+1), q(l+1) = q(l) + hL(q(l))v(l+1), and the
solution is advanced by a time step h.

The DEM-C solution outlined has several advantages: It
requires a small set of parameters, i.e., friction and cohesion
coefficients, the simulation time step h can be large since there
is no stiffness relied upon in the model, and the approach
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FIG. 1. Snapshot of the DEM-P wave propagation in granular
media.

is suitable for handling bodies of arbitrary geometry. On
the downside, the DEM-C requires at each time step the
solution of an optimization problem, augments the size of the
original problem as it introduces three additional unknowns
(γi,n,γi,w,γi,u) for each active contact, which might be prob-
lematic for granular dynamics problems, and, owing to the
positive-semidefinite attribute of N, the convex optimization
problem does not have a unique global solution. That is,
multiple force distributions can solve the problem in Eq. (4).
For the frictionless case, it can be proved that any of these
distributions leads to the same particle velocities [25]. A recent
result claims that the presence of friction does not alter this
velocity uniqueness trait [28].

The DEM-P and DEM-C are very unlike each other
as proved by their respective (i) local vs global takes on
the frictional contact problem, (ii) deformable vs rigid-
body perspectives, and (iii) force-acceleration vs impulse-
momentum formulations. For (i), the DEM-C solves a coupled
optimization problem that keeps with the global, or nonlocal,
nature of the granular dynamics problem. Indeed, each contact
influences all the rest as demonstrated by the system-level
optimization problem of Eq. (4). Finally, from a numerical
method perspective, the DEM-C “smooths” the discontinuity
in forces and accelerations by operating with their time
integrals: impulses and momenta.

II. NUMERICAL EXPERIMENTS

For the purpose of quantifying the accuracy, robustness, and
efficiency of the DEM-P and DEM-C we use an open source
simulation infrastructure that implements both approaches.
This simulation engine is called CHRONO [29,30] and it is used
here for a wave propagation experiment, a cone penetration
test, a direct shear test, a triaxial test, and a hopper flow
analysis. The metrics of interest in this DEM-P vs DEM-C
comparison are solution accuracy, robustness, and required
computational effort as reflected in simulation run-times.

A. Wave propagation in granular material

The propagation of a wave in granular material (see the
DEM-P simulation snapshot in Fig. 1) is the result of inter-
particle energy exchange via impact, contact, and adhesion.
In the DEM-P results reported herein, these interactions

FIG. 2. The DEM-P wave propagation simulation: balance of
total energy E over time. The Coulomb friction coefficient μ = 0.18.
The total energy was computed as E = K − U − EI − Wf − EA.
Impact, contact, and adhesion are represented using the Hertz,
Mindlin, and Derjaguin-Muller-Toporov (DMT) models, respectively
[6,31].

were captured by the Hertz, Mindlin, and Derjaguin-Muller-
Toporov models [6,31]. The sensitivity of the solution to
noise, particularly in nonlinear regimes caused by larger
impact velocities, demands a nondissipative and nongenerative
numerical solution. We monitor energy conservation for an
experimental setup composed of a collection of n monodis-
perse spheres of diameter d = 1.08 μm, which were disposed
in one layer with close packing. The material properties used
were Young’s modulus Y = 78 GPa, Poisson’s ratio ν = 0.17,
and friction coefficient μ = 0.18. In simulation, we assign
an initial velocity to one surface particle and subsequently
monitor the wave propagation.

Numerical experiments were carried out for different
values of bodies nB ∈ [0.4,120] × 103 and impact velocity
v ∈ [0.1,10] m/s. The DEM-P simulation lasted for one wave
sweep of the domain, which had a 3:4 aspect ratio; i.e., for
instance, for nB = 120 000, the domain’s height and width
were 300 and 400 particles, respectively. Figure 2 illustrates
the variation of the energy components over time, as well as the
variation of the total energy E, defined as E = K − U − EI −
Wf − EA, where K , U , EI , Wf , and EA denote the kinetic
energy, gravity potential, impact energy, work of the shear
force, and adhesion energy, respectively. The solution accuracy
metric was the variation in total energy e = (Ef − Ei)/Ki ,
where subscripts f and i denote the final and initial states.
Regardless of nB and impact velocity v, we noticed that e <

10−6. Note that combining the complementarity approach with
the rigid-body model yields a solution incapable of simulating
wave propagation. As such, there are no DEM-C results to
report. A finite-element method take on grain deformation,
i.e., relaxing the rigid-body assumption, would address this
issue, albeit at a steep computational cost.

B. Cone penetration

In this section we report laboratory and simulation
tests performed for a cone penetration experiment. This

042905-3



ARMAN PAZOUKI et al. PHYSICAL REVIEW E 96, 042905 (2017)

TABLE I. Properties of cones.

