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Emergence of biaxial nematic phases in solutions of semiflexible dimers
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We investigate the isotropic, uniaxial nematic and biaxial nematic phases, and the transitions between them,
for a model lyotropic mixture of flexible molecules consisting of two rigid rods connected by a spacer with
variable bending stiffness. We apply density-functional theory within the Onsager approximation to describe
strictly excluded-volume interactions in this athermal model and to self-consistently find the orientational order
parameters dictated by its complex symmetry, as functions of the density. Earlier work on lyotropic ordering
of rigid bent-rod molecules is reproduced and extended to show explicitly the continuous phase transition at
the Landau point, at a critical bend angle of 36◦. For flexible dimers with no intrinsic biaxiality, we find that a
biaxial nematic phase can nevertheless form at a sufficiently high density and low bending stiffness. For bending
stiffness κ > 0.86kBT , this biaxial phase manifests as dimer bending fluctuations occurring preferentially in one
plane. When the dimers are more flexible, κ < 0.86kBT , the modal shape of the fluctuating dimer is a V with an
acute opening angle, and one of the biaxial order parameters changes sign, indicating a rotation of the directors.
These two regions are separated by a narrow strip of uniaxial nematic in the phase diagram, which we generate
in terms of the spacer stiffness and particle density.
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I. INTRODUCTION

The discovery in 1996 that achiral molecules of bent-rod
shape can exhibit ferroelectric smectic behavior [1] started
a decades-long fascination with these molecules, which are
now known variably as bent core, ‘bananas,’ boomerangs,
bow shaped, and V shaped [2]. Their positionally disordered
liquid crystal (LC) phases were thoroughly and systematically
cataloged by Lubensky and Radzihovsky [3]. Interestingly,
these include the elusive biaxial nematic (NB) phase, which
is characterized by preferential alignment of not one, but
two mutually orthogonal molecular axes and, thus, exhibits
two directors. First predicted by Freiser in 1970 [4], the NB

phase has since been a source of excitement in LC science,
on account of both its fundamental interest and its potential
applications. For example, bistable displays or devices might
exploit the easier orientability of the secondary director of
the NB phase to achieve faster switching times. The theory,
simulation, and experiment of biaxial nematics are extensively
and thoroughly reviewed in [5], whereas the molecular design
of biaxial nematogens is addressed in [6].

In order to realize biaxial nematic order, the molecules
need to have a corresponding symmetry, with two distinct
orthogonal axes of anisometry. The parallelepiped has been the
most common starting point [4,7], yet bent rods were also early
candidates [8,9]. Biaxiality was indeed claimed experimentally
in 2004 by Madsen et al. [10] and Acharya et al. [11], as
well as more recently by others [12–14], though not without
some controversy [15–17]. Two theoretical approaches have
been developed to investigate the phase behavior of bent-rod
molecules, which are suitable for thermotropic and lyotropic
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mesogens respectively. In the first of these [18,19], particles are
assumed to interact via a continuous anisotropic potential of
the appropriate symmetry, which is then treated within a mean-
field approximation. The second approach [8], in contrast,
models each particle as two hard spherocylinders joined at their
ends at a (fixed) angle, including excluded-volume interactions
only; the system is then treated at the level of the Onsager
second-virial approximation. Despite their different starting
points, both theories make essentially the same predictions.
This is not unexpected if one recognizes that, from the point of
view of orientational order, the density in a lyotropic LC plays
the same role as the inverse temperature in a thermotropic
LC. We return to this point later, but to summarize: at high
temperatures (low densities), the stable phase is isotropic (I);
as the temperature is lowered (or the density raised), straight or
slightly bent rods with interarm angles close to 180◦ undergo
a first-order transition into a calamitic uniaxial nematic phase
(N+

U), where their long axes are ordered. Conversely, for
strongly bent rods with an interarm angle close to 90◦, the
first-order transition is into a discotic (oblate) uniaxial nematic
phase (N−

U), where it is now the axes perpendicular to the
plane of the molecule that order. Between these limits, for an
interarm angle close to the tetrahedral angle, there is a Landau
point at which the isotropic phase moves directly into a biaxial
nematic phase (NB) via a continuous transition. Continuous
transitions from the N+

U and N−
U phases into the NB phase are

also predicted on either side of the Landau point.
Experimentally, however, the NB phase was seen to occur

at higher temperatures and smaller rod bending angles (hence
smaller molecular biaxialities) than predicted. One possible
source of this discrepancy is the large permanent transverse
electric dipole present in bent dimers [10,20,21], which was not
accounted for in [8,18,19]. There have been several attempts to
incorporate dipoles into the theory [22,23], which have yielded
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FIG. 1. (a) Flexible dimers consisting of two hard rods connected
by a flexible spacer. The angle ψ , with equilibrium value ψ = 0,
measures the degree of bending. (b) Biaxial nematic phase of rigid
bent rods studied in [8].

results generally pointing in the right direction, as well as new
and exciting phase diagram topologies including polar biaxial
phases. Still, in the present paper we are mostly concerned
with qualitative effects rather than quantitative agreement, and
so we ignore these complications.

