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Energy decay in a tapped granular column: Can a one-dimensional toy model provide
insight into fully three-dimensional systems?
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The decay of energy within particulate media subjected to an impulse is an issue of significant scientific
interest, but also one with numerous important practical applications. In this paper, we study the dynamics of a
granular system exposed to energetic impulses in the form of discrete taps from a solid surface. By considering
a one-dimensional toy system, we develop a simple theory, which successfully describes the energy decay
within the system following exposure to an impulse. We then extend this theory so as to make it applicable
also to more realistic, three-dimensional granular systems, assessing the validity of the model through direct
comparison with discrete particle method simulations. The theoretical form presented possesses several notable
consequences; in particular, it is demonstrated that for suitably large systems, effects due to the bounding walls
may be entirely neglected. We also establish the existence of a threshold system size above which a granular bed
may be considered fully three dimensional.
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I. INTRODUCTION

Granular and particulate media are ubiquitous both in
industry and our everyday lives, representing—aside from
water—the most widely handled commodity on Earth [1].
Despite this fact, the dynamical behaviors of these materials
remain incompletely understood [1–3] and thus, in many cases,
impossible to accurately predict. This unpredictability carries
many negative consequences, both in nature and in numerous
diverse industries [4–7].

While we are currently witnessing a continual improvement
in the speed and power of simulational techniques for modeling
granular systems [8] as well as in the capabilities of experi-
mental techniques, we are still a long way from being able
to reliably analyze the behaviors of large, three-dimensional
systems with precision. However, within the limitations of
contemporary technology, we can successfully model small,
often one-dimensional or quasi-two-dimensional toy systems
to a high degree of precision, producing simulations and
models that accurately and quantitatively represent observa-
tions from similar experimental systems [9–11].

Nonetheless, such systems are typically beset by a recurring
question: can the behaviors of these simple models provide
gainful insight into the behavior of more complex, larger,
and/or fully three-dimensional systems more relevant to the
majority of real-world processes?

In this paper, we consider a very simple toy model of
a granular system: a one-dimensional column of dissipative
particles subjected to a single discrete excitation event, or tap.
The use of this system ensures simplicity not only in terms of
geometry, but also in terms of the manner of excitation.

Tapped granular systems are of direct relevance to a number
of contemporary applications, such as the creation of granular
dampers used, for example, in the construction, aerospace

and even medical sectors [12–15], and the compaction of
particulate media [16]. Perhaps more importantly, however,
these systems provide fundamental insight into the behaviors
of excited granular media as a whole, in particular vibrated
and vibrofluidized beds.

In the present work, we focus specifically on the dissipation
of energy within the tapped granular systems studied. It is the
dissipative nature of granular materials that predominantly
separates them from classical solids, liquids, and gases, of
which our understanding is far superior. It is hoped that by
gaining an improved, predictive knowledge of said energy
dissipation within the fundamental canonical systems studied
here, we may take a vital early step towards an improved
understanding of excited granular media as a whole.

Due to their value as a means through which to gain
insight into the fundamental physics of particulate systems,
one-dimensional granular columns have been widely studied.
Falcon et al. studied the collision of a granular column with
a static wall [9]. The paper focused predominantly on the
force exerted upon the wall by the falling column, making
the surprising observation that the maximal force experienced
by the wall remained constant irrespective of the number of
particles forming the column. However, more relevantly to
the current work, Falcon et al. also provided insight into the
dissipative behaviors of the column, which we touch upon
in subsequent sections. Louge [17] utilized a simple granular
column, impacted from above by a single particle, in order to
better understand the invariance of particle packing fraction
with depth in granular flows along inclined planes, which he
hypothesized could be considered as a series of individual
columns. Other authors have, in place of experimental systems
and discrete particle simulations, utilized one-dimensional
lattice models to explore the fundamental behaviors of various
important processes within granular systems. The work of Brey
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et al. [18], for example, uses such a model to simulate the
compaction process of a repeatedly tapped granular system.
The authors find that their simple one-dimensional model
successfully captures the well-known (inverse) logarithmic
relaxation of the system as observed in experiments. More
recently, Lasanta et al. [19] and Manacorda et al. [20] explored
a greatly simplified model in which not only is the system
fully one dimensional, but particles are also constrained to
fixed positions, able only to exchange momentum (which is
conserved) and energy (which is not), i.e., there exists no
mass transport within the system. Amazingly, in spite of the
simplicity of this system, it is nonetheless able to recreate key
features of a granular fluid, including the temporal evolution
of the system’s (granular) temperature, which forms the focus
of our current work.

In this paper, we construct an elementary model capable
of characterizing the energy decay within a granular column
subsequent to its exposure to a discrete excitation. We show
that, from this model, we may indeed gain valuable information
regarding the behaviors of more complex, larger systems.