Cone

Property 30◦ 60◦

length L (mm) 34.36 22.10
width W (mm) 9.21 19.86
total mass with LVDT attached m (g) 141.1 135.7
Young’s modulus Y (GPa) 193 193
Poisson’s ratio ν 0.3–0.31 0.3–0.31

geomechanics soil characterization method uses a standard-
ized cone geometry, material, bucket dimension, and granular
material compaction. With few exceptions noted in [32], the
procedure and equipment used in this test were as in the British
and Swedish standards [33]. The cones, which had apex angles
of 30◦ and 60◦ in line with the British and Swedish standards,
respectively, have the geometric and mechanical properties
provided in Table I.

The cones were dropped from three heights: from a height
equal to the cone’s length (L30◦ = 34.36 mm and L60◦ = 22.10
mm), a half-cone height ( 1

2L30◦ = 17.18 mm and 1
2L60◦ =

11.05 mm), followed by a zero height, where the cone was
placed right above the specimen’s surface (see Fig. 3). The
cones were attached to brass adapters to facilitate connection
to a linear variable differential transformer (LVDT) rod [see
Fig. 4(c)], which was used to measure the displacement of the
cones during penetration. The falling cones were attached to an
adjustable vertical stand as illustrated in Fig. 4(d). The vertical
stand had a range of 0.4 m that allowed the LVDT rod and fall
cones to drop into the center of 4- or 6-in. proctor molds, as
specified in the ASTM D698 standard. The granular material
used was monodisperse glass beads. A size characterization
using the MATLAB R© image processing toolbox was conducted
to quantify bead shape. The bead’s average diameter and
standard deviation were measured as 2.849 and 0.0417 mm,
respectively.

Two material compactions were considered, one loose
and one dense. In the laboratory, the loose compaction was

FIG. 3. Schematic of a cone drop experiment, with drop height
H , cone height L, and cone width W .

FIG. 4. Empirical and numerical cone penetration setups showing
(a) a cone placed over the settled specimen, (b) a cone penetrating
the granular material, (c) fall cones with LVDT connectors, and (d) a
view of the assembled apparatus: 1, fall cone and adapter; 2, LVDT;
and 3, adjustable vertical stand.

generated by placing the material in accordance with ASTM
D5254. For dense compaction, the material was placed in lifts.
After each lift, an extrusion plate was placed onto the material.
The center of the extrusion plate was then hit with a standard
proctor hammer ten times. This was repeated for a total of
four lifts. On the simulation side, the granular material at
rest was generated by pouring particles into the container
with and without friction to generate the loose and dense
setups, respectively. For the DEM-P, the following parameters
were used for the grains and container: Young’s modulus
Y = 108 Pa (the material was softer than in reality to allow
for large step sizes h), Poisson’s ratio ν = 0.3, and the beads’
density � = 2500 kg/m3. For both the DEM-P and DEM-C,
μp-p = μc-p = 0.7, where c stands for cone and p for particle
(bead). These μ values are within the range recommended in
the literature (see the discussion in [34]). Given the nature
of the material considered, we used the same μ value also for
the direct shear test in Sec. II C and the hopper experiment in
Sec. II E. Loose and dense compaction densities obtained are
provided in Tables II and III.
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TABLE II. Void ratios at rest.

Simulation [relative error (%)]

Scenario Experiment DEM-P DEM-C

Container of 4-in. diameter
loose case 0.66 0.72 (9.50) 0.75 (13.79)
dense case 0.53 0.55 (3.85) 0.57 (6.61)

Container of 6-in. diameter
loose case 0.66 0.71 (7.15) 0.74 (12.43)
dense case 0.53 0.55 (3.46) 0.56 (5.23)

With the exception of Young’s modulus Y , all parameter
values were lifted from the literature based on the materials
involved in the experiment. However, we had to perform one
calibration step that complemented the choice of parameter
values. The motion of the LVDT rod was modeled in
CHRONO by a perfect, i.e., frictionless, translational joint that
constrained the cone to move only in the vertical direction.
This amounted to the presence of five kinematic constraints
[see Eq. (1b)]. We performed laboratory fall tests in the absence
of granular material to quantify the actual friction between the
fall cone and the adapter. We measured that the friction in
the laboratory apparatus led to free fall speeds at impact that
would require [0.65,0.94]g [32], where g = 9.81 m/s2. The
outcome of this calibration phase was that in simulation, we
used a gravitational acceleration of 0.79g to account for the net
effect of friction in the apparatus, friction that was otherwise
neglected by the CHRONO-idealized translational joint.