Early Monte Carlo simulations of bent-rod particles com-
posed of two hard spherocylinders did not find unambiguous
evidence of an NB phase, because of the formation of pairs of
particles locked together [24], or found it to be preempted
by smectic phases at aspect ratio L/D = 5 [25]. Similar
results were obtained for molecules consisting of seven tangent
Lennard-Jones spheres rigidly arranged into a V shape [26].
However, Monte Carlo simulations of an extension of the
Lebwohl-Lasher lattice model of nematogens did confirm
the general topology of the phase diagram, with a Landau
point at the tetrahedral interarm angle for symmetrical bent
rods [27]; in asymmetrical bent rods, the Landau point was
shifted to smaller angles and eventually disappeared for large
asymmetries.

In this paper we revisit the simple model of a molecular
dimer with a flexible joint connecting the two rigid rods (see
Fig. 1). The instantaneous shape of a dimer is a bent rod,
but we assume its equilibrium shape to be straight, with an
energy penalty associated with spacer bending. The flexibility
of the molecular bond allows for a more general description
of semiflexible filaments and other molecules with an internal
degree of freedom. The mean-field density-functional theory
of flexible thermotropic dimers was developed by Terentjev
et al. [28,29], who focused on the properties of the elastic
spacer connecting the two equivalent rods and looked at
even-odd effects and the values of elastic constants [30–32].
However, the analysis in [28] and [29] was restricted to
the uniaxial nematic phase. Luckhurst [33] formulated a
mean-field theory of flexible thermotropic dimers that includes
all symmetries and all types of orientational order. Yet
this approach leads to problems in treating the excluded
volume when the single-particle probabilities for each rod
are correlated; moreover, it has not been used to make any
detailed calculations of transitions. Our purpose is to address
all these issues for the model of flexible dimers, where the
control parameter is the bending stiffness of the joint (spacer).

In the limit of infinite stiffness our theory must reduce to
that of the standard lyotropic nematic phase of rigid rods of
doubled length. We do not consider the more complicated
problem of flexible dimers that are bent at a finite angle ψ0 in
equilibrium (see [29] for a basic treatment of this problem in
the uniaxial-order limit).

This paper is organized as follows: in Sec. II we recapitulate
the theory in [8] for rigid bent rods (Sec. II A) and generalize
it to include a flexible joint (Sec. II B). In Sec. III we present
our numerical results for the key order parameters and the
associated phase diagrams, for both rigid bent rods and flexible
dimers. The existence of a biaxial phase in a solution of
flexible but intrinsically uniaxial dimers, with a nontrivial
phase diagram topology, is the main result of this paper. We
conclude in Sec. IV.

II. THEORY

A. Rigid bent rods

In this section we recapitulate the theory in [8]. In the
Onsager second-virial theory, the free energy density of a
nematic phase can be written as [34,35]

F (T ,V,ρ)

NkBT
= ln(�3ρ) − 1 +

∫
f (�) ln f (�)d� + B2ρ,

(1)

where ρ = N/V is the (number) density of rods. � =
(2πh̄2/mkBT )1/2 is the thermal de Broglie wavelength, � =
(φ,θ,χ ) is the set of Euler angles [36] defining the passive
rotation that transforms the particle-fixed frame {u,v,w} into
the laboratory-fixed frame {x,y,z}, and f (�) is the single-
particle orientational distribution function (ODF). The first
two terms on the right-hand side of Eq. (1) are the ideal-gas
contribution. The third term is due to the loss of entropy caused
by the orientational order: it vanishes in the isotropic phase.
Finally, the last term is the contribution due to interparticle
interactions, where B2 is the (angle-dependent) second virial
coefficient:

B2 = − 1

2V

∫
�12f (�1)f (�2)d�1d�2dr1dr2. (2)

In Eq. (2), V is the volume of the system and �12 is the Mayer
f function

�12 = e−φ12/kBT − 1, (3)

in which φ12 = φ(r1,r2,�1,�2) is the interparticle pair poten-
tial, a function of both the positional (ri) and the orientational
(�i) coordinates of the two interacting particles.

It should be noted that the second-virial approximation
only takes into account interactions between no more than
two particles simultaneously and is, therefore, only reliable at
low densities. Discussions of the validity of Onsager theory
are usually framed in terms of how high the particle aspect
ratio L/D must be for higher-order virial coefficients to be
negligible compared to B2. As shown by Allen et al. [37],
this is only the case beyond L/D ∼ 102. However, Bolhuis
and Frenkel [38] found from simulations that Onsager theory
actually gives a very good description of the isotropic-nematic
(I-N) transition densities of hard spherocylinders for L/D >
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20. Recalling that the I-N transition in the Onsager limit occurs
at a reduced density c ≈ 3.5 [see the definition in Eq. (22)],
this suggests that Onsager theory should in practice be valid
for volume fractions below ϕ ≈ 3.5/20 = 0.175 or number
densities below ρD3 ≈ 0.01. We stress that this is merely an
operational criterion and not a rigorous proof of validity, which
is still an open question.