Specifically, we show that—as the dimensionality of our
system is increased from one-dimensional, through quasi-two-
dimensional to fully three-dimensional—the energy decay
observed continues to adhere to certain seemingly universal
trends. As such, our results suggest that although theories
developed using such extremely simplified models may not
be directly applicable to more complex systems, they can
nonetheless elucidate important general relations applicable
also to these cases. Thus, through the addition of further
theoretical and/or empirical arguments, the fundamental mod-
els developed can be adapted and extended to accurately
characterize systems, which, while still simplified, more
closely represent those observed in the real world.

II. SIMULATIONS

A. Simulation details

The systems explored in this paper are simulated using
the MERCURYDPM discrete particle method software package
[21–24]. The simulations utilize a frictional spring-dashpot
model with a linear elastic and a linear dissipative contribution
to model the forces acting between particles. The normal (f n

ij )
and tangential (f t

ij ) forces acting between colliding particles
are determined, respectively, as [25,26]:

f n
ij = knδn

ij n̂ij − ζ nvn
ij (1)

and

f t
ij = −ktδt

ij − ζ tvt
ij . (2)

In the above, vn
ij and vt

ij are, respectively, the normal and
tangential components of the relative velocity between inter-
acting particles and δt

ij is the elastic tangential displacement
(described in detail in Ref. [27]). The relevant normal spring
constants, kn, and damping constants, ζ n, are calculated,
respectively, as:

kn = mij

[(
π

tc

)2

−
(

log ε

tc

)2
]

(3)
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FIG. 1. Schematic diagram of the simple columnar granular
system modeled in simulation. Here, g indicates the direction of
gravitational acceleration, d the diameter of the particles modeled, L

the separation of the walls constraining particles, and A the amplitude
of the half-sinusoid motion of the system’s base, which excites the
granular assembly.

and

ζ n = −2mij

(
log ε

tc

)
(4)

based on a user-defined restitution coefficient, ε, and contact
time, tc [28]. The contact time is, for the results shown here,
taken as tc = 1−5, a value previously shown to be suitable
for systems similar to our own [29,30]. Test simulations were
conducted using values of tc an order of magnitude lower and
higher than this value; the consistency in the observed results
supports the suitability of the value implemented. The variable
mij corresponds to the reduced mass of two colliding particles,
i and j , determined as mij = mimj

mi+mj
. The tangential spring and

damping constants are taken, respectively, as kt = 2
7kn and

ζ t = ζ n.
In order to satisfy the inequality f t

ij � μf n
ij (where μ

represents the relevant frictional coefficient) as required by the
Coulomb model of friction, a static yield criterion is applied
so as to truncate the magnitude of δt

ij at the limiting value.
All particles within the system are subject to a gravitational
acceleration, g, which acts downwards in the negative z

direction, as shown in Fig. 1, where the relevant coordinate
system is defined.

We integrate the resulting force relations [Eqs. (1), (2)] in
time using a velocity-Verlet time-stepping algorithm [31] with
a step size δt = tc

50 to model the evolution of the velocities and
positions of the particles within the system.

For the interested reader, further details regarding the im-
plementation of the discrete particle method in MERCURYDPM

may be found in the appendixes of our Ref. [29], while a more
detailed description of the method in general can be seen in
Ref. [32].
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B. Toy system

A granular system can be defined fundamentally as a
conglomeration of discrete, macroscopic particles [1]. We
attempt here to assemble the simplest possible representation
of a granular system, namely a single one-dimensional column
of particles (see Fig. 1).

The basic simulated system comprises a vertical column
of N ∈ [1,20] particles1 each of identical diameter, d = 5
mm, and density, ρ = 7850 kgm−3. The system is bounded
by four frictionless vertical sidewalls, each opposing pair
separated by a distance L = d, thus acting as a guide to the
column of particles and hence maintaining their columnar
structure during excitation. For simplicity and consistency,
in the results presented here, interactions between particles
are, unless otherwise stated, modeled as frictionless. It is
worth noting, however, that preliminary tests using values
of the interparticle friction coefficient μ in the range [0,1.0]
demonstrated no significant influence of this parameter on the
system’s behavior, due to the predominantly collisional nature
of the interactions between particles. Although the known
experimental value of the friction coefficient for steel-steel
contacts (μ ∼ 0.1 [33]) lies toward the lower limit of this
domain, it is nonetheless valuable to demonstrate that our
model can also accommodate particles possessing a range of
differing frictional properties. The vertical sidewalls of the
system are modeled as perfectly elastic, such that dissipation
within the system can be attributed solely to interparticle
collisions. The system is not subject to an upper constraint
in the vertical dimension, meaning that particle motion is not
limited in the positive z direction.

The parameters detailed above are chosen due to the fact
that prior investigations have shown these values to produce
quantitative agreement with data acquired from experimental
systems [11,34], ensuring the reliability and real-world rele-
vance of the results presented here.