The cone penetration simulations consisted of two stages.
In the first stage (settling), granular material was dropped
into the container. Although this stage was 1.0 s long, a
suitable rest state, as measured by the value of kinetic energy
associated with the movement of all elements, was reached
after approximately 0.5 s (see Fig. 5). In the second stage
(cone falling), the cone dropped and penetrated the granular
material over 0.4 s. The vertical displacement of the cones as a
function of time is presented in Fig. 6. Four different scenarios
are shown for 4- and 6-in.-wide containers, 30◦ and 60◦ fall
cones, and loose and dense compaction.

Overall, the DEM-P and DEM-C results are very com-
parable and the methods are deemed predictive. Generally,
the DEM-P and DEM-C simulation penetration depths were
within 12% of laboratory measurements in all scenarios (see
Table IV). The DEM-P produced more accurate results for
the settling phase; for the penetration phase, the DEM-C

TABLE III. Densities at rest (kg/m3).

Simulation [relative error (%)]

Scenario Expt. DEM-P DEM-C

Container of 4-in. diameter
loose case 1504.29 1449.50 (3.64) 1426.00 (5.20)
dense case 1630.34 1608.79 (1.32) 1593.69 (2.25)

Container of 6-in. diameter
loose case 1504.32 1462.70 (2.77) 1433.39 (4.72)
dense case 1630.35 1610.93 (1.19) 1601.22 (1.79)

FIG. 5. Evolution of the system’s kinetic energy (on a lin-log
scale) during the first, i.e., settling, stage of the simulation.

produced slightly more accurate results for the loose case.
On average, when using CHRONO, the DEM-C was about 1.6
times slower than DEM-P (see Table V). The table reports
run-time ratios TDEM-C/TDEM-P for times required to complete
the cone penetration simulations. In the column headings, 4
and 6 represent the cylinder diameter in inches, while L and
D stand for loose and dense packing, respectively. In the first
column, settling, penetration, and total refer to the stages of the
simulation: settling phase, material penetration phase, and total
run-time. The very last row reports the number of elements
used to fill the container in each scenario. As expected, the
dense-packing cases have more elements compared to the
loose-packing cases. Further numerical results are available
in [34].

C. Direct shear test with particle image velocimetry

The direct shear test for granular materials is often used in
geomechanics to infer friction angles. The shear box, which is
divided horizontally, is filled with material at a desired density.
A normal force is applied to the top of the sheared material;
a tightly controlled motion causes half of the shear box to
slide laterally, causing shear forces to develop in the sample.
This setup was modified to allow the tracking of individual
grains via particle image velocimetry (PIV) as enabled by
the GEOPIV software [35]. To this end, the shear box had a
transparent front wall for capturing the glass beads’ movement
with a digital camera. The moving portion of the shear box was
displaced at a constant rate using a GeoTAC GeoJac stepper
motor controlled with the GeoTAC Sigma-1 loading software.
The forces required to move the box and sample were measured
using an Interface ULC Ultra Low Capacity Load Cell model
ULC-2N. The motor frame and shear box are shown in Fig. 7
(see also [36]).

The material and parts were dry; two shear rates were
considered separately: 0.5 and 1.0 mm/min. The normal
force on the shear plane was controlled by inclining the
shear apparatus and adding, in a tightly controlled fashion,
a supplemental mass on top of the material. The apparatus was
inclined at 18◦ with no supplemental mass, 24◦ with 8.01 g
of additional mass, and, for 30◦, 53.64 g for 1.0 mm/min and
66.64 g for 0.5 mm/min. The tests were conducted using
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FIG. 6. Cone depth vs time plots obtained from simulation and
laboratory experiments: (a) cone 30◦ in apex angle, container with a
6-in.-wide diameter, and dense packing; (b) cone 30◦ in apex angle,
container with a 6-in.-wide diameter, and loose packing; (c) cone
30◦ in apex angle, container with a 4-in.-wide diameter, and loose
packing; and (d) cone 60◦ in apex angle, container with a 6-in.-wide
diameter, and dense packing. Black lines indicate experimental data,
blue is used for DEM-P results and orange is for DEM-C results. In
several cases the blue line is right behind the orange line.

granular material in two different compactions, loose and
dense. In the dense case between 1303 and 1310 elements
were arranged in one layer via hexagonally close packing.
In the loose case the shear box was filled out with 1174–
1214 elements under arbitrary packing (see Fig. 8). The
simulations consisted of 1311 (dense) and 1154 (loose case)

TABLE IV. Cone penetration results related to plots in Fig. 6.
Four different scenarios were classified by container diameter φ,
cone apex angle ψ , and material compaction C for triple (φ,ψ,C)
values: (a) (6 in.,30◦,D), (b) (6 in.,30◦,L), (c) (4 in.,30◦,L), and (d)
(6 in.,60◦,D), where L and D stand for loose and dense compaction,
respectively.