In the case of ‘hard’ particles with no long-range interaction
potential, the Mayer f function �12 = −1 for overlapping ge-
ometries (when φ12 = ∞), and �12 = 0 otherwise (φ12 = 0).
Hence, B2 reduces to the ODF-weighted integral over orienta-
tions of the (angle-dependent) excluded volume vexcl(1,2) of
two particles:

B2 = 1

2

∫
f (�1)vexcl(�1,�2)f (�2) d�1 d�2. (4)

The latter function is not known analytically for any nonconvex
shapes and, thus, must be found numerically. Bisi and
Rosso [39] calculated the excluded volume of two V-shaped
objects consisting of tangent hard spheres by Monte Carlo
integration and derived an approximation to it in terms of
symmetry-adapted Wigner functions. We could use this result,
but a simpler alternative yielding qualitatively correct behavior
is to follow [8] and approximate the excluded volume of two
dimers by the sum of the excluded volumes of pairs of their
constituent hard rods, here taken to be hard spherocylinders
of length L and diameter D. This ‘superposition approxima-
tion’ amounts to treating the spherocylinders as independent
particles and will introduce errors of (leading) order LD2.
These will, however, be vanishingly small relative to the main
‘unperturbed’ term (of order DL2 [40]) in the limit of long,
thin spherocylinders, L/D � 1, where Onsager theory is best
applicable. Onsager theory itself predicts an I-N transition at
a density ∼1/DL2 (if L/D is of order 5 or lower, it becomes
necessary to include higher-order virial coefficients [41]).
Finally, we do not recover the correct limit when the interarm
angle goes to 0 (angle ψ = π/2 in Fig. 1), a point we revisit
in Sec. III A.

Instead of working with the angle-dependent excluded
volume in its general form, we shall follow Straley [7] by
considering the values this excluded volume takes for a few
particular orientations of the two particles. Assuming particle
1 to be located at the origin of the laboratory frame, i.e.,
(θ1,φ1,χ1) = (0,0,0) (see Fig. 2), we compute the excluded
volumes for the six distinct orientations particle 2 can have
subject to the constraint that its long and short axes are directed
along the coordinate axes. Note that within our superposition
approximation we neglect shape polarity, which is addressed
in [42], for example. These orientations are listed in Table I,
where we have used the result that the excluded volume of two
long, thin (L/D � 1) spherocylinders is [34]

vexcl(θ ) � 2DL2 sin(π − 2ψ), (5)

which depends upon the angle between their long axes [cf.
Fig. 1(a)]. In the spirit of Straley’s treatment [7], we then
fit the entries in Table I to a second-order ‘interpolating

FIG. 2. Principal axes and standard Euler angles defining the
orientation of a biaxial bent-rod molecule in the laboratory-fixed
frame (x,y,z). The shape of the molecule can be embedded in a
parallelepiped of thickness D, with long principal axis w and short
principal axis u ⊥ w. The long axis is inclined at the angle θ from z,
the short axis lies in the plane that crosses the x-y plane at angle φ,
and u is rotated counterclockwise by angle χ in this plane.

potential,’ which can be written as an expansion in terms of
symmetry-adapted basis functions. Following the notation of
Mulder [35],

Vint(�) = α + β�1(θ ) + γ [�2(φ,θ ) + �3(θ,χ )]

+ δ�4(φ,θ,χ ), (6)

where the angular functions �i(�) are linear combinations of
Wigner rotation functions of rank 2 [35,36], given by

�1(θ ) = P2(cos θ ) = 1
2 (3 cos2 θ − 1),

�2(φ,θ ) = sin2 θ cos 2φ, (7)

�3(θ,χ ) = sin2 θ cos 2χ,

�4(φ,θ,χ ) = 1
2 (1 + cos2 θ ) cos 2φ cos 2χ

− cos θ sin 2φ sin 2χ.

The coefficients (α,β,γ,δ) in Eq. (6) are chosen such that
Vint(�) is equal to the excluded volume when the principal
axes of the molecules are coincident with the coordinate frame

TABLE I. Excluded volumes of two bent rods in the Onsager
limit (L � D), where the first rod is aligned with the laboratory
frame and the particle-fixed axes of the second are coincident with
the laboratory axes. Refer to Fig. 2 for the definition of Euler angles
(θ,φ,χ ). The first three columns show in which plane of the (x,y,z)
frame the pair of orthogonal principal vectors w, u lies, in each case.

x y z φ θ χ vexcl/2DL2

u — w 0 0 0 2| sin 2ψ |
w — u 0 90◦ 0 2(1 + | cos 2ψ |)
— w u 90◦ 90◦ 0 4| sin(cos−1( 1

2 sin 2ψ))|
— u w 90◦ 0 0 4| sin(cos−1(cos2 ψ))|
u w — 90◦ 90◦ 90◦ 4| sin(cos−1(sin2 ψ))|
w u — 0 90◦ 90◦ 4| sin(cos−1( 1

2 sin 2ψ))|
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(as listed in Table I):

α

2DL2
= 2

3

(
| sin 2ψ | + 4| sin

(
cos−1

(
1

2
sin 2ψ

))
|
)

,

β

2DL2
= 4

3

(
| sin 2ψ | + | sin

(
cos−1

(
1

2
sin 2ψ

))
|
)

− 1

− | cos 2ψ | − 2| sin ( cos−1(sin2 ψ))|,
γ

2DL2
= 1

2
(1 + | cos 2ψ | − 2| sin(cos−1(sin2 ψ))|),

δ

2DL2
= 1 + | cos 2ψ | + 2| sin ( cos−1(sin2 ψ))|

− 4| sin

(
cos−1

(
1

2
sin 2ψ

))
|. (8)

We stress that these expressions are only valid in the Onsager
limit, i.e., thin rods for which L � D. This interpolation
approximation preserves the qualitative behavior of the true
excluded-volume potential while greatly simplifying the form
of the interaction and the subsequent algebra.