Due to the inherently dissipative nature of granular materi-
als, they will remain perfectly motionless in a solidlike state
unless exposed to some form of external excitation. Continuing
in the vein of ensuring simplicity, we choose to excite our
system via a single discrete tap in the vertical direction, thus
avoiding any complex resonance effects or hysteretic behaviors
that may be present in systems exposed to continuous vibration
[34–36], or indeed repeated discrete excitations [37,38]. The
form of the tap applied is a half-sinusoid of period f and peak
amplitude A. For the results presented here, unless otherwise
stated, the tap frequency is held fixed at a value f = 30 Hz.
The amplitude of the tap is varied in the range A

d
∈ [0.2,10]

(where d is the particle diameter), thus allowing a range of
excitation strengths to be explored. Before the excitation is
applied, the system is initially allowed to fully relax under
gravity, ensuring a consistent and realistic starting point for
each system tested. A schematic representation of the system
may be seen in Fig. 1.

1Trial simulations were conducted under various conditions for
N up to 100, however, for the systems explored here, a maximum
number of particles N = 20 was sufficient to capture all information
of interest.

III. CONSTRUCTING A SIMPLE MODEL

The decay of energy within granular systems has long
been a subject of interest, due both to the scientific interest
of the topic as well as its relevance to various important
real-world applications [39–42]. However, few studies have
systematically studied the specific roles of crucial variables
such as the number of particles, N , within the system or
the elastic properties of particles on the rate of dissipation.
Moreover, we provide a cogent, predictive model capable of
relating this energy decay to N for systems. In this section, we
attempt to formulate a simple model capable of quantitatively
predicting the energy decay of a tapped granular column based
on the main variables, which dominate the behavior of such a
system: the number and material properties of the particles in
the system, and the strength with which it is driven. The decay
of energy within such a system is, as established by Rosato
et al. [11], expected to follow the general form:

τr = α

Nβ
+ γ. (5)

We consider first the limiting case N → ∞. In this
situation, Eq. (5) will reduce simply to:

τ∞
r = γ, (6)

where, for our toy system, we assume α to be a function of
particle elasticity and driving strength [α = α(ε,f,A)], the γ

term to depend also on the driving parameters [γ = γ (f,A)]
and the exponent β to be a constant. As in the original work,
τr is defined as the time required for the energy, E, possessed
by a granular column exposed to a single tap to decay to 10−5

of its original value.
In the limit N → ∞, our system of particles may be

expected to behave simply as a single, perfectly inelastic body
[43–45]. As such we may assume that, in this case, the bed
will simply be launched with an initial velocity equal to the
peak velocity of the oscillating base, vpeak = 2πf A and, upon
recolliding with the base, instantaneously dissipate all kinetic
energy. In other words, the constant γ may be expected to
simply equal the free-flight time of our infinitely large bed, i.e.,

γ = 4πf A

g
(7)

with g = 9.81 ms−2 the gravitational acceleration.
In order to determine the coefficient α, we consider next

the case N = 1, for which Eq. (5) can be rewritten as:

α = τ 1
r − γ. (8)

Unlike the complex multibody problems encountered for large
N , in the case N = 1, the decay time can—for a given ε—be
determined analytically.

As discussed above, upon its exposure to a tap, a single
particle can be assumed to travel with an initial velocity
v0 = vpeak = 2πf A. The particle will then experience a period
of free flight �t0 = 2

g
v0, before recolliding with the base. Upon

recollision, the particle can be assumed to lose a fraction of its
energy corresponding to its elastic coefficient, i.e., after this
interaction v1 = εv0. The particle will then proceed to enter
free flight again, this time for a duration �t1 = 2

g
v1 = 2

g
εv0.

This energy-dissipating process will repeat as the particle
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bounces on the plate, meaning that the duration of the free-
flight period following the ith collision can be determined as:

�ti = 2

g
εi−1v0, i = 0,1,2, . . . . (9)

The total time interval, Tn, between the initiation of a tap and
the nth collision with the base can therefore be given as:

Tn =
n∑
i

�ti . (10)

As noted above, in keeping with Ref. [11], the rest time
tr is defined as the duration, starting from the initiation of a
tap, required for a particle’s energy to decay to a value Er =
10−5E0, where E0 denotes the kinetic energy of the initial tap.
Thus, in simulations, the entire time interval was reported,
meaning that fits to the simulation data reported in [11]
included a constant term γ . As also mentioned previously, a
single bouncing particle can be expected to lose a fixed fraction
of its energy upon each collision. Specifically, a particle’s
rebound velocity after its kth collision can be determined as
|vk| = εkv0. Since kinetic energy is proportional to the square
of velocity, the rebound energy, Ek , of a particle immediately
after experiencing its kth collision can be written as:

Ek = E0ε
2k, k = 1,2,3, . . . . (11)

Under this assumption, the number, nr , of collisions
required for our system to come to rest can be determined as:

nr = ln(Er ) − ln(E0)

ln(ε)
, (12)

i.e., nr = 10−5

ln(ε) . As such, the rest time for a single particle can
be approximated as:

τ 1
r =

nr∑
i

�ti (13)

meaning that

α = τ 1
r =

nr∑
i

�ti − γ. (14)

Noting that the zeroth term of the series is canceled by the
coefficient γ , by combining Eqs. (9) and (14) and recalling
that v0 = 2πf A, we may express the coefficient α as:

α = 4πf A

g

nr∑
i

εi = 4πf A

g

ε(1 − εnr )

1 − ε
. (15)

Since one of the aims of this paper is to demonstrate the
potential value and effectiveness of even highly simple toy
models, we determine our final coefficient through the highly
simplified assumption that doubling the number of particles
within the system will on average, for a given system energy,
double the collision rate within the column and, hence, double
also the dissipation rate. As such, the constant β can be simply
taken as unity. This chosen value also agrees well with the
experimental findings of Falcon et al. [9], who demonstrated
empirically that a granular column impacting on a static wall

possessed an effective restitution coefficient whose magnitude
carried an approximate 1

N
dependence.

Interestingly, the same simple 1
N

scaling for the stopping
time, τr , assumed above can also be obtained via a more
rigorous theoretical approach. The approach we describe
utilizes an approximate integropartial differential continuum
model for particulate media known as the BSR model [46].
For tapped columns such as those explored here, this model
can be expressed in the following form [46,47]:

ut + uuz = −g + F (z,u)

:= −g +
∫

Br (z)
ρ(η,t)(z,η,u(z,t),u(η,t))dη

ρt + uρz = −ρuy. (16)

In the above, the former and latter equations represent,
respectively, the momentum and continuity equations. In these
equations, u := dz

dt
is the velocity in the vertical direction,

g the gravitational acceleration, ρ represents density (with
η the corresponding packing density), and F the material
interaction force per unit mass. In the present paper, F is
expressed in terms of an integral localized to a ball of radius r .
Finally,  represents the interaction force kernel determined
by the particular model chosen. By multiplying the momentum
equation given in (16) by the vertical velocity, u, we obtain:

d

dt

(
1

2
u2 + gz

)
= dEm

dt
= uF, (17)

which provides an expression for the rate of decrease of energy
of a given particle as it moves subsequent to an applied tap. As
the continuum interval can be considered as being partitioned
into N particle intervals, it follows that the total energy of the
system decays at a rate N times that of a single particle. In
other words, one can expect the decay time for a column of N

particles to be 1
N

times that of a single particle – in agreement
with our original, inductive argument.

Finally, before directly testing our model against simulation
data, it is worthwhile to first ensure that the predictions of
our model in the relevant limiting cases are not unphysical.
First, we find that the model is dimensionally correct, as
both α and β possess units of time, while 1

N
is, naturally,

dimensionless. Second, in the limit ε → 0 (i.e., the case of
completely inelastic particles), τr → γ . In other words, after a
period of free flight of duration 2πf A

g
the system will dissipate

all energy immediately upon recollision with the base, as
expected. Finally, in the limit ε → 1, where particles are
perfectly elastic, τr → ∞, i.e., the system will never decay,
simply maintaining a constant energy for all t .

IV. RESULTS

A. Testing the model

Having established that the behavior predicted by our model
remains physical in the extremal limits of N and ε, the next step
is to test its validity against our simulated data sets. Figure 2
shows the rest time, τr (as defined in Sec. III) as a function of
the number of particles within the one-dimensional simulated
system described in Sec. II B. Data is shown for a range of
particle elasticities ε ∈ [0.88,0.99] and for driving amplitudes
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(b)

FIG. 2. The rest time, τr (defined in Sec. III), of a one-dimensional
column of particles as a function of N , the number of particles by
which the column is formed. In (a), data is shown for various driving
amplitudes, A, at fixed particle elasticity ε = 0.98. In (b), data is
shown for fixed driving amplitude A/d = 2 for varying values of
ε. In both cases, all other system parameters are held constant. In
all cases, open symbols correspond to simulated data sets, while
the correspondingly-coloured dashed lines represent the appropriate
theoretical curves corresponding to the model outlined in Sec. III.

varied over two decades. It is first valuable to note that the
functional form exhibited by our simulations agrees well with
prior experimental observations and numerical results acquired
using differing force models [11], lending strong support to the
validity of our simulations.

In Fig. 3, we show the same data rescaled by the parameters
α and γ derived in Sec. III. The collapse of the data points
onto a single curve is, considering the highly simplistic nature
of the model, remarkable. Nonetheless, there exist some
notable deviations from the master curve, in particular for the
case of varying ε.