Depth (cm) [relative error (%)]

Scenario Initial height Laboratory DEM-P DEM-C

(a) 0 5.01 4.90 (2.34) 4.73 (3.31)
(a) 1

2 L30◦ 5.49 5.42 (1.35) 5.11 (5.62)
(a) L30◦ 5.86 5.92 (1.09) 5.44 (8.17)

(b) 0 6.25 6.56 (4.84) 6.84 (4.34)
(b) 1

2 L30◦ 6.79 7.17 (5.59) 7.29 (1.62)
(b) L30◦ 7.17 7.63 (6.34) 7.73 (1.33)

(c) 0 6.43 6.45 (0.19) 6.57 (1.95)
(c) 1

2 L30◦ 7.04 7.01 (0.32) 7.01 (0.10)
(c) L30◦ 7.30 7.38 (1.08) 7.52 (1.92)

(d) 0 3.29 3.28 (0.36) 3.11 (4.96)
(d) 1

2 L60◦ 3.59 3.56 (0.63) 3.40 (4.61)
(d) L60◦ 3.44 3.85 (11.80) 3.64 (5.49)

glass spheres of diameter 2.84 mm. For the DEM-P, the density
� = 2500 kg/m3, Young’s modulus Y = 50 GPa, Poisson’s
ratio ν = 0.3, the coefficient of restitution cr = 0.66, and the
intersphere coefficient of friction μ = 0.7. The DEM-C used
only the aforementioned density and friction values. The shear
box was 101.96 mm wide and the depth of its fixed half was
50.58 mm. The distance between the front and back panels
was 3.3 mm.

Insofar as the simulation experiments were concerned, a
sensitivity analysis was first conducted with respect to the
shearing speed Vsh. The shear speeds in the laboratory were
low and led to lengthy experiments that needed to be duplicated
in simulation. We ran one pilot DEM-C simulation in CHRONO

using the actual laboratory shearing speed. When using one
thread on an i5-4300M CPU @ 2.0 GHz processor, the
simulation finished after 23 days. The DEM-P would have
required close to 54 days. The purpose of the sensitivity
analysis was to understand whether increasing the shear speed
in the simulation would significantly alter the results. A
thorough account of this study is provided in [36]. Both the
DEM-P and DEM-C show little sensitivity to shearing speed.
Due to the long execution times, the DEM-P simulations run
had Vsh,sim � 4 mm/min, i.e., at least four times faster than

TABLE V. Run-time ratios TDEM-C/TDEM-P and number of ele-
ments in the cylinder. In the column headings, 4 and 6 represent the
cylinder diameter in inches, while L and D stand for loose and dense
packing, respectively.

Stage 4L 4D 6L 6D

settling 1.54 1.67 1.46 1.44
penetration 1.64 1.76 1.78 1.71
total 1.56 1.69 1.58 1.55

num. elements 48864 53296 110786 120860
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FIG. 7. Shear apparatus: 1, sliding portion of the shear box; 2,
fixed portion of the shear box; and 3, load cell.

experiment. The trajectories obtained from those simulations
were very similar to each other (see Fig. 9). The DEM-
C simulations were two to six times faster than DEM-P
simulations; all were carried out in CHRONO. Different values
of Vsh did not lead to consequential changes in numerical
values reported. Surprisingly, we observed a slightly better
match of the DEM-C numerical and experimental results for
higher shearing velocities, an artifact that might be related to
the particular solution approach used in CHRONO [27,37,38].

Particle arrangements at the end of the laboratory and
simulation tests are shown in Fig. 8. The laboratory PIV and
simulation trajectories are juxtaposed in Fig. 9. The spheres
marked on the plots show the positions of the monitored
particles at the beginning of the test. Six experiments, three
different incline angles at two shearing speeds, were run for
loose and then dense compaction for a total of 12 scenarios.
Except for a small number of scenarios in the close-packed

configurations, the results are in good agreement for the
duration of the motion. We observed that in the laboratory
dense-packed scenarios, generating a perfectly closed initial
configuration was almost impossible due to the presence of
small voids caused by particle imperfection and shear box
dimensional tolerances. The existence of clearances in the
loose case initial configuration was noted for significantly
influencing particle motion.

Note that it was not possible to exactly match the initial
locations of the experiment vs simulation spheres. Indeed, at
time t = 0, the physical experiment and numerical simulation
rest configurations were slightly different. This difference in
initial conditions was reconciled by comparing the trajectories
of six reference spheres in the physical experiment to those
of six simulation spheres that were closest to the reference
spheres at the onset of the shearing process [36]. The
simulation spheres monitored are marked in red in Fig. 8. This
sphere selection process was followed to generate all results
reported in Fig. 9.

