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Force percolation transition of jammed granular systems
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The mechanical and transport properties of jammed materials originate from an underlying percolating network
of contact forces between the grains. Using extensive simulations we investigate the force-percolation transition
of this network, where two particles are considered as linked if their interparticle force overcomes a threshold.
We show that this transition belongs to the random percolation universality class, thus ruling out the existence
of long-range correlations between the forces. Through a combined size and pressure scaling for the percolative
quantities, we show that the continuous force percolation transition evolves into the discontinuous jamming
transition in the zero pressure limit, as the size of the critical region scales with the pressure.
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I. INTRODUCTION

Amorphous particulate systems such as foams and granular
materials jam and acquire mechanical rigidity when subjected
to an external pressure [1–5]. In the jammed state, a network of
interparticle forces determines resistance to shear [6,7], sound
and heat transport [8–11], as well as electrical conductivity
[12]. The distribution of the magnitude of the interparticle
forces has been the subject of numerous studies [13–23],
and it is now ascertained that this decays exponentially at
large forces, while exhibiting a pressure dependent power
law behavior at small forces. Large forces organize along
chains [24–29], which suggests the existence of a large scale
structure one might identify through statistical physics or
network–based tools [30–37]. In this line of research, the main
open question concerns the spatial organization of the force
network, and the possible existence of long range correlations
between the forces. These issues are conveniently investigated
studying a force based bond percolation transition in which two
particles are assumed to belong to a cluster if the magnitude
of their interparticle force is larger than a threshold ft (see
Fig. 1). In the jammed phase, when ft = 0 all contacting
particles belong to the same cluster, while conversely in
the ft → ∞ limit there are no clusters. Thus, a percolation
transition occurs when the threshold overcomes a critical value
fc. Ostojic et al. [38] numerically investigated this force
percolation transition in frictionless and frictional systems
of disks packings prepared at constant pressure, finding a
universal critical behavior and exponents not compatible with
those of the random universality class. A recent experimental
and numerical investigation of the force percolation transition
of jammed disks packings at constant density [39] found
different critical exponents, also not compatible with the
random universality class. These results point towards the
existence of long-range correlations between the forces.
However, direct numerical and experimental investigations of
the spatial correlation between the forces [15,40] failed to
observe long correlation lengths. Accordingly, it is currently
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unclear whether the correlations between the forces of jammed
packings are truly long ranged. The answer to this question
might depend on the pressure/density of the system, that
controls the percolation threshold fc, as this must vanish at the
jamming transition, as illustrated in Fig. 1, where all forces
vanish. Thus, it is important to understand how the continuous
force percolation transition in the zero pressure limit relates to
the discontinuous jamming transition.

In this paper, we investigate force correlations in jammed
granular packings via the numerical study of the force
percolation transition of Harmonic and Hertzian particles, in
both two and three spatial dimensions. First, we show that the
force percolation transition does actually belong to the random
universality class, regardless of the distance from the jamming
threshold, thus ruling out the presence of long-range force
correlations. Then we clarify how the features of the force
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FIG. 1. A percolative analysis of jammed configurations is
introduced by considering particles as connected if interacting with a
force whose magnitude is greater than a threshold ft . This schematic
phase diagram illustrates the existence of a continuous percolation
line that ends at the jamming volume fraction �J , where the
percolation transition becomes discontinuous. The panels illustrate
the percolative analysis of a N = 104 particle system across the
transition. Lines connect particles belonging to the same cluster. For
clarity, not all of clusters are shown.
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percolation transition depend on pressure, thus rationalizing
how the continuous force percolation transition evolves into
the discontinuous jamming transition in the zero pressure limit.

II. MODEL AND SIMULATION DETAILS

We numerically [41] investigate systems of particles in-
teracting via purely repulsive potential, v(r) = 1

α
ε( σ−r

σ1
)α for

r < σ , and v(r) = 0 for r � σ , where ε is the characteristic
energy scale, σ is the average diameter of the interacting
particles and r the distance between their centers. We study
the system for two potentials, α = 2 (harmonic) and α = 2.5
(Hertzian), focusing on a 50:50 binary mixture of particles with
diameters σ1 = 1 and σ2 = σ1/1.4. We choose σ1 and ε as our
units of length and energy. We have considered various systems
with number of particles from, N = 103 to N = 8 × 104, at
various values of the pressure p, from p = 5 × 10−6 to p =
10−2. To prepare the system at the desired value of pressure,
we first randomly distribute particles in a square or cubic box,
with periodic boundary conditions. The size of the box is then
repeatedly changed via a divide and conquer algorithm, where
we minimize the elastic energy of the system using conjugate
gradient algorithm after every change in simulation box size.
This iterative procedure continues until the pressure equals
the desired value with a tolerance of |dp|/p < 10−6. For each
dimensionality d, potential and pressure value, our results are
averaged over 500 independent jammed configurations.