In Fig. 4, we replot our data once more, this time
additionally rescaled by an empirically derived exponent, β.
Specifically, our value of β is acquired through a nonlinear
least-squares analysis of all simulated data sets. Taking the

0 5 10 15 20
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0.8

1
 = 0.99
 = 0.985
 = 0.98
 = 0.97
 = 0.96
 = 0.95
 = 0.94
 = 0.92
 = 0.90
 = 0.88
 = 0.84
 = 0.80

(a)

(b)

FIG. 3. Simulated stopping time vs particle number data from
Fig. 2 rescaled as τ ′

r = (τr − γ )/α.

average of the resultant β values obtained from all data sets,
we achieve a value β = 0.84 ± 0.01, as opposed to the value
of unity originally implemented. While this scaling performs
slightly better than the previous at large N , the improvement
is not significant—as can be seen form a comparison of
Figs. 3 and 4, i.e., our theoretical β value of unity is more
than adequate to describe the form of the observed relations.
Even with the empirical scaling, however, there remains a
degree of inaccuracy for systems comprising only one or two
particles. This inaccuracy likely arises from the assumption
that, upon being subjected to a tap, a particle will achieve a
velocity equal to the peak velocity, vpeak = 2πf

g
, of the base.

In reality, the velocity at detaching of a given particle may
vary depending on the specific driving details and elastic
properties of the system in question [48–50]. Nonetheless,
significant deviation is observed only for very small (one- and
two-particle) systems, which are, to the community at large,
of comparatively little interest. In fact, it has previously been
shown in experiments and simulations [34] that, for larger
systems, the assumption vpeak = 2πf

g
does indeed hold to a

reasonable accuracy.

042902-5



WINDOWS-YULE, BLACKMORE, AND ROSATO PHYSICAL REVIEW E 96, 042902 (2017)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
 = 0.99
 = 0.985
 = 0.98
 = 0.97
 = 0.96
 = 0.95
 = 0.94
 = 0.92
 = 0.90
 = 0.88
 = 0.84
 = 0.80

(a)

(b)

FIG. 4. Simulated stopping time vs particle number data from

Fig. 2 rescaled as [(τr − γ )/α]
1
β .

So far, we have demonstrated that our very simple model
can successfully capture the behaviors of a one-dimensional
column of particles exposed to a single, discrete excita-
tion. This in itself is perhaps surprising, considering the
complex nonlinear nature of such systems. Nonetheless, in
the following section we ask a further question: can such
a model provide insight also into larger and increasingly
complex systems more typical of those encountered in the real
world?

B. Extending to higher dimensions

As we attempt to extend our one-dimensional model
to the three-dimensional case, we must consider the in-
crease in the degrees of translational freedom possessed
by the system and, with this, the inherent introduction
of additional energy-dissipating collisions in the horizontal
directions.

For simplicity, we consider our three-dimensional system
as a number Nc = (L1/d) × (L2/d) of individual, adjacent,
one-dimensional columns, each of height NL = N

Nc
, where L1

and L2 are, respectively, the width and depth of the cuboidal
containers explored and d is the particle diameter. Each of
these columns, in isolation, can be expected to obey Eq. (5) in
its original, one-dimensional form. For our three-dimensional
systems, therefore, we can very simply rewrite our original
equation as:

τr = α

N
β

L

+ γ. (18)

Since, in the limits NL = 1 and NL → ∞, the system’s
behavior can be expected to remain broadly similar to the
same limits in the one-dimensional case, the forms of the
coefficients α and γ should still hold in the three-dimensional
case. Moreover, maintaining our treatment of the system as a
series of columns we can still, as before, assume that doubling
the number of particles within the system will double the
mean collision rate and, hence, halve the decay time. In other
words, a simple 1

N
scaling should still represent a reasonable

first approximation. Of course, in reality, the system will
not exist as a set of distinct, noninteracting columns; rather,
as mentioned above, each notional column will interchange
particles with other columns and, more importantly, experience
also collisions from adjacent particles.

Assuming motion within the system in its excited state to
be random, we can make a further assumption that particles
will, on average, experience an equal number of collisions
in each of the three spatial dimensions now available to
them. The feasibility of this assumption is also borne out
by our simulations, which show the systems explored to
rapidly achieve an effectively isotropic temperature state.
In Fig. 5, we show an example of the decay of the ratio
of the horizontal and vertical components of the granular

FIG. 5. Image showing the typical variation in time of the
temperature anisotropy, Tz