D. Triaxial test

For the standard triaxial test (STT), we summarize
the comparison of DEM-P and DEM-C results against
experimental data reported in [39]. This discussion draws
on simulation setup information and results provided in
[40].

The experiment was conducted using a cylinder with
diameter of 101 mm and height of 203 mm. Two specimen

FIG. 8. Particle arrangement comparison at the end of the shear test for experiment (top) and simulation (bottom) with granular material
(a) randomly packed loosely with an incline angle of 18◦ and a shearing speed of 1.0 mm/min and (b) hexagonally packed densely with an
incline angle of 24◦ and a shearing speed of 0.5 mm/min. Six particles, marked in red, were selected for analyzes via PIV.
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FIG. 9. Trajectories for selected particles obtained from simulation and laboratory experiments: (a) particles packed densely and the shear
box inclined at 18◦, (b) particles packed loosely and the shear box inclined at 18◦, (c) particles packed densely and the shear box inclined at 24◦,
(d) particles packed loosely and the shear box inclined at 24◦, (e) particles packed densely and the shear box inclined at 30◦, and (f) particles
packed loosely and the shear box inclined at 30◦. Two plots are provided in (a)–(f); the left and right plots correspond to Vsh = 0.5 mm/min
and Vsh = 1.0 mm/min, respectively. Two sets of trajectories obtained in simulations are shown. The first set presents the results with shearing
velocity 500 times larger than the one used in laboratory (Vsh,sim = Vsh × 500); these simulations are shown with dotted lines, which are always
orange for the DEM-C and blue for the DEM-P. The second set of results, shown with solid lines, is obtained for shearing speeds closer to
experiment; i.e., the speed-up factors α for Vsh = 0.5 mm/min and β for Vsh = 1.0 mm/min are both significantly less than 500. Since the
DEM-P was slower, the slowest shearing velocities we simulated with were 4 mm/min, which gives Vsh,sim = Vsh0.5 × 8 and Vsh1.0 × 4, i.e.,
(α = 8,β = 4). For the DEM-C, no shearing speed-up was needed in the simulation, i.e., α = β = 1.

types were used. In the monodisperse case we used spheres of
5 mm diameter; in the polydisperse case we used a uniform
mixture of spheres with diameters of 4, 5, and 6 mm. The
beads were made of grade 25 chrome steel; the confining
pressure was 8 × 104 Pa; the sample was compressed at an
axial strain rate of 0.0083% s−1. In simulation, the following
values were used by the DEM-P: density � = 7800 kg/m3,
Young’s modulus Y = 2 × 108 Pa, Poisson ratio ν = 0.28,
and coefficient of restitution cr = 0.6. The same values were
used for the container’s walls. The particle-to-particle and
particle-to-wall friction coefficients were measured in [41,42]:

0.096 and 0.28, respectively. The confining pressure was set to
8 × 104 Pa. The DEM-C did not need values for Y , ν, and cr .

There were two caveats in simulating the STT. First, just
like for the shear test, laboratory shearing speeds were too
low to be matched in simulation, which was carried out after
a three order of magnitude increase in strain rate to 10% s−1.
Second, the material was softened by three orders of magnitude
to allow for a larger DEM-P time step h. A sensitivity
analysis suggests that the relaxation of test parameters changed
neither the qualitative nor the quantitative outcomes of the
study [40].
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FIG. 10. Evolution of the system’s kinetic energy during the
standard triaxial test settling stage.

The simulations consisted of two stages. In the settling
stage, the specimen was poured into the container and the
confining pressure was applied to its top and sidewalls to
bring the sample to rest (see Fig. 10). In the second stage,
the confining pressure of 8 × 104 Pa was maintained on the
sidewalls and the axial strain rate was applied to the top wall.
The bottom wall was fixed in both stages. The compressed
specimen after the settling stage and after the STT is shown in
Fig. 11.

The laboratory tests used between 15 382 and 15 420
spheres yielding void ratios of 0.615 and 0.612, respectively.
The DEM-P and DEM-C used 15 918 spheres in the monodis-
perse case and 15 740 in the polydisperse case. The simulation
void ratios at rest ranged from 0.611 to 0.660 (see Table VI).

To simulate the settling and the STT stages it took the DEM-
P an average of 1 h 25 min and 4 h and 55 min, respectively.
The DEM-C took 9 h 21 min for settling and 44 h and 14 min
for the STT stage. Simulations were run using ten threads on
an Intel i5-4300M CPU @ 2.0 GHz.

FIG. 11. Granular material simulation snapshot at the end of (a)
the settling stage and (b) the standard triaxial test stage.

TABLE VI. Number of spheres used and void ratios obtained
after the settling stage. Here mono. denotes the monodisperse case
and poly. the polydisperse case.