III. FORCE PERCOLATION

The force percolation transition is a bond percolation
transition occurring on a disordered lattice whose nodes
correspond to the particles, and whose bonds correspond to
the interparticle forces. The percolation is induced by the
removal of all bonds associated to interparticle forces f lower
than the threshold force ft , as the threshold ft is varied. At
each value of the pressure (p > 0) a percolation transition
occurs as ft varies, as schematically illustrated in Fig. 1. The
percolative properties of this transition reflect those of the
forces because the bonds that are retained are not randomly
chosen, but correspond to interparticle forces greater than ft .

We have determined the critical exponents governing the
critical behavior of the strength of the percolating cluster P∞,
of the mean cluster size S, and of the percolation correlation
length ξ , P∞ ∼ |f − fc|β , S ∼ |f − fc|−γ , ξ ∼ |f − fc|−ν ,
performing a scaling analysis. Indeed, for finite systems the
above critical behaviors are replaced by crossovers satisfying
the scaling relations

P∞(N,f ) = N− β

dν m1
[
N

1
dν (f − fc)

]
,

S(N,f ) = N
γ

dν m2
[
N

1
dν (f − fc)

]
, (1)

with m1 and m2 universal scaling functions. If the considered
system has a finite correlation length, then these scaling
relations are valid as long as this length is smaller than the
system size, L ∝ N1/d . To improve numerical accuracy we
have performed a size scaling analysis of the fraction of
particles in largest cluster C1, that scales as P∞ but is of easier
investigation as it does not depend on the percolation threshold.
The mean cluster size is defined as S = ∑

s2n(s)/
∑

sn(s),

 0

 0.5

 1

 0.005  0.006  0.007

P
er

co
la

ti
on

 p
ro

ba
bi

li
ty

ft

(a)

N = 103

N = 104

f(x)

103

104

101 102 103

Δ- (L
)

L

(b)

L1/ν

101 102 103

C
1(

f c
)

L

(c)

L-β/ν

0.25

0.30

0.40

101

102

103

101 102 103

S
(f c

)

L

(d)

Lγ/ν

FIG. 2. Critical exponents of the force percolation transition: (a)
Percolation probability as a function of force threshold ft , fitted to
sigmoidal function f (x) (see text), (b) Inverse percolation transition
width 
−1(L) scales as L1/ν , [(c) and (d)] largest cluster size C1

and mean cluster size S at critical transition fc scale as L−β/ν and
Lγ/ν , respectively. Performing linear fits for the largest system sizes
(L > 100), we estimate ν = 1.32(2), β = 0.147(7), and γ = 2.32(6).
Data are for p = 5 × 10−3.

where s and n(s) refer to the size and number of clusters, and
the summation excludes the percolating cluster. The size s of
a cluster equals its number of bonds.

IV. SIMULATION RESULTS

In this section, we present the results obtained by the
numerical simulation of our model. Figure 2 illustrates the
determination of the critical exponents of the force percolation
transition for a two dimensional system of harmonic disks at
pressure p = 5 × 10−3, we have conducted along the lines of
Ref. [42]. This investigation strongly suggests the percolation
transition to belong to the random percolation universality
class. We first calculate the percolation probability, defined as
the fraction of realizations with a system spanning cluster,
as a function of threshold ft for various system sizes L,
which is a sigmoidal curve as shown in Fig. 2(a). This
curve is then fitted to f (x) = [1 − erf ([ft − f e

c (L)]/
L)]/2,
to obtain the effective percolation threshold f e

c (L) and the
width of the percolation transition 
L. From the expected
size dependence of 
L, 
L ∼ L−1/ν , we estimate the critical
exponent ν; result of Fig. 2(b) suggests ν = 1.32(2). Given
the value of ν, we estimate the critical threshold considering
that f e