Tx
, (red circles and dashed line) and the

total system temperature, Ttot., for a three-dimensional system of
particles exposed to a single tap. The data shown correspond to a
simulated system of particles with ε = 0.99 housed within a system
of base dimension L1/d × L2/d = 20 × 20 and exposed to a tap of
amplitude A/d = 4. Here, t = 0 represents the point at which the
initial excitation is applied to the system.
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temperature 2, T , with time for a three-dimensional system
exposed to a single discrete tap. Note that we choose here
to analyze the temperature, as opposed to energy anisotropy
as it is T , i.e., the fluctuant kinetic energy, which will act to
determine the interparticle collision rate in which our interest
lies. To put it differently, a system with an extremely high
kinetic energy may, if all particles exhibit strongly correlated
motion, experience very few particle collisions, whereas a
system with a high temperature will inherently exhibit a
proportionally high collision rate. In the example shown in
Fig. 5, the initial free flight of the system lasts approximately
2.5 seconds, during which time the bed may be considered
only as a solid body and energy dissipation largely neglected.
From Fig. 5, we see that subsequent to this initial free flight
the granular bed rapidly achieves temperature isotropy. Since,
as mentioned above, the collision rate of particles within
the system is largely determined by T , the assumption that
particles will receive equivalent numbers of collisions from
all directions seems reasonable. This rapid acquisition of a
near-isotropic state is unsurprising, as the system is only
instantaneously exposed to any form of directional excitation,
and it is well known that granular systems will, following such
a monodirectional excitation, rapidly redistribute the energy
acquired to the remaining spatial dimensions [51–53].

Based on the above assumption, we can therefore expect
that a given particle in a three-dimensional system will, per
unit time, be subject to a threefold increase in the number
of collisions experienced as compared to an equivalent, one-
dimensional system.

This simple inductive argument is once again supported by
a comparison with the more rigorous mathematics of the BSR
model. In three dimensions, the model can be written as:

ut + 〈u,∇〉u = −gεv + F

:= −gεv +
∫

Br (x)
ρ(z,t)�

× [x,z,u(x,t),u(z,t)]d z. (19)

Here, x, y represent position vectors and u := ẋ = dx
dt

denotes
a velocity vector. εv is the unit vertical coordinate vector and
〈·,·〉 is the standard inner product in the particular Euclidean
space. For further information regarding this equation and
its origins and its individual terms, the reader may refer to
our Refs. [46,47]. Taking the inner product of the momentum
equation given in (19) we obtain:

dEm

dt
= d

dt

(
1

2
|u|2 + gz

)
= 〈F,u〉. (20)

Following a similar set of arguments to those provided in our
discussion of the one-dimensional BSR model in Sec. III, the
formula given in Eq. (20) can be interpreted as the decrease
in energy per unit mass rate per particle. Hence, if we are
dealing with a k-dimensional system, the number of particles is

2Note that, throughout this paper, any reference to temperature
should be taken to refer not to the classical, thermodynamic
temperature, but to the granular temperature, which represents an
ensemble average of the fluctuations of particles’ kinetic energies
about their mean values [57–59].

O(Nk), meaning that the collision rate will scale accordingly, it
naturally follows that the energy loss within the system can be
expected to show a similar dependence on the dimensionality
of the system.

As is clear from the discourse presented in Sec. III, the
increased collision rate discussed above must be accounted
for in the dissipation term of our equation. Specifically,
we implement the increased energy loss due to the higher
dimensionality of the system by replacing each ε term in our
original formulation with ε3. Thus, our final modified equation
can be written, in full, as:

τr = 4πf A

g

εD(1 − εDnr )

1 − εD
L1L2

d2N
+ 2πf A

g
, (21)

whereD represents the dimensionality of the system. Note that,
for the case of a single column (L1L2

d
= 1,D = 1), Eq. (21)

reduces to its one-dimensional form, as one would expect.
In order to test the validity of our assumptions, we

extend also the simulations described in Sec. II B to the
three-dimensional case. The three-dimensional systems re-
main largely identical to their one-dimensional counterparts
described previously. The major difference is that now the
horizontal spatial dimensions, L1 and L2, may now be altered
and, as such, the particles within the system are no longer
constrained (as in the one-dimensional columnar case) to a
fixed point in the horizontal directions but may travel freely
throughout the three-dimensional system. To further increase
the realism of the system, and its relevance to real-world
granular beds where ordered packings are rarely achievable
in practice [54–56], the initial packing of the particles is
randomized. Each three-dimensional stopping time presented
is averaged over five repeated data sets, each with a differing
random initial packing. It is interesting, and perhaps valuable,
to note that the initial packing of the system seemingly has
only a highly limited influence on the decay time, as there
typically exists a less than 2% variation across the τr values
acquired from repeated data sets with unequal initial packings.

Figure 6 shows the rescaled stopping time τr−γ

α
plotted

as a function of the rescaled particle number, NL = Nd2

L1L2
for a number of system sizes (L1,2/d ∈ [10,80]) and particle
numbers N ∈ [100,96000]. The clear collapse of the curves
for all system sizes shows strong support for the validity of
our model, and its apparent generality to three-dimensional
systems of significantly varying sizes.