Number of Void ratio
Approach spheres [relative error range (%)]

Laboratory Expt. (15382, 15420) (0.615, 0.612)
mono. DEM-P 15918 0.641 ([4.06, 4.52])
mono. DEM-C 15918 0.611 ([0.65, 0.16])
poly. DEM-P 15740 0.660 ([6.82, 7.27])
poly. DEM-C 15740 0.626 ([1.76, 2.24])

A comparison of laboratory, DEM-P, and DEM-C results is
provided in Fig. 12 (see also Table VII), in which the variation
in stress ratio (σ1 − σ3)/(σ1 + σ3) is plotted as a function of
axial strain. The reference data are from [39]. Both the DEM-
P and DEM-C match experimental data, particularly so at
high axial strains. The DEM-C, which attempts to enforce the
rigid-body abstraction, leads to a specimen that is perceived as
stiffer, thus causing a steeper initial slop. The DEM-P provides
a good approximation of the laboratory data at every stage of
the experiment.

FIG. 12. Laboratory vs simulation results for the standard triaxial
test with (a) a monodisperse specimen and (b) a polydisperse
specimen.
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TABLE VII. Summary of execution time for the standard
triaxial test.

Length of Average
Approach time simulated (s) exec. time

DEM-P settling ≈0.5 1 h 25 min
DEM-P STT 1.5 4 h 55 min
DEM-P total ≈2.0 6 h 20 min
DEM-C settling ≈0.5 9 h 21 min
DEM-C STT 1.5 44 h 14 min
DEM-C total ≈2.0 53 h 35 min

E. Flow sensitivity with respect to element shape

A hopper experiment provides an opportunity to scrutinize
via fully resolved, microscale simulation emerging macroscale
attributes such as flow rate, funnel flow, arching, interlocking,
jamming, etc. We reported in [43] the outcome of a DEM-C
sensitivity analysis of hopper flow rate with respect to friction
coefficient. The hopper, which consisted of one 45o inclined
and three vertical walls, was filled with approximately 40 000
glass disruptor beads with a 500 μm diameter. The same
hopper setup is used herein (see Figs. 13 and 14). The
material properties for the glass beads are those from the
cone penetration and PIV tests; i.e., a single value of friction
coefficient μ = 0.7 was assumed for all contact events. Except
for transitions at the onset and conclusion of the flow, we
confirm the hour-glass principle that a monodisperse dry
spherical-granular material flows uniformly throughout the
entire process (see Table VIII). To obtain these values, if the
duration of the granular flow through hopper was Tf , we split
the time interval [0.3,0.9]Tf into ten equal-size subintervals.
The average flow rate for each subinterval was calculated based
on a linear regression of the flow-time data in that subinterval,
yielding ten flow rates. The table reports flow rate average
ṁ, standard deviation SD, and normalized standard deviation
ζ = SD/ṁ obtained using these ten values.

FIG. 13. Flow of prolate ellipsoid through a hopper with α = 3.4.

FIG. 14. Heterogeneous granular flow through a hopper. The
material is composed of equal fraction of spheres, ellipsoids (α = 2),
boxes, and cylinders.

The results in Table IX answer the following question: How
sensitive are the simulation results to decreasing Y in order to
reduce simulation times via larger integration step sizes h?
It turns out that for the hopper experiment, one can reduce
Y substantially without compromising the simulation results.
In our experience, the extent to which one can reduce Y is
problem dependent.

The DEM-P method, shown in Sec. II A to successfully
capture nonlinear wave propagation, builds on the assumption
that the contact scenarios encountered are of simple types
such as sphere-to-sphere or sphere-to-plane contact scenarios.
Then, insofar as the normal contact force is concerned, an
analytical solution can be produced [6,44–46] in terms of
quantities such as the effective radius of curvature R̄, effective
mass m̄, and contact stiffness and damping parameters [see
Eq. (2)]. Note that these sphere-to-sphere or sphere-to-plane
contact geometries, which come into play when defining, for
instance, R̄ and m̄, allow also for a clean tracking of the contact
history that comes into play in the computation of the DEM-P
forces [16]. Yet practical applications oftentimes lead to edge-
to-edge, corner-to-plane, edge-to-plane, etc., contact scenarios
that bring together complex geometries of arbitrary size ratios
and/or relative orientations. How should the DEM-P handle

TABLE VIII. Comparison of hopper flow rates for different gap
sizes (in mm). Here ṁ and SD denote flow rate and standard deviation
measured in g/s, respectively; ψ denotes the normalized standard
deviation and ζ = SD/ṁ.