c (L) − fc ∼ L−1/ν , finding fc = 0.00549(5). Using
fc, the other two exponents are obtained using the scaling
relations C1(fc) ∼ L−β/ν and S(fc) ∼ Lγ/ν , yielding β/ν =
0.112(5) and γ /ν = 1.76(4), as shown in Figs. 2(c) and 2(d)
respectively. Using the optimal value of ν = 1.32, this gives
β = 0.147(7) and γ = 2.32(6). We notice that these exponent
values have been obtained through linear fitting procedures of
the data of Fig. 2 corresponding to large system sizes, L > 100,
as only for large systems the results becomes L independent.
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FIG. 3. Random percolation universality class of force perco-
lation transition. Panels (a)–(d) show the finite-size scaling of the
fraction of particles in the largest cluster C1 and mean cluster size
S using Eq. (1), and exponents determined in Fig. 2. Panels (e) and
(f) show the normalized cluster size distribution n(s), and the pair
connected correlation function gpc(r), respectively, at the percolation
threshold for the N = 4 × 104 system. Exponents are determined to
be τ = 2.07(4), and η = 0.208(6). Data are for p = 5 × 10−3.

This indicates, as discussed later on, the presence of a finite
correlation length in our system. As a further validation of
these findings, we show in Figs. 3(a)–3(d) that the data for C1

and S collapse very well when scaled according to Eq. (1), for
large system sizes. Additionally, Figs. 3(e) and 3(f) show the
normalized cluster size distribution n(s) and the radial distri-
bution function of particles belonging to the percolating cluster
gpc(r) respectively, at the percolation threshold for the N =
4 × 104 system. The distribution n(s) fits well to the power-law
decay n(s) ∼ s−τ , with τ = 2.07(4). Similarly, for large r

the pair-connected correlation function is well described by
a power-law decay gpc(r) ∼ r−d+2−η, with η = 0.208(6). We
note that the exponent values we obtain match very well with
the two-dimensional random percolation universality class
exponents, ν = 4/3, β = 5/36, γ = 43/18, τ = 187/91, and
η = 5/24 [43]. We have repeated this analysis for all values
of the pressure we have considered, always finding values
of the critical exponents compatible with those of the random
universality class. In addition, analogous findings occur for the
Hertzian potential, and in three dimensions, as we illustrate
later in this paper. Summarizing, these results clarify that
the force percolation transition is a continuous percolation

transition in the random percolation universality class. As a
consequence, the correlations between the interparticle forces
of jammed packings are finite ranged.

It is worth noticing that these results contrast with those
of Refs. [38,39], which suggested long-range correlations
between the interparticle forces. First, Ref. [38] reported two
exponents, φ = γ

dν
= 0.89 ± 0.01, and ν = 1.6 ± 0.1. Of the

two exponents, φ is compatible with the random percolation
expectation, 43/48 = 0.895, while ν, which is estimated with
lesser accuracy, is not compatible with the random value,
ν = 4/3. We speculate that the difference is due to numerical
errors arising from using small system sizes, as pointed in
Ref. [39]. We notice that our exponent values, which are
consistent with those of the random percolation transition
in two dimensions, have been obtained through a linear fit
procedure of the data shown in Fig. 2 corresponding to
system sizes larger than L > 100, and that different values are
obtained if all system sizes are considered. Second, Ref. [39]
reported φ = 0.77–0.85, and ν = 1.04–1.58 depending on the
packing fraction and polydispersity. Our speculation is that
the differences from the random percolation values are due
to using volume fraction as control parameter. For a fixed
value of the volume fraction, in finite-size systems there are
large fluctuations in the pressure values, and hence in the
values of the critical threshold. When averaged over systems
with different percolation thresholds, percolative quantities
are expected to exhibit an effective critical-like behavior, the
details depending on the distribution of the critical thresholds.
Also, it is possible that the differences are due to different
protocols used to prepare the jammed packings.