The basis functions, (7), also define the four orientational
order parameters:

S1 = 〈�1(θ )〉, S2 = 〈�2(φ,θ )〉, S3 = 〈�3(θ,χ )〉,
S4 = 〈�4(φ,θ,χ )〉, (9)

where the angle brackets denote an ODF-weighted angular
average. It is important to note that, over the years, the four key
order parameters have been defined in many different ways. A
comprehensive historical and comparative analysis has been
undertaken by Rosso [43]. Here we adopt the notation of the
first correct analysis, by Straley [7], though giving the four
order parameters different (perhaps more systematic) names.

The ‘usual’ uniaxial nematic order is, of course, described
by S1. Nonzero S1 and S3, combined with zero S2 and S4,
indicate a uniaxial nematic phase aligned along the z axis.
In contrast, nonzero S2 and S4 describe biaxiality emerging
in the plane perpendicular to the principal z axis. Positive
S1 and S3 indicate a ‘prolate’ N+

U phase (the typical ordering
of rods), while negative S1 and S3 correspond to an ‘oblate’
N−

U phase (the ordering of flat disks). It should be noted that
multiple nonzero Si may be indicative of a uniaxial phase
that forms about some axis other than z (rather than a biaxial
phase). This stems from our earlier arbitrary choice of z axis.
Results must therefore be interpreted carefully, as we see in
Sec. III. In general the system will pass through a uniaxial
phase before exhibiting any biaxiality except at the Landau
point, which by definition is the point in the phase diagram
where the isotropic phase transitions directly to NB. A more
thorough discussion of this can be found in [19]. Finally, it
should be noted that the set of four order parameters in Eq. (9)
is appropriate for a biaxial nematic phase without polarity [42].
More sophisticated theories exist that predict many other
phases of polar bent dimers; in particular, Lubensky and
Radzihovsky [3], Méttout [44], and Luckhurst et al. [45] have
pointed out that the usual description of order in terms of a
single second-rank tensor is insufficient to capture the full
richness of phases potentially found in these systems. In this
paper we restrict ourselves to nonpolar nematic phases.

Note that Vint(�) in Eq. (6) is in fact a two-particle potential;
as in [7] and [8] we have assumed that the reference particle
is located at the origin of the laboratory-fixed frame (in
terms of both position and alignment). The corresponding
single-particle mean-field potential, W (�), is then obtained
by integration over the coordinates of one of the particles:
WMF(�1) = ∫

Vint(�1,�2)f (�2)d�2. By symmetry, its form
is determined by the same basis functions,

WMF = w1�1 + w2�2 + w3�3 + w4�4, (10)

leading to the self-consistency relations,

w1 = βS1 + γ S3, w2 = 3
4βS2 + γ S4,

w3 = γ S1 + 3
4δS3, w4 = γ S2 + δS4. (11)

From Eq. (1), the mean-field approximation to the free energy
is thus

F

NkBT
= ln(�3ρ) − 1 +

∫
f (�) ln (f (�))d�

+ ρ

2
(w1S1 + w2S2 + w3S3 + w4S4).

(12)

Minimization of this free energy functional with respect to the
ODF f (�) yields

f (�) = 1

Z
exp

(
−1

2
ρWMF(�)

)
, (13)

with the normalization constant

Z =
∫

exp

(
−1

2
ρWMF(�)

)
d�. (14)

Substituting Eq. (13) into Eq. (1) and recalling that fiso(�) =
1/8π2 in the isotropic phase, we find the excess free energy
(that is, the difference in free energy between the nematic and
the isotropic phases)

�F

NkBT
≡ Fnem − Fiso

NkBT
= ln

(
8π2

Z

)
. (15)

We see that the equilibrium free energy difference is com-
pletely encapsulated in the normalization constant Z (the
partition function of the nematic mean field).

We finish this section with a remark on the formal similarity
of the Onsager and Maier-Saupe theories of lyotropic and
thermotropic nematics, respectively: both lead to a self-
consistency equation of the form of Eq. (13). There is a critical
difference however, in that the factor of density (ρ) multiplying
the mean field in the Onsager theory is replaced with 1/kBT

in the Maier-Saupe theory. This reflects the fact that the
Maier-Saupe theory deals with attractive forces in addition
to configurational entropies and so allows for a temperature-
driven phase transition, in contrast to the density-driven On-
sager transition caused by entropic excluded-volume effects.
In fact, both the Onsager and the Maier-Saupe theories can be
viewed as special cases of more general mean-field theories,
where both the density ρ and the Boltzmann factor 1/kBT

act as control parameters. The limits ρ → 0 (kBT → ∞) and
ρ → ∞ (kBT → 0) correspond to the (noninteracting) ideal
gas and strong-coupling behavior, respectively. Consequently,
all results reported in this paper for athermal systems can
be transposed onto a thermally driven system by making the

042703-4



EMERGENCE OF BIAXIAL NEMATIC PHASES IN . . . PHYSICAL REVIEW E 96, 042703 (2017)

substitution ρ → 1/kBT and, so, have wider validity than may
at first be evident.