ṁ (SD,100ζ )

Gap size Expt. DEM-P DEM-C

1.5 1.42 1.50 (0.10,6.5) 1.48 (0.10,6.7)
2.0 2.69 2.71 (0.09,3.3) 2.80 (0.15,5.3)
2.5 4.23 4.20 (0.08,2.0) 4.28 (0.12,2.7)
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TABLE IX. The DEM-P sensitivity analysis with respect to the
modulus of elasticity Y , measured in Pa. Here ṁ and SD denote
flow rate and standard deviation measured in g/s, respectively; w is
measured mm.

ṁ (SD)

Y w = 1.5 w = 2.0 w = 2.5

6.0 × 106 1.48 (0.03) 2.72 (0.12) 4.22 (0.09)
2.5 × 107 1.49 (0.09) 2.72 (0.12) 4.21 (0.13)
1.0 × 108 1.53 (0.11) 2.71 (0.12) 4.18 (0.15)
4.0 × 108 1.46 (0.09) 2.74 (0.09) 4.21 (0.13)
1.6 × 109 1.50 (0.07) 2.75 (0.08) 4.24 (0.14)

these cases? Various computational geometry heuristics exist
for producing surrogates for the contact point, normal contact
direction, and relative penetration speed (see, for instance,
[47–49]). Against this backdrop, one can regard the DEM-P
as either an approach that considers elastic deformation and
no penetration, with the frictional contact force modulated
by geometric (R̄ and m̄) and material (Kn, Kt , Cn, and Ct )
parameters [see Eq. (2)] [6], or an ad hoc approach not
concerned with the local elastic deformation but rather with the
mutual penetration, in which case a penetration metric, e.g.,
the intersection volume for the two geometries in contact, and
additional empirical parameters dictate the frictional contact
force [47–49]. At the price of not being able to handle arbitrary
geometries, we embrace the elastic deformation orthodoxy for
the DEM-P and root the frictional contact force computation in
an analytical argument as done in the Hertzian contact theory
[6]. How well an empirical penetration-based DEM-P solution
manages to capture nonlinear phenomena such as in Sec. II A
and, at the same time, handle complex geometries falls outside
the scope of this work.

The DEM-C does not face this conundrum, i.e., how
complex geometry should be handled, as it always falls back
on a unilateral (nonpenetration) kinematic constraint grafted
onto the rigid-body model. For low-strain scenarios, such
as hopper flow, the rigid-body assumption captures well the
flow of the material (see results in Table VIII). This was the
rationale for employing the DEM-C in a study that sought
to quantify how shape dictates hopper flow. To this end, we
considered six scenarios. In four cases, the granular material
was composed of prolate ellipsoids. The elongation α was
defined as the ratio of the larger to the smaller semiaxis.
Figure 14 illustrates the hopper flow of prolate ellipsoids
with α = 3.4. In the fifth scenario, the granular material was
composed of cubes. The sixth scenario included in equal
amounts elements of four types: spheres, cubes, cylinders
with equal height and diameter, and prolate ellipsoids with
α = 2.0 (see Fig. 13). Each particle’s volume was equal
to that of a 500-μm-diam sphere. In all cases, the flow of
granular material was approximately constant, but different
from case to case (see Table X). Unsurprisingly, the more
needlelike the prolate ellipsoids, the lower their flow rate. The
cubes’ flow rate was low; “lubrication” via other geometries
improved the granular mixture flow rate. No jamming was
observed; nonetheless, compared to the spherical particles,
the flow of nonspherical particles was more unpredictable

TABLE X. The DEM-C flow rate in the hopper for different
mixtures and gap size w (mm). The flow rate ṁ and standard deviation
SD are measured in g/s.

ṁ (SD)

Granular composition w = 1.5 w = 2.0 w = 2.5

sphere (α = 1.0) 1.60 (0.09) 2.87 (0.10) 4.42 (0.09)
prolate ellipsoid (α = 2.0) 1.45 (0.10) 2.54 (0.14) 4.07 (0.21)
prolate ellipsoid (α = 3.0) 1.00 (0.19) 2.20 (0.21) 3.33 (0.22)
prolate ellipsoid (α = 4.0) 0.49 (0.11) 1.46 (0.33) 2.49 (0.26)
cube 0.58 (0.11) 1.96 (0.34) 3.28 (0.25)
mixture 1.14 (0.19) 2.25 (0.18) 3.59 (0.20)

(see standard deviation values). We also report the value of
SD/ṁ in Table XI. This ratio, which can be interpreted as
a propensity to jam coefficient, increases with the size of
the particle to gap-size ratio and, where applicable, with the
value of α. No experimental data were available to back
this observation. When simulating heterogeneous granular
material, the CHRONO DEM-P implementation was short on
accuracy and/or robustness grounds, which explains the lack
of DEM-P results.