We now consider how the force percolation transition, that
occurs at fixed pressure as the threshold force ft varies, is
related to the geometrically discontinuous jamming transition
that occurs at ft = 0, as the pressure/density varies. First,
we note that the critical threshold fc decreases with the
pressure as fc ∼ pq , with q ≈ 0.98, as illustrated in Fig. 4.
This is the same scaling we observe for the average force,
that is commonly used [44] to decompose the force network
in subnetworks with different mechanical properties. Next, in
Fig. 5, we show the pressure dependence of cluster statistics.
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FIG. 4. Pressure dependence of the force percolation threshold,
fc, and of the average force, 〈f 〉. These two forces are proportional,
and scale as fc = αcp

q and as 〈f 〉 = αpq , with q ≈ 0.98(1), αc =
1.00(4), and α = 0.67(3).

042901-3



PATHAK, ESPOSITO, CONIGLIO, AND CIAMARRA PHYSICAL REVIEW E 96, 042901 (2017)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

C
1

f-fc

(a)

p=2.5x10-3

p=5.0x10-4

p=5.0x10-5

p=5.0x10-6

103

104

105

106

10-6 10-4 10-2

-d
C

1/
df

 | f
=

f c

p

(b)

p-q

0.32

0.34

0.36

0.38

0.4

10-6 10-5 10-4 10-3 10-2

C
1N

β/
d

ν

p

(c)

N=1x104

N=2x104

N=4x104

0

0.2

0.4

0.6

0.8

-0.2 -0.1 0 0.1 0.2

C
1

(f-fc)/p
q

(d)

p=2.5x10-3

p=5.0x10-4

p=5.0x10-5

p=5.0x10-6

FIG. 5. Dependence of the size of the largest cluster, C1, on f −
fc, for different values of pressure (a), and pressure dependence of its
derivative at the inflection point (b). The derivative diverges as p−q

in the p → 0 limit. Panel (c) clarifies that C1 scales as N−β/dν , for
all values of the pressure, ruling out the presence of a discontinuous
transition in the thermodynamic limit, for p → 0. Panel (d) shows
that the C1 data of (a) collapse when plotted versus (f − fc)/pq , thus
clarifying that the size of the critical region scales as pq . In panels
(a), (b), and (d), N = 2 × 104.

We observe in Fig. 5(a) that the size of the largest cluster
as function of the distance from the percolation threshold
f − fc is pressure dependent, and becomes more abrupt when
approaching the zero pressure limit. This tendency is quantified
by investigating the derivative of C1 at the inflection point,
dC1/df |f =fc

. Figure 5(b) shows that this derivative increases
in modulus as the pressure decreases, diverging as a power
law ∼p−k , with k 	 q, in the zero pressure limit. This might
suggest that the transition becomes discontinuous in the zero
pressure limit. However, we show in Fig. 5(c) that C1 at the
inflection point has weak dependence on pressure, and that
it scales as N− β

dν in the zero pressure limit p → 0. Thus,
C1 does not exhibit a jump of finite size in the p → 0 limit.
These results suggest that in the zero pressure limit the force
percolation transition remains a continuous transition, the only
effect of the pressure being that of controlling the size of
the critical region, which is expected to scale as pq . We
confirm this speculation in Fig. 5(d), where we illustrate that
the data of panel a collapse when plotted as a function of
(f − fc)/pq . Overall, these results suggest a combined size
and pressure scaling for the strength of the percolating cluster,
and, similarly, for the mean cluster size,

P∞(N,p,f ) = N− β

dν m1
[
N

1
dν p−q(f − fc)

]
,

S(N,p,f ) = N
γ

dν m2
[
N

1
dν p−q(f − fc)

]
, (2)

where the exponent q is that controlling the dependence
of the critical threshold on the pressure (see Fig. 4). The
validity of the proposed scaling relations is confirmed by
the good data collapse obtained for various pressure and
system size, as shown in Fig. 6. Equation (2), and the scaling
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FIG. 6. Combined pressure and size scaling of the largest cluster
size C1 (left panel) and of the mean cluster size S (right panel).
The presented data are for three system size N = 4 × 103, 1 ×
104, and 2 × 104, each corresponding to three pressure values p =
5 × 10−4, 5 × 10−5, and 5 × 10−6. We have fix q 	 0.98.

of the percolation threshold on the pressure, Fig. 4, clarify
that the correlation percolation length, which measures the
typical size of the cluster of forces larger than f , scales as
ξ = l[p−q(f − fc)]−ν = l(αf/〈f 〉 − αc)−ν , with l pressure
independent length scale. Since in the p → 0 limit the force
percolation transition does not become discontinuous, we
understand that the order of the limits p → 0 and f → 0
matters. If the p → 0 limit is carried out first, then the
continuous force percolation transition is observed at f = 0.
Conversely, if the f → 0 limit is carried out first, then one
observes the jamming transition at f = 0.