B. Flexible dimers

Here we extend the above treatment to the case of a flexible,
jointed dimer as shown in Fig. 1(a). The dimer is modeled
as two rods connected by a springlike bond, with an energy
penalty for nonzero bond angle

Ubend = 1
2κψ2. (16)

This can be incorporated into the mean-field formalism
developed above. First, upon adding a new degree of freedom
to the system we must include its (configurational) entropic
contribution. We do this by extending the ODF and measure

f (�)d� → f (�,ψ)d�dψ, (17)

such that the new entropy is contained within the Gibbs term
in Eq. (1). Next, the bending energy, Eq. (16), contributes an
additional term to the overall free energy,

�Fψ = N 1
2κ〈ψ2〉. (18)

We now define an additional pair of parameters

w5 = κ

ρkBT
, �5 = ψ2 (19)

and update the molecular mean-field expression, which can be
written concisely as

WMF = w1�1 + w2�2 + w3�3 + w4�4 + w5�5. (20)

The total free energy now changes from Eq. (12) to the form

F

NkBT
= ln(�3ρ) − 1 +

∫
f (�,ψ) ln (f (�,ψ))d�dψ

+ ρ

2
(w1S1 + w2S2 + w3S3 + w4S4 + w5S5).

(21)

Note that S5 = 〈�5〉 does not represent a new order parameter,
being used merely as a common convenient notation (a
measure of the mean-square fluctuation of the bending angle).
Similarly, the added bending contribution (w5S5) is not a virial
term as the four other terms are, but an intramolecular energy.
This common notation allows streamlined integration into
the generic Straley method. We set the true isotropic ODF
fiso(�,ψ) = 1/8π3, in keeping with Eq. (13); the extra factor
of π arises from the integration over ψ .

Finally, there is a subtlety in Eq. (20) in that all factors
{wi} depend on the bending angle ψ through the coefficients
{β,γ,δ} [cf. Eqs. (8)] and so must also be averaged with the
ODF f (�,ψ) when solving the self-consistent field condition,
Eq. (13).

III. RESULTS AND DISCUSSION

It will be helpful in what follows to define a dimensionless
‘reduced density’ as

c ≡ π

4
DL2ρ = L

D

N

V

π

4
D2L = L

D
ϕ, (22)

FIG. 3. (a) Order parameter and excess free energy (in units of
kBT ) plotted for ψ = 0◦. There is a strong first-order phase transition,
with only S1 present. (b) The order parameter and excess free energy
(in units of kBT ) for ψ = 36◦ reflect phase transitions just below the
Landau point. The I-N+

U transition is very nearly continuous, reflecting
the proximity to the Landau point. Arrows highlight the singularities
observed at the NU-N+

B transition.

where ϕ is the volume fraction of the rods. This follows earlier
works [8,40,46] and uses the fact that the proper volume
of a (straight) rod is π

4 D2L to leading order in D/L  1.
Onsager theory can be used to find equilibria between phases
of different densities (see, e.g., [40]). We do not do this here:
instead, we investigate the stability of different phases as a
function of the density.

A. Rigid dimers

The self-consistent mean-field condition, Eq. (13), was
solved at each reduced density c by making an initial guess
for the set of order parameters {Si}, substituting them into
the mean field WMF Eq. (10), and recalculating {Si} through
Eqs. (9). These values were resubstituted back into Eq. (13),
and the process iterated until the convergence condition

|Si − Sold
i | < 10−7 (23)

was satisfied for all order parameters. This was deemed
sufficiently stringent to ensure full convergence. The numerical
integration was performed using the 16-point Gauss-Legendre
quadrature, implemented in Fortran [47]. Tabulated vales
of trigonometric functions were used when performing the
angular integrations in order to increase the efficiency.

We have reproduced the results of Teixeira et al. [8],
correcting minor algebraic errors in their analysis in the
process. Figure 3(a) shows the first-order phase transition
found for a straight double-rod (ψ = 0). The functional form
of WMF (in particular, that of the �1 part, corresponding to
the primary uniaxial order parameter) indicates that this is
identical to the Maier-Saupe result if one were to replace
ρ → 1/kBT . As the bond angle increases, the phase transition
occurs at progressively higher densities; in addition, the
secondary uniaxial order parameter S3 becomes finite [see
Fig. 3(b)]. A softening of the phase transition is also evident,
becoming “weakly first-order” in nature [49] as the rigid bond
angle increases. This is related to the increasing biaxiality of
the molecules [19,48], illustrated by the rise in S2,4. In fact,
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FIG. 4. (a) Order parameter and excess free energy (in units of
kBT ) reflect phase transitions for ψ = 37◦, just above the Landau
point. The first transition here is to an oblate uniaxial N−

U phase;
arrows highlight the singularities at the NU-NB transition. (b) For
a large bending angle, ψ = 45◦, the molecule is essentially oblate
and the corresponding N−

U phase is the only outcome in the range of
densities investigated.

the transition is predicted to become continuous at the Landau
point—as indeed is shown in Fig. 5.

A qualitative change in behavior is observed at the Landau
point, which, for this system, is at ψLandau ∼ 36.3◦. For ψ <

ψLandau, the system exhibits a phase transition from isotropic
to a prolate N+

U phase, whereas for ψ > ψLandau the transition
is into an oblate uniaxial N−

U phase. The relevant results for
ψ just below and just above the Landau point are shown in
Figs. 3(b) and 4(a), respectively. The main difference is in the
sign of S1 (i.e., prolate vs oblate uniaxial order), which then
guides the difference in the corresponding biaxial phases N+

B
and N−

B , respectively. When solving Eq. (13) one may find local
minima, depending on the initial guesses for the parameters
{Si}. This is the case for ψ > 37◦, where positive guesses
for the order parameters lead to a phase for which S2 = 2S1,
S4 = 2