Finally, the small difference between the DEM-C flow
rates for spheres (α = 1.0) in Tables VIII and X provides an
opportunity to reflect on the importance of collision detection.
Indeed, in the former case, the collision detection is of sphere-
to-sphere type, which has an easy-to-find analytical solution.
For the latter case, the collision detection is of ellipsoid-to-
ellipsoid type, a scenario that calls for the solution of an
optimization problem [50]. This is despite the two ellipsoids in
contact being spheres, i.e., ellipsoids with identical semiaxes.
Since the optimization problem does not have an analytical
solution, the collision detection is only solved approximately,
which ultimately influences the simulation results.

III. CONCLUSION

The one salient conclusion of this study is that both the
DEM-P and DEM-C are predictive. It is reassuring that two
discrete-element methods produce similar results despite being
vastly different in both their modeling and numerical solution
approaches. In addition, there is no clear winner insofar as
handling granular dynamics is concerned. For very large

TABLE XI. The DEM-C results for the flow rate standard
deviation normalized by the flow rate ṁ, ζ = SD/ṁ, for different
compositions and gap sizes w (mm).

100ζ

Granular composition w = 1.5 w = 2.0 w = 2.5

sphere (α = 1.0) 5.6 3.6 2.1
prolate ellipsoid (α = 2.0) 6.7 5.7 5.2
prolate ellipsoid (α = 3.0) 19.5 9.6 6.5
prolate ellipsoid (α = 4.0) 21.5 22.7 10.6
cube 19.6 17.2 7.5
mixture 16.3 8.1 5.6
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collections of monodisperse spheres in experiments that lead to
high internal stress, the DEM-P has the advantage; it is faster
than the DEM-C and apt at capturing both the microscale
and macroscale responses of the material. The DEM-P runs
into difficulties when handling complex geometries owing
to its (i) ad hoc approach to producing the friction and
contact forces under these circumstances and (ii) sensitivity to
contact information, i.e., the geometrical or collision detection
component, when small variations in contact information lead
to sizable changes in forces. To a point, we found the DEM-P
insensitive to shearing rates, which could be increased, and
to contact stiffness, which could be decreased, both by orders
of magnitude. This lack of sensitivity can be traded for larger
simulation step sizes that led in some experiments, e.g., the
STT, to significant speed-ups over the DEM-C. The latter
was very apt at handling granular material with complex
element geometries when the experiment did not lead to
high internal stresses. Hopper flows are very suitable, less
so triaxial or other high-load shear tests. The DEM-C had
two shortcomings: (a) its emphatic embrace of the rigid-body
abstraction and (b) its coupled system-level solution process,
which is computationally taxing. Because of (a), the DEM-C is
incapable of capturing wave propagation in granular material
and struggles with the STT as it cannot employ the local
particle deformation mechanism that facilitates and modulates
shearing in granular material. This limitation can be addressed
by reverting to a finite-element method to account for grain
deformation. Computationally, this is prohibitively expensive.
In relation to (b), large granular dynamics problems are going
to stymie the DEM-C. Moreover, the DEM-C forfeits one
of its strong points since the ability to use large steps h

becomes a nonfactor given the spatial and time scales on which
granular dynamics takes place. The DEM-C is anticipated to
be competitive in fluidized bed, particulate flow, and robotics
problems in which the size of the optimization problem is small
and/or the simulation can advance with large h. We found the
DEM-C to be robust, which makes it permissive and forgiving.
Indeed, stopping the DEM-C solution after few iterations,
long before convergence, produces macroscale results that
are acceptable, yet not highly accurate. This is handy in

engineering applications when the microscale behavior is of
secondary interest. For instance, when designing a piece of
equipment that pushes a pile of granular material, accurately
resolving the microscale response of the granular material is
perhaps of little concern. Instead, the priority is in producing
a good overall load history that the implement acting on the
granular material experiences during a work cycle. A similar
situation is encountered in ground vehicle mobility analysis
where, as the vehicle operates over granular terrain, the interest
might be in the macroscale response only, with little concern
for grain level dynamics. On a final note, it was surprising how
computationally intensive both the DEM-P and DEM-C were.
We had to demand tight numerical solution accuracy levels for
the simulation results to come in line with experimental data.
Tight accuracy translated into simulation times that were sig-
nificantly longer than what we had anticipated. As a corollary,
simulation results that look plausible in an animation might be
far from faithfully capturing the physics at the microscale.

There are compelling reasons to believe that in the imme-
diate future, the fully resolved DEM simulation will facilitate
a significantly better understanding of complex phenomena in
soft matter physics. First, the software infrastructure to carry
out these simulations is predictive and becoming ubiquitous.
Second, both the DEM-P and DEM-C are poised to benefit
from recent substantial gains in compute power.
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of the Army (DoA). The opinions of the authors expressed
herein do not necessarily state or reflect those of the United
States Government or the DoA, and shall not be used for
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