It is finally worth noting that our results can also provide
valuable insight into a question that is very often posed
in the granular field: When can a system be considered
truly three-dimensional? While Fig. 6 unambiguously shows
systems of L/d � 10 [where L = L1 = L2)] to follow a clear,
single trend, systems of smaller spatial extent were found
to deviate from this master curve. As such, our results—
specifically the apparent uniformity of the energy-dissipating
behaviors of systems with L/d � 10—imply that this system
size represents the lower bound above which a system such
as ours can be safely assumed to be fully three dimensional.
Considering the significant number of studies conducted using
similar systems, this is a potentially valuable finding for future
research.
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FIG. 6. Simulation data showing the rescaled stopping time, (τr −
γ )/α, as a function of the rescaled particle number, NL = Nd2/L1L2

for a series of three-dimensional systems with elasticity ε = 0.98
driven at an amplitude A/d = 4 possessing differing spatial extents.

C. Toward more complex systems

The theoretical model formulated in this work so far
captures the influence of the quantities most fundamental
to the behaviors of a strongly excited (i.e., collisionally
dominated) tapped granular system—the strength of the
excitations to which the system is exposed, the size and
dimensionality of the system, and the characteristic elastic
properties of the particles involved.

In the final part of this section, we demonstrate how the
framework provided by this model may, through the introduc-
tion of additional empirical or theoretical arguments, be further
extended to successfully characterize the behaviors of more
complex systems. For the purpose of this demonstration, we
choose to explore the influence of the frictional coefficient, μ,
and the wall restitution, εw, on the energy decay of our system.

1. Influence of friction

While in the one-dimensional case, as discussed in Sec. II B,
collisions between particles involve almost exclusively normal
contact, with little or no relative tangential motion, the same
cannot be safely assumed for higher-D systems.

Figure 7 illustrates the variation in the observed decay
behavior of a three-dimensional tapped bed as the frictional
coefficient, μ, is varied by two orders of magnitude. Since
our interest in this current work lies in the energy decay of
the studied systems, interparticle friction can be considered
simply as a source of energy dissipation, akin to the collisional
dissipation related to particle restitution. As such, in order to
include the effects of friction in our model we can replace the
ε term of Eq. (21) with an effective dissipation coefficient,
ε̃ = ε · f (μ). Since the basic form of the decay is known
from our prior derivations, the determination of f (μ) simply
requires a least-squares analysis of a range of curves such as
those shown in Fig. 7 possessing differing μ values.

From our analysis, we find that the function f (μ) can be
well described by the form f (μ) = 1−μk1 k2

1+μk1 k2
where the constants

2 4 6 8 10
0

5

10

15

20

25

30

35

40
 = 0
 = 0.01
 = 0.1
 = 1

FIG. 7. Simulated (symbols) and theoretical (dashed lines) stop-
ping times for a three-dimensional system of extent 100 mm ×
100 mm with ε = 0.99 and A/d = 4. Systems are identical other
than for their frictional coefficients, which are varied over a range of
more than two decades.

k1 and k2 are equal, respectively, to approximately 1
3 and 1

20 .
Since our objective at present is simply to demonstrate the
ability to empirically extend our model, we do not hypothesize
as to the significance of this functional form or the specific
coefficients arising from our calculations. The collapse of the
curves from Fig. 7 when rescaled according to our empirical
update to the model can be seen in Fig. 8.

2. Influence of sidewall elasticity

Until now, we have considered only the case of a system
possessing perfectly elastic boundaries. In this section, we aim
to briefly address two important factors: first, we show that the
general form of our model can be expected to hold even when
this constraint is relaxed. Second, we demonstrate that, in the

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1  = 0
 = 0.01
 = 0.1
 = 1

FIG. 8. Simulation data from Fig. 7 rescaled by the empirical
relation outlined in the main text.
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limit of large system size, our model can in fact be expected
to hold even without consideration of sidewall dissipation.

Naturally, the degree of influence on the system’s behavior
stemming from sidewall dissipation will depend sensitively
on a variety of parameters, making its full characterisation a
matter for a separate study. For the purposes of the current
work, our interest lies simply in ensuring that the general form
of our theoretical model holds also for the case of inelastic
boundaries.

We introduce the sidewall inelasticity to our model in
a similar manner to the addition of frictional effects in
the previous section, i.e., through an effective dissipation
coefficient, ε̃. For the case εw 	= εp, the degree of dissipation
within the system will naturally depend on the relative number
of particle-wall and particle interactions within the system. As
such, we assume an effective dissipation of the form:

ε̃ = Zppεpp + Zpwεpw

Zpp + Zpw

=
εpp + Zpw

Zpp
εpw

1 + Zpw

Zpp

, (22)

where Zpp and Zpw are, respectively, the mean particle-particle
and particle-wall collision rates.

Under the assumption that, during its excited phase, our
system behaves as an ideal gas, if we consider a vertical section
of our system, dz, and a duration of time, dt , both of which are
adequately small that the current, local number density, n, may
be assumed constant, we may estimate the particle-particle and
particle-wall collision rates as, respectively:

Zpp =
(√

2

2
πd2〈v〉n2

)
L2dz (23)

and

Zpw = 1
4 〈v〉n4Ldz, (24)

assuming in the above, for simplicity, a square system in which
L1 = L2 = L, as used throughout this work.