3S3, indicating N+
U order about the x axis. However, this

is a metastable phase, higher in free energy than the N−
U phase

FIG. 5. I-NB phase transitions for ψ = 36.32◦, at the Landau
point. (a) Obtained with all initial {Si} positive; (b) obtained with
negative initial S1 and S2. The transition is manifestly continuous,
directly from the isotropic to the biaxial nematic phase, and the free
energy of both resulting phases is nearly the same (to ∼10−3kBT

per molecule). This is consistent with the change in behavior from
prolate- to oblatelike order across the Landau point but implies that
there are two degenerate biaxial phases at the point itself, N+

B and N−
B .

observed when one chooses negative initial S1, S3 and positive
S2, S4. This is clearly illustrated in Fig. 4(b) for ψ = 45◦. The
equilibrium free energy difference �F (per particle), given
by Eq. (15), is included for completeness and to illustrate the
nature of the transitions.

It is important to note that the interpolating-potential
approximation, Eq. (6), and coefficients, Eqs. (8), do not
recover the correct limit as ψ → π/2, a fully folded dimer.
This might be regarded (to leading order in D/L) as a straight
parallelepiped of length L and thicknesses 2D in one plane
and D in the other. This is inherent in the nature of the
approximation, which becomes increasingly inaccurate as the
bond angle reaches this limit [8] because of the asymmetry
associated with the (arbitrary) choice of z axis. As previously
discussed, however, this model does give the correct limit
as ψ → 0 (the straight double-rod). Despite this shortcoming,
the approximation preserves the topology of the phase diagram
and the character of the transitions while providing a tractable
theory and is, therefore, very useful.

B. Flexible dimers

In this case we have the dimer bending angle ψ as
an additional fluctuating variable, with associated changes
in the energy and entropy. As one would expect, upon
increasing the dimension of the phase space over which each
integration takes place, and because of the complexity of the
coefficients, Eqs. (8) (which now need to be integrated over
ψ), computation of the solution becomes significantly more
demanding. Fortunately the basis functions �1−4 are functions
of � only, and the coefficients {β,γ,δ} are functions of ψ only,
allowing the relevant contributions to w1–4 to be calculated
separately for efficiency. Tabulated trigonometric values were
again used when performing the integration over Euler
angles �.

However, the coefficients given by Eqs. (8) were evaluated
using double-precision trigonometric functions, since the
solution of Eq. (13) was found to be very sensitive to the
accuracy of their computation, occasionally not converging
when tabulated values were employed. In addition, the Gauss-
Legendre quadrature used to perform the integrations over a
solid angle was found to be insufficiently accurate as κ → ∞,
being unable to capture the rapid change of the integrand with
ψ . Consequently, the Romberg method [47] was employed for
integration over the internal bond angle.

Furthermore, the first-order nature of the transition allowed
the convergence condition, Eq. (23), to be relaxed somewhat
when producing these data. Taking Si > 0.1 as the criterion
for a phase transition, the condition |Si − Sold

i | < 10−5 was
sufficient to produce smooth phase boundaries. Small sections
of data were checked with the more stringent condition,
Eq. (23), in order to verify the validity of this relaxation.

Figure 6 illustrates the phase ordering of flexible dimers,
comparing three contrasting cases: a very stiff molecule
(κ = 100kBT , with a correspondingly narrow distribution of
bending angle fluctuations; standard deviation σψ =

√
〈ψ2〉 ≈

8.5◦); a very flexible molecule (κ = 0.01kBT , with a practi-
cally flat distribution of bending angle fluctuations; standard
deviation σψ =

√
〈ψ2〉 ≈ 52◦); and, also, a molecule of in-

termediate stiffness (κ = 1kBT and σψ =
√

〈ψ2〉 ≈ 43◦). For
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FIG. 6. Order parameters and excess free energy (in units of
kBT ) plotted versus reduced density for three dimers: stiff, with
κ = 100kBT (plain curves); medium, with κ = 1kBT (curves with
a circle); and very flexible, with κ = 0.01kBT (curves with a square).
In all cases we find a strong first-order transition to the prolate N+

U

phase, which, in the case of nonstiff dimers, is followed by an N+
U-NB

transition (marked by arrows).

stiff dimers we find a single first-order transition to a prolate
uniaxial N+

U phase. Note that there is a nonzero equilibrium
excess free energy arising from the S5 term in the mean-field
potential, which will always be present when incorporating
the intramolecular energy into Eqs. (20) and (21), and so an
additive constant needs to be introduced to correctly compare
�F in the three cases [Fig. 6(b)].

For κ � kBT we find a second transition, from the uniaxial
nematic phase into a biaxial phase NB, where the key order
parameter S4 �= 0. This is unexpected; unlike the case of the
rigid bent rod in the previous section, the flexible dimer has
no intrinsic biaxiality, with its straight equilibrium shape (at
ψ = 0). It nevertheless appears that, when the spread of dimer
fluctuations becomes sufficiently wide, the system finds an
advantage in restricting these fluctuations to a single plane
instead of allowing the full range of the angle χ to be uniformly
explored. We hypothesize that this is the origin of the biaxial
order emerging at higher densities; ordering orientationally
along one additional axis maximizes the free volume, as in
the Onsager picture of the I-N transition. The two transitions
are very close (i.e., the uniaxial nematic phase has a very
narrow range) for flexible dimers, while for κ = 1kBT , the
two transitions rapidly diverge in reduced density, to between
c ≈ 3.0 and c ≈ 4.1 (see Fig. 6).