While these results show that there are no long-range force
correlations, forces have short range correlations as revealed by
the common observation of force chains. The presence of this
length explains why we found critical exponents compatible
with those of the random universality class only if we restrict
our analysis to large systems, as in Fig. 2. Alternatively,
short-range correlations can be revealed comparing the actual
percolation threshold fc(p) to that obtained after removing all
correlations, f R

c (p). The relation between f R
c (p) and fc(p)

depends on the short-range correlation length, as well as on
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FIG. 7. Same as Fig. 3, but for Hertzian potential (α = 2.5). The
value of the pressure is p = 0.005.
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FIG. 8. Same as Fig. 3, for a system of Harmonic spheres in three
dimensions. The value of the pressure is p = 0.005.

anisotropy of the correlations [45–48]. We have performed
this investigation removing the force correlations by randomly
swapping the forces associated to the different contacts,
treating them as labels, and have found f R

c (p) < fc(p).
Importantly, we have found f R

c (p)/fc(p) 	 0.6 regardless
of the pressure, in the p → 0 limit, consistently with our
proposed scenario according to which the pressure only fixes
the size of the critical region.

Effect of potential and dimensionality. The finite-size scal-
ing results presented in Fig. 3 for two-dimensional harmonic
system hold equally well when using Hertzian potential (Fig. 7)
and for three dimensions (Fig. 8). For the three-dimensional
system in Fig. 8, we use the d = 3 random percolation
exponents, ν = 0.87619, β = 0.4181, and γ = 1.793 [43].
We observe a good collapse for C1, showing that the critical
exponents ν and β match with the random percolation values.
The scaling of the mean cluster size reveals that a good data
collapse is only obtained for the two largest systems we
have considered. This implies that for smaller N the linear
size of the system, that scales as N1/3, is comparable to
the force correlation length. Overall, we conclude that the
force percolation transition belongs to the random percolation
universality class, independent of the interaction potential and
dimensionality.

V. CONCLUSIONS

Our investigation strongly suggests that the force perco-
lation transition of jammed granular packings belongs to the
random percolation universality class, regardless of the spatial
dimension and of the interaction potential. The distance from

the jamming threshold, that is fixed by the pressure of the
system, controls the width of the critical region, that vanishes
in the jamming zero-pressure limit. The main consequence
of our findings is the absence of long-ranged correlations
between the magnitudes of the forces in jammed granular
packings. This result contrasts with earlier studies [38,39] of
the force percolation transition, but agrees with numerical
and experimental investigations of the spatial correlation
between the forces [15,40]. It would be certainly of interest to
perform experiments on jammed particulate systems, such as
granular materials or emulsions, to experimentally settle this
issue. In this respect, we stress that the random percolation
scenario should be observed in experiments carried out at fixed
pressure, rather than at constant volume fraction, as jammed
systems at constant volume fraction exhibit very large pressure
fluctuations. If the volume is fixed, the random percolation
scenario is expected to emerge only for very large system
sizes. It could also be possible that the observed correlations
depend on the specific protocol used to prepare the jammed
packings, that is known to affect the jamming density [49,50].
This is certainly an interesting future avenue of research.

Our work is also expected to help understanding the relation
between the macroscopic properties of jammed systems and
their structure. Indeed, forces in granular packings influence
the nonaffine particle displacement resulting from externally
imposed external deformations, which greatly affects the
elastic response. In turn, this might allow connecting the
percolation correlation length to other lengths that are known to
characterize the elastic response of jammed systems [51–53].
In this line of research, we remark that recent results [54] have
shown the existence of a point-to-set force correlation length
that diverges at jamming, whose connection with the length
scales characterizing the elastic response is also unclear.

As a final remark we notice that while in soft-sphere
systems the jamming transition is investigated from above,
φ > φJ , in hard sphere systems one investigates it from
below, φ < φJ , jamming occurring at the volume fraction at
which the pressure diverges when compressing the system.
Below jamming, interparticle forces can be defined from the
collisional momentum exchange [55]. While the features of
the probability distribution of these forces has attracted much
interest [56–60], little is known about their spatial correlation,
which would be interesting to investigate using the force
percolation approach.
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