From the above, for our given volume of the system, the
ratio of particle-wall to particle-particle collision rates can be
determined as:

Zpw

Zpp

= 2√
2πd2Ln

= d

3
√

2Lη
, (25)

where η is the system’s packing density. For the square-based,
monodisperse system considered, both L and d can be assumed
constant with respect to both varying height and time. As
such, for the system as a whole, the ratio of particle-wall to
particle-particle interaction rates within the system can, from
the above, be approximated as:

Zpw

Zpp

= d

3
√

2L〈η〉 . (26)

Here. 〈η〉 represents the an appropriate average over space
and time of the system’s packing density. As 〈η〉 represents a
complex function of A,f,εpp, and indeed εpw, for our current
purposes, i.e., demonstrating that our model is consistent with
the presence of dissipative sidewalls, it is sufficient to treat this
quantity simply as a fitting parameter. In order to demonstrate
the continued applicability of our model, we choose a range of
parameter space for which L remains comparatively small (i.e.,

FIG. 9. Phase diagram showing the variation of the stopping time
τr with the sidewall restitution coefficient, εpw , and the system’s
lateral extent, L. Data is shown for both (a) numerical simulations
and (b) theoretical predictions. In all cases, the driving amplitude
is held constant at 20 mm and the particle elasticity maintained at
εpp = 0.99.

wall effects can be expected to remain significant) and consider
relatively small perturbations in εw at fixed f,A,N , such that
〈η〉 can be assumed to remain approximately constant. The
relatively high value of A and small NL implemented are
chosen so as to create a relatively dilute system, thereby further
maximizing the influence of wall inelasticity in order to ensure
a rigorous test.

Figure 9 shows the variation of the decay time τr in the two-
dimensional εw-L parameter space, demonstrating the dual
influences of sidewall inelasticity and system size discussed
above. The similarity in the observed trends for our numerical
simulations [Fig. 9(a)] and theoretical predictions [Fig. 9(b)]
provides a good indication that the assumed form provides a
reasonable description of the true physics.

This proposed form carries the notable consequence that as
L
d

→ ∞, Zpw

Zpp
→ 0, i.e., ε̃ → ε. In other words, for large (e.g.,

industrial-scale) systems where the system size greatly exceeds
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the particle size, our equation returns to its original form in
which elastic boundaries are assumed, further emphasising the
value of this simple model.

In addition to the parameters μ and ε, specifically discussed
above, a similar approach may be taken to account for the
effects of a variety of other quantities, which may be of
academic, or indeed industrial, interest. The considerable
scope for the extension of the model to a diverse range of
systems beyond the relatively simple cases explored here
provides the potential for significant future research.

V. CONCLUSIONS

In this work, we have presented a simple analytical model to
describe the dependence of the energy decay within a granular
system driven by discrete excitations on key parameters such
as particle number, particle inelasticity, particle friction, and
system excitation strength. Using discrete particle method
simulations, we have validated the model for a variety of
system parameters. In doing so, we have demonstrated that
even simple models developed using extremely simplified
toy systems can, if correctly adapted and extended, provide
valuable insight into larger, more complex cases that, while
remaining somewhat idealized, more closely approximate
real-world systems. This may prove particularly valuable in
predicting and characterizing the behaviors of systems where
the numbers of particles or the physical extent of the system
may render full parameter studies via simulation or experiment
unfeasible. Since, due to the limitations of contemporary com-
putational hardware and experimental techniques, a majority

of industrial particle-handling systems currently fall within this
category [8], this approach may indeed prove highly useful.

In addition, the work performed has provided insight into
the situations in which systems such as those studied here
may—and, importantly, may not—be considered fully three
dimensional. This is a potentially significant outcome, pro-
viding an approximate benchmark against which the validity
of the assumption of three dimensionality may be tested.
Our results may thus prove useful to the design of future
studies, where experimental and simulational geometries may
be deliberately designed so as to ensure generality to larger
systems. Moreover, these findings may also give cause to
other researchers to reevaluate their interpretations of existing
studies conducted in systems where the threshold for full three
dimensionality is not definitively exceeded.

Another notable consequence of the theoretical form
proposed is that for systems whose size greatly exceeds that of
its constituent particles (i.e., L

d
� 1), the elastic properties of

the walls bounding the systems are seemingly inconsequential.
This is a potentially highly valuable result for those wishing
to understand, model, and predict the behaviors of large
experiments or industrial-scale systems.

Finally, our findings provide considerable scope for future
work. Using the examples of interparticle friction and sidewall
restitution, we have demonstrated manners through which
the effects of other system parameters may be additionally
incorporated into the model presented. Further, by changing
certain boundary conditions of the model presented, it may
be possible to successfully extend its application to other
systems; for instance systems in closed containers, systems in
the absence of gravity or vibrated and vibrofluidized systems.
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