The most remarkable feature of the results presented in
Fig. 6 is the comparison of the transitions and phases at κ =
1kBT and 0.01kBT . Upon increasing the density, both systems
enter a phase with positive order parameter S1: this is the
prolate uniaxial nematic N+

U. Then the next transition takes
the system into a biaxial nematic phase with a very small

FIG. 7. Order parameters and excess free energy (in units of kBT )
plotted versus reduced density for dimers with bending stiffness κ

crossing over from the N+
B to the N−

B phase. For κ = 0.855kBT (curves
with a square) the second transition is into the phase with a negative
S4; for κ = 0.856kBT (curves with a circle) the emerging phase has
a positive S4. The transitions at κ = 1kBT (plain curves) are also
shown for reference; the biaxial transition for this bending stiffness
is indicated by the arrow.

change in S1, but with a rapidly growing order parameter S4.
Surprisingly, there appear to be two biaxial nematic phases:
one with positive S4, the other with negative S4. It is tempting
to relate these two phases to N+

B and N−
B , discussed in Sec. III A

(Fig. 5). There are, however, significant differences: here, the
two other order parameters (S2 and S3) remain 0, within our
numerical accuracy, and the principal uniaxial order parameter
S1 remains positive. If we recall the definitions of our four order
parameters, which are the averages of the Wigner functions,
Eqs. (7), it should not surprise us that S3 = 0, as this order
parameter is a measure of molecular biaxiality, and a flexible
dimer is not intrinsically biaxial because it can bend in any
plane. On the other hand, S2 (like S4) is a measure of phase
biaxiality: it describes the asymmetry of the fluctuations of the
long molecular axis about the primary director. In the limit
of strong uniaxial order (S1 → 1), which is approximately
realized here, it can be proved [50] that S2 ∝ S4(1 − S1) and
S2 is thus expected to be small.

Figure 7 zooms in on the crossover region, where the
switch between the N+

B and the N−
B phases occurs, comparing

systems with κ = 0.855kBT and 0.856kBT (again, the case
of κ = 1kBT is added for reference). We find a sharp,
discontinuous change between negative and positive S4, which
then varies little upon further density increases, associated
with a clear jump in the free energy �F at the transitions,
while having a negligible effect on the S1,2,3 order parameters.
Comparing these results with Fig. 6, we see that the ‘strength’
of this discontinuity at the NU-NB transition diminishes in
both directions away from the critical value of κ ≈ 0.86kBT .
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FIG. 8. Reduced density–bending stiffness phase diagram of
flexible dimers. The I-N+

U phase transition boundary (lower curve)
reaches the asymptote of c ≈ 1.35 at very large κ . For small κ

the flexible dimers also form the biaxial phase at higher densities.
Regions corresponding to the I, N+

U, N+
B , and N−

B phases are labeled.
Vertical arrows indicate the three density scans presented in Fig. 6.
Inset: The horizontal arrow indicates the stiffness scan explored in
Fig. 9.

The fact that the N+
B and N−

B phases have precisely the same
free energy, and evidently S4 in the N+

B phase is equal to
−S4 in the N−

B phase, suggests that N+
B and N−

B are not two
physically distinct phases but, rather, the same phase with the
secondary director along the x and y axes, respectively. In other
words, when the V-shaped molecule preferentially lies in the
x-z plane, S4 > 0 (N+

B ), and when the V-shaped molecule is
in the y-z plane, S4 < 0 (N−

B ) [cf. the definitions in Eqs. (9)].
Thus, N−

B is just the N+
B phase rotated by π/2 around the z

axis. From Eq. (21) we can see that the free energy is invariant
under this rotation.

The full phase diagram of the system in terms of the
variables, (reduced) density c vs bending stiffness (κ/kBT ),
is shown in Fig. 8. This is a map of the parameter space
where apparently four phases exist: isotropic, prolate uniaxial
nematic, and two biaxial nematic phases (which we assert is the
same phase, with perpendicular principal axes). The topology
of the I-N+

U transition line is as expected: when the bending
stiffness is very high, the dimer behaves as a rigid rod of length
2L; its ordering transition occurs at a lower reduced density,
c ≈ 1.32, which matches exactly a separate calculation of the
Onsager I-N transition of rigid rods for our choice of units
[remember that our reduced density c, defined in Eq. (22), is
constructed in such a way that the results do not depend on
the molecular volume L2D, but the volume fraction ϕ refers
to individual rods of length L]. In the opposite limit of a very
flexible dimer, there is no corresponding straightforward a
priori limit to be met. Even when the bending angle ψ is not
constrained by any energy penalty, the entropic effect of two
connected rods delays the onset of orientational order, thereby
dramatically driving up the transition density.

At a higher density and low bending stiffness, a second
transition line, between the N+

U and the NB phases, emerges. We
label the two biaxial phases N+

B and N−
B on this map according

to the sign of the S4 order parameter. The I-N+
U and N+

U-NB

FIG. 9. ‘Stiffness scan’ of the phase diagram across the crossover
region between the N−

B and N+
B phases, at c = 4.1. (a) The four order

parameters, with the notable feature that the value of S4 in N+
B is

just minus its continuation from N−
B (as illustrated by the dashed

line). (b) Similarly, we see that the two biaxial phases, N+
B and N−

B ,
have essentially the same free energy (by extrapolation). Likewise, the
free energy difference of the uniaxial phase NU sandwiched between
the two biaxial phases is the continuation of that of the uniaxial phase
at larger κ (as illustrated by dashed lines).

transitions appear to be very close as κ → 0, and we are not
certain whether this constitutes a single Landau point, which
we miss for some reason of numerical fidelity, or whether the
small separation of the two transitions is a real physical effect.
In either case, we must remember that this physical system
is very different from the naturally biaxial rigid bent rod, and
the nature of orientational ordering of two linked rods with no
bending penalty is very different too.

We were able to numerically map the topology of the
crossover region between N+

B and N−
B phases with some

accuracy, as shown in the inset in Fig. 8. Again, we wish
to be certain whether the two versions of the biaxial phase, N+

B
and N−

B , are always separated by an infinitesimally thin region
of uniaxial nematic phase, or if there is a direct transition
between them. We therefore attempted to scan this phase map
in a different direction, taking the reduced density c as constant
and varying the dimer stiffness κ in great detail; the result is
presented in Fig. 9. To the best of our numerical accuracy, there
is a narrow region of uniaxial nematic phase separating the two
versions of the biaxial phase (i.e., in order to transform from
N−

B to N+
B the system first needs to melt into a higher-symmetry

NU phase). We carried out the same scan at the much higher
density of c = 5, finding the same (although narrower) region
of the uniaxial nematic phase.

To understand this phase ordering, one needs to correlate the
phases we observe with the theoretical analyses by Lubensky
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and Radzikhovsky [3] and by Luckhurst et al. [45], which es-
tablish the symmetries and possible transitions between many
possible phases. Their analysis is based on phase symmetry,
and therefore our biaxial phases (or just one fundamental
phase N±

B ) must be among their classification. However,
linking the molecular shape with the phase symmetry, which
is often the basis for understanding the phase ordering, is
not straightforward since our molecules are not intrinsically
biaxial, nor do they have a rigid shape. As such, neither
theory [3,45] applies directly to our system; the dynamical
effect of the bending fluctuations of a flexible dimer on the
equilibrium phase ordering is yet to be fully understood.

The bending stiffness κ of the dimer is the second control
parameter in this system (alongside the dimensionless reduced
density c); we used its nondimensional form κ/kBT to measure
the strength of this interaction per molecule and, also, to
compare with the overall free energy difference �F between
the emerging phases presented in most plots. In a thermally
fluctuating system with unrestricted values of the variable
ψ , the variance (standard deviation σψ ) of its equilibrium
distribution would be given by σψ = √

kBT /κ . Qualitatively,
this would have to be the limiting case for very stiff dimers,
for which the boundedness of the ψ range is effectively never
probed. However, for moderate and low values of κ , the finite
range of ψ (ψ � 90◦) will become significant; in the limiting
case of κ → 0, for which the fluctuations of ψ are unrestricted,
the variance saturates at σψ =

√
π2/12. Our system is fully

athermal, intended to be driven purely by the entropy of
excluded volume, but the bending energy, Eq. (16), is added to
the purely entropic effects. We have effectively included this
potential energy alongside all other effects by scaling κ/kBT .
A very interesting feature needs to be highlighted: at our
‘critical’ value of stiffness, κ ≈ 0.86kBT (where the crossover
between N+

B and N−
B occurs), we calculate the distribution

variance σψ to be almost exactly 45◦. For κ > 0.86kBT ,
i.e., in what we call the N+

B phase with positive S4, the
fluctuating dimer retains an extended shape with a largely
obtuse angle between the connected rods. Not surprisingly, we
find the dimer principally aligned along z with its azimuthal
fluctuations biased in the x-y plane (the apex pointing along
x). On the other hand, for κ < 0.86kBT (i.e., in the N−

B region),
the r.m.s. angle between the two rods is acute. We imagine that
the V-shaped (average) dimer aligns with its apex pointing up

the z axis, while the two rods preferentially reside in the y-z
plane, producing the negative S4.

Finally, a note of caution is in order: as detailed above, our
theory does not reproduce the correct behavior when ψ →
π/2. Very flexible dimers would have a noticeable probability
weight corresponding to configurations in this range, and so the
theory may become unreliable in this limit. This is mentioned
above in the discussion of Fig. 8 when κ → 0.

IV. CONCLUSIONS

In this paper, the isotropic-nematic phase transitions of
rigidly bent and flexible dimers were investigated using
the Onsager second-virial theory of hard particle fluids
in the manner of Straley, combined with a superposition
approximation. The results in [8] were confirmed, and the
continuous phase transition at the Landau point exhibited.
Flexible dimers were studied by modifying Straley’s method to
include an intramolecular energy term that penalizes bending,
the results obtained being justifiable on physical grounds.
An apparently novel biaxial nematic phase of intrinsically
uniaxial flexible dimers was found, although the molecules
do not possess any permanent biaxiality. This new phase
may, however, be an artifact of the approximations employed,
for example, the weak coupling between dimer stiffness
and order parameters, and requires further investigation by
either theory or simulation. The phase diagram of flexible
dimers was plotted, which exhibits a nontrivial topology, with
phase transitions between isotropic, prolate uniaxial nematic,
and biaxial nematic phases, depending on the density and
bond stiffness. A natural continuation of this work would
be to investigate the effect of a nonzero equilibrium bond
angle, ψ0 �= 0, on the emergence and stability of various
orientationally ordered phases of flexible dimers